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ABSTRACT
Social sensing has emerged as a new sensing application paradigm

where measurements about the physical world are collected from

humans or devices on their behalf. The advent of edge computing

pushes the frontier of computation, service, and data along the

cloud-to-IoT continuum. The merge of these two technical trends

(referred to as Social Sensing based Edge Computing or SSEC) gen-

erates a set of new research challenges. One critical issue in SSEC

is the heterogeneity of the edge where the edge devices owned by

human sensors often have diversified computational power, run-

time environments, network interfaces, and hardware equipment.

Such heterogeneity poses significant challenges in the resource

management of SSEC systems. Examples include masking the pro-

nounced heterogeneity across diverse platforms, allocating interde-

pendent tasks with complex requirements on devices with different

resources, and adapting to the dynamic and diversified context of

the edge devices. In this paper, we develop a new resource manage-

ment framework, HeteroEdge, to address the heterogeneity of SSEC

by 1) providing a uniform interface to abstract the device details

(hardware, operating system, CPU); and 2) effectively allocating the

social sensing tasks to the heterogeneous edge devices. We imple-

mented HeteroEdge on a real-world edge computing testbed that

consists of heterogeneous edge devices (Jetson TX2, TK1, Raspberry

Pi3, and personal computer). Evaluations based on two real-world

social sensing applications show that the HeteroEdge achieved up

to 42% decrease in end-to-end delay for the application and 22%

more energy savings compared to the state-of-the-art baselines.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing; • Computing methodologies → Distributed com-
puting methodologies; • Computer systems organization→Em-

bedded and cyber-physical systems;
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1 INTRODUCTION
Social sensing has recently emerged as a new application paradigm

where humans and the devices they owned collect sensor measure-

ments from the physical world [36, 39]. Examples of social sensing

applications include urban traffic monitoring using mobile apps

[21], obtaining real-time situation awareness in the aftermath of

a disaster using self-reported observations from citizens [37], and

abnormal event detection using portable video devices [22]. One

critical limitation of existing social sensing solutions is that the

computation and data analytics tasks are primarily performed on

the backend servers (e.g., dedicated server or cloud platform), which

often causes excessive bandwidth consumption and unnecessary

delay [47]. Edge computing has become a new computing paradigm

that pushes the frontier of computation, data, and services to the

edge of the network where social sensing happens [30].

In this paper, we focus on a Social Sensing based Edge Com-

puting (SSEC) paradigm where the sensing and devices owned by
individuals are used as the computational resource at the edge to

accomplish the tasks from social sensing applications. The SSEC

paradigm has several unique advantages. First, SSEC provides a

more economical and scalable edge computing solution by lever-

aging the SSEC devices that are owned by the end users. Second,

the SSEC devices form a mobile sensor network to accomplish the

sensing tasks that are challenging for infrastructure/static sensors.

Third, SSEC is suitable for delay-sensitive applications by pushing

the computation and service to the edge where the users reside.

Finally, SSEC reduces the risk of overloading the back-end servers

and avoids the single point of failure in the system [41].

Despite its immense benefits, SSEC also introduces a set of re-

search challenges such as the non-cooperativeness of end users [42],

privacy and security concerns [35] and incentive design [20]. In this

paper, we focus on a critical challenge in SSEC that has yet to be

well addressed: heterogeneity. In particular, the edge devices in SSEC
often have diversified computational power, runtime environments,

and hardware equipment, making it hard to orchestrate these de-

vices to collaboratively accomplish the tasks in a social sensing

application. Previous efforts were made to accommodate heteroge-

neous devices in a computing cluster. Examples include HTCondor

[18] and FemtoCloud [8]. However, these solutions cannot address
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the heterogeneity problem in SSEC due to several unique technical

challenges elaborated below.

Pronounced Heterogeneity: the heterogeneity in SSEC is more

pronounced than regular distributed/cloud based systems because

i) it is not possible for the application to cherry-pick the devices

in a fully controlled manner given the fact the devices are owned

by individuals [29]; ii) the degree of heterogeneity of SSEC devices

is much more significant than the distributed or cloud computing

systems that assume homogeneous tasks [8] or homogeneous ar-

chitecture [18]. With pronounced heterogeneity, existing resource

management techniques must be re-designed to cater for heteroge-

neous SSEC. In particular, traditional backend-based social sensing

applications are often designed for specific hardware or operat-

ing system environments and may not be directly applicable in

a heterogeneous system. For instance, the application written for

X86 is not executable on ARM processors due to architectural and

hardware difference. Similarly, the applications developed for the

Windows OS cannot be executed on the Android OS without code

modification and re-configuration. The privilege of “write once run

anywhere" is often divested from SSEC developers [5]. Therefore,

the pronounced heterogeneity requires the resourcemanagement in

SSEC to support diverse social sensing tasks to maximize resource

utilization while relieving the burden of the developers.

Complex Task-Resource Mapping: the second challenge refers to

the complexity of efficiently allocating interdependent social sens-

ing tasks with diversified resource requirements to heterogeneous

devices with complex delay-energy tradeoff in SSEC. First, the so-

cial sensing tasks are often complicated and require heterogeneous

hardware resources (e.g., some tasks require sensors, some tasks

require GPU) [31]. Second, the edge devices often have diversi-

fied configurations of hardware components (e.g., GPU, single core

CPU, multi-core CPU, sensors). Third, it is difficult to orchestrate

the heterogeneous edge devices in accomplishing collaborative

social sensing tasks with non-trivial task dependencies. Finally, var-

ious task allocation strategies may yield complex tradeoffs between

energy cost and delay overhead (e.g., assigning a task to a GPU may

incur less delay but higher energy cost as compared to assigning the

task to a CPU.) Given the above unique complexities, we found ex-

isting resource management schemes that leverage heterogeneous

devices (e.g., HTCondor [18], CoGTA [43], and FemtoCloud [8])

cannot solve the complex task mapping problem in SSEC.

Dynamic Context: the third challenge refers to the fact that the

edge devices may have different and dynamic contextual environ-

ments. The contextual environment refers to the detailed status

of edge devices (e.g., the location of the device, the CPU/memory

utilization, and the battery status), which often change over time

as the system runs. It is important to keep track of the contextual

information in SSEC to optimize many run-time decisions (e.g.,

task allocation, incentive adjustment) [4]. Existing edge computing

systems often assume that a central controller in the system has a

full knowledge about the context information of all edge devices

[6], which is not practical in SSEC for two reasons. First, the end

users have ultimate control of their edge devices and they will

decide what type of context should be visible to the application.

For example, a user who chooses to share the GPU resource in a

SSEC application might change her mind if the battery of the device

becomes low. Second, it also introduces a significant synchroniza-

tion overhead by tracking the exact CPU usage and other context

environments in real-time (e.g., the edge devices have to constantly

update its status to the server) [42]. Therefore, there is a lack of an

approach that allows end users to self-configure and provide the

useful dynamic context to the application.

To address the above challenges, we propose a new resource man-

agement framework called HeteroEdge to tame the heterogeneity

of SSEC. In particular, we develop a novel supply chain based task

mapping model that allows heterogeneous edge devices to collabo-

ratively finish complicated and interdependent social sensing tasks

with an optimized delay-energy tradeoff. HeteroEdge addresses

the pronounced heterogeneity of SSEC devices and dynamic con-

text challenges by developing hardware and runtime abstraction

modules. We implemented a system prototype of HeteroEdge on a

real-world SSEC testbed that consists of RaspberryPi3, Nvidia Jetson

TX2, Jetson TK1 boards, and personal computers. The HeteroEdge

was evaluated using two real-world social sensing applications:

Disaster Damage Assessment and Collaborative Traffic Monitoring.
We compared HeteroEdge with the state-of-the-art resource man-

agement schemes used in edge computing systems. The results

show that our scheme achieves a significant performance gain in

terms of delay and energy consumption: our scheme achieved up

to 42% decrease in the end-to-end delay for the application and 22%

more energy savings for edge devices compared to the baselines.

2 RELATEDWORK
2.1 Social Sensing and Edge Computing
Social sensing has received a significant amount of attention due

to the proliferation of low-cost mobile sensors and the ubiquitous

Internet connectivity [36, 38, 45]. A large set of social sensing ap-

plications are sensitive to delay, i.e., have real-time requirements.

Examples of such applications include intelligent transportation

systems [48], environmental sensing [46], and disaster and emer-

gency response [16]. Traditional social sensing applications push

all the computation tasks to the remote servers/cloud, which can be

quite ineffective, particularly for delay-sensitive applications, when

the network bandwidth is limited and the communication latency

is high [47, 49]. Edge computing systems complement traditional

centralized social sensing solutions by offloading computation tasks

to the edge devices to significantly reduce communication costs and

application latency [13]. A comprehensive survey of edge comput-

ing is given by Shi et al. [32]. Social Sensing base Edge Computing

(SSEC) is enabled by a few key technical trends: i) the IoT devices

owned by individuals are becoming increasingly powerful and some

of them even have similar computing power as the dedicated servers

in traditional edge computing systems [42–44]. Therefore, it be-

comes a growing trend to push the computation directly to the edge

devices rather than dedicated remote servers or cloudlets [8]; ii)

The popularity of mobile payment provides a more convenient way

for common individuals to receive incentives by contributing the

spare resources on their IoT devices for accomplishing the social

sensing tasks [43]. In this paper, we focus on the heterogeneity

challenge in SSEC systems.
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2.2 Resource Management in Edge Computing
Resource management is a fundamental problem in edge comput-

ing systems and many solutions have been developed to address

this problem [6, 50]. Most of the current resource management

schemes adopt a centralized approach that employs a central de-

cision maker to allocate tasks in the system. Such an approach

fails in the edge computing systems where the devices might re-

frain from providing necessary information to accomplish the cen-

tralized task mapping [42]. Decentralized task mapping schemes

combined with incentive mechanisms have been developed to ad-

dress the above limitation. For example, Ahmad et al. proposed a

game theoretic approach for scheduling tasks on multi-core proces-

sors to jointly optimize performance and energy [2]. Zhang et al.
developed a game-theory based approach to assign computation

tasks to non-cooperative edge devices with dynamic incentives by

considering the conflicting objectives between edge devices and

applications [42]. Liu et al. proposed a decentralized data offloading

scheme using themulti-item auction and congestion game approach

to allow edge devices to decide the optimal strategy for offload-

ing tasks to the cloud [19]. However, these schemes assume the

computing nodes have homogeneous task execution interface and

largely ignore the heterogeneity of edge devices.

2.3 Distributed System with Heterogeneous
Computing Nodes

Taming heterogeneity of heterogeneous computing nodes has been

identified as a critical undertaking in distributed systems. Vari-

ous solutions have been developed in the past that target at either

resource heterogeneity or network heterogeneity. For example,

the HTCondor system can harness the idle computational cycles

from distributed workstations to accomplish computation tasks

[17]. Habak et al. proposed FemtoCloud, which is a dynamic and

self-configuring system architecture that enables privately owned

mobile devices to be configured into a coordinated computing

cluster[8]. More recently, Zhang et al. proposed CoGTA, an edge

computing system that allows non-cooperative and heterogeneous

edge devices to trade tasks and claim rewards [43]. However, the

above schemes suffer from two major limitations: i) they made

strong assumptions that the tasks only require homogeneous com-

putational resources (i.e., CPU and memory) which is not true in

SSEC where complicated social sensing tasks may require a diversi-

fied set of resources such as sensors, CPU and GPU; ii) they assume

the edge devices are always compatible with the computation tasks

which is again not necessarily true in SSEC where the edge devices

may have different runtime environments such as OS and software

dependencies. In contrast, our HeteroEdge framework explicitly

models the heterogeneous edge devices and manages the diversified

resources in the system using a novel economics-based model.

2.4 IoT Middleware
The proposed work is related to some existing literature on IoT

middleware. The IoT middleware targets at enabling connectivity

for heterogeneous IoT devices, making communication possible

among devices that would not otherwise be capable. Typical IoT

middleware solutions include TerraSwarm [15], Xively [33], and

Global Sensor Networks [1]. There exists an important knowledge

gap in the above IoT middleware solutions by largely ignoring the

potential of performing non-trivial computation tasks on increas-

ingly powerful and ubiquitous edge devices owned by individuals.

HeteroEdge focuses on providing reliable computation power over
heterogeneous edge devices in IoT systems to accomplish computa-

tionally intensive tasks (e.g., deep learning based inference, image

processing) that are traditionally done in the backend/cloud. Such

“computation-centric" focus is different from the focus of providing

interconnectivity and interoperability from the traditional sensing-
centric IoT middleware solutions. Our work is also significantly

different from recent computing-centric IoT middleware solutions.

Examples of such solutions include FemtoCloud [8], Deviceless

[7], CoGTA [43], and AWS Greengrass IoT [14]. However, the cur-

rent computing-centric solutions have several key limitations: 1)

they largely ignore the fact that many computationally-capable

IoT devices are now owned by individuals and there exist a signifi-

cant runtime heterogeneity in those devices (different OS, software

libraries); 2) they do not fully consider the heterogeneity of the

computation tasks (e.g., tasks that require CPU, GPU or sensing

modules) together with non-trivial task dependencies; 3) they do

not fully explore the diversified configurations of hardware com-

ponents (e.g., GPU, single core CPU, multi-core CPU, sensors) of

the edge devices). In fact, the solutions mentioned above primarily

focus on tasks that require CPU. In contrast, our solution makes a

unique contribution by jointly addressing the above challenges.

3 PROBLEM FORMULATION
In this section, we formally define the resource management prob-

lem in SSEC with heterogeneous edge devices. Figure 1 shows a

high-level overview of SSEC system. The SSEC system incorporates

a set of edge devices, ED = {E1,E2...EX }, and a local edge server

ES . These edge devices can perform sensing tasks (e.g., collecting

image data using camera sensor), computation tasks (e.g., running

image classification algorithms) or perform data transmission over

the wireless network interface. The edge devices are assumed to be

heterogeneous by having different system architecture (e.g., X86,

ARM), operating systems (e.g., Windows, Linux), hardware (e.g.,

with/without GPU, sensors), and networking interfaces (e.g., WiFi,

Bluetooth). The local edge server serves as a general networking

hub with various network interfaces and all the edge devices can

communicate with the local edge server.

Figure 1: SSEC with Heterogeneous Devices
We first discuss the task model in our framework. A social

sensing application is assumed to have a set of Z jobs, Job =
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{J1, J2, ...JZ }, which are initialized by the server at the beginning

of each sensing cycle (i.e., sampling period). Each job converts

the raw sensor input data to the final analysis results. We adopt

a frame-based task model [43] commonly used in the real-time

system community where jobs are periodically initialized and have

the same period and deadline. We use ∆ to denote the common

deadline of all the jobs in an application. ∆ captures the user desired

QoS in terms of when the jobs should be finished.

To accomplish the data processing function, each job consists

of M pipeline tasks that have task dependencies. Each task is as-

sociated with a 4-tuple: τi = {VIi ,VOi ,WCETi,x ,Ri } where VIi is
the data volume to be processed by task τi and VOi is the size of

the output.WCETi,x is the estimated worst-case execution time

(WCET) if τi is assigned to edge device Ex , 1 ≤ x ≤ X . Ri is the
reward of completing τi to motivate the edge devices to participate

the HeteroEdge framework. The dependencies among the tasks

in an application are modeled by a task dependency graph defined

below.

DEFINITION 1. Task Dependency Graph (Gtask ): a directed
graph Gtask = (Vtask ,Ltask ) where vertexVi ∈ Vtask represents

task τi ; link (τi → τj ) ∈ Ltask signifies that the input of task τj
depends on the output of task τi (Figure 1).

For a given application, we assume that a total ofN tasks (from allZ
jobs) are to be processed in each sensing cycle, i.e., {τ1,τ2, ...,τN }.

To illustrate the task model of SSEC, we show an example appli-

cation called Disaster Damage Assessment (DDA) of SSEC where a

set of edge devices are tasked to provide reports of the severity of

damages during a natural disaster (Figure 2). In this application, a

job is defined as the inference of the damage severity of a specific

location of interest (i.e., location A or B in the figure). Each job can

then be broken down into a task pipeline, including i) collecting the

raw image data (via camera sensors) of the scene, ii) pre-processing

the images and iii) inferring the severity of the damage from the

images. Due to the heterogeneous nature of SSEC, a single device

may not be capable of processing all tasks in a social sensing job.

In the above example, a smartphone device that picks Job 2 collects

the raw image but cannot efficiently process the image for the final

results due to insufficient GPU power. Therefore, it offloads the im-

age to a nearby device (a laptop) for further processing. Under such

a scenario, the laptop and the smartphone complement each other

and collectively finish a social sensing task that cannot be accom-

plished by either of them alone (the laptop has no image sensors

and the smartphone does not have enough computing power).

We model the communication channels in the edge as a Com-
munication Graph:

DEFINITION 2. Communication Graph Gcom : an undirected

graph Gcom = (Vcom ,Lcom ). Vcom is the set of all edge devices

and the edge server ES . Lcom defines the communication channels

where (Ex ,Ey ) ∈ Lcom denotes Ex and Ey can directly communi-

cate with each other. We also have (Ex ,ES) ∈ Lcom ,∀1 ≤ x ≤ X

Given a set of tasks from social sensing application, and a set of

heterogeneous edge devices from the end users, the design goal of

HeteroEdge is to orchestrate the edge devices in the SSEC system

to perform social sensing and computation tasks in an optimized

way that minimizes the End-to-End (E2E) delay of the application

Figure 2: A Social Sensing Edge Computing Application Ex-
ample: Disaster Damage Assessment

and maximizes energy savings of the edge devices. We formally

define E2E delay below:

DEFINITION 3. End-to-end delay of a job (Dz ): the total

amount of time taken for a unit of sensor measurement data (e.g., a

video frame) to be processed by all tasks in Jz . It includes the total
computation time of Jz and the total communication overhead.

The above objective can be formulated as a multi-objective con-

strained optimization problem:

minimize:

X∑
x=1

ex (energy minimization objective)

minimize: Dz ,∀1 ≤ z ≤ Z (application’s QoS objective)

s.t.: Gtask ,Gcom are satisfied

(task and communication constraints)

(1)

where ex is the energy consumption of edge device Ex in a sensing

cycle.

Finally, we summarize a few additional assumptions we made in

our model: i) we assume edge devices are not malicious (e.g., give

fake outputs) or lazy (i.e., intentionally postpone task executions)

[42]; ii) we assume edge devices do not quit or join the system

within a sensing cycle; iii) we assume end users are willing to

provide their computation resource and energy of their devices by

receiving incentives [20]. We discuss how to deal with situations

where such assumptions are not satisfied in Section 6.

4 THE HETEROEDGE FRAMEWORK
This section presents the system design and technical details of the

HeteroEdge framework. An overview of HeteroEdge is given in

Figure 3. It consists of three main modules: i) a runtime abstraction

module, ii) a hardware abstraction module, and iii) a task mapping

module. The runtime abstraction module and hardware abstraction

module abstract away the heterogeneous details of edge devices and

provide a uniform resource pool for the social sensing applications.

The task mapping module allocates interdependent social sensing

tasks to heterogeneous hardware resources in a way that optimizes
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the delay-energy tradeoff for the application. We discuss the details

of these components below.

Figure 3: HeteroEdge Architecture Overview

4.1 Runtime Abstraction Module
A critical issue in heterogeneous SSEC is that the devices have

different hardware and runtime environments that may not sup-

port the social sensing tasks to be processed. For example, a device

may have an incompatible operating system or lack the necessary

dependencies to execute a social sensing algorithm (e.g., a deep

learning algorithm cannot run on a device without necessary li-

braries such as Tensorflow or CUDA). To address this issue, we

leverage the Docker containerization technique[26] which is a com-

puter program that performs operating-system-level virtualization.

It abstracts away the hardware details of the devices and provides

a virtual environment that offers a lightweight, portable and high-

performance sandbox to host various applications [24]. In particular,

the social sensing application developers can “wrap" all necessary

dependencies and the OS itself into a Docker container for each

social sensing application and then upload the container image to

a Docker repository. Any edge devices that have Docker engine

installed can pull the image from the repository and run the social

sensing application. Since the Docker container is self-contained,

neither the application developer nor the device owners need to

worry about its own hardware, OS or runtime environment. The

task execution module in HeteroEdge, therefore, allows the edge

devices in SSEC to provide the same interface to the social sensing

application developers and offers them the “write once and run

anyway" feature despite the heterogeneity of SSEC devices.

4.2 Hardware Abstraction Module
HeteroEdge further performs hardware-level abstraction of the

computing resources available on the edge device by developing a

hardware abstraction module. The hardware abstraction module

abstracts away the details of heterogeneous hardware specifications

from the edge devices. We are inspired by the idea from the Work

Queue framework [51] where the hardware capability of a device

can be represented as a set of workers. In particular, we consider

three types of workers that are essential in finishing social sensing

tasks in SSEC - CPU, GPU, and Sensor workers. Each worker is

associated with a capability descriptor in terms of the estimated

WCET of processing social sensing tasks and a visibility flag. We

formally define the workers as follows.

DEFINITION 4. CPUWorker:ACPUworker represents an idle

computation thread (we assume one thread per core for simplicity)

of an edge device. The number of workers reflects the capability of

a device to handle multiple social sensing tasks simultaneously.

DEFINITION 5. GPU Worker: A GPU worker represents an

idle GPU of an edge device.

DEFINITION 6. SensorWorker:A sensor worker represents an

available sensor on an edge device. The sensor worker has various

types e.g., GPS/ Video/ Camera/ Accelerometer.

The workers of an edge device jointly define the context of

the device at any given time. We assume the edge devices have

constantly changing sets of workers as the system runs or when

the users change their system configurations. An example worker

pool of a device E1 at a sensing cycle is {1, CPU, visible, Alg1: 500
ms, Alg2: 1500 ms}, {1, GPU, invisible, Alg1: 500 ms, Alg2: 100 ms},

{1, Sensor-Camera, visible, Sens: 10 ms}, {1, Sensor-GPS, visible, NA},

where Sens, Alg1 and Alg2 are the task pipelines of a social sensing

job. The visible and invisible are the flags set by users to denote

their willingness to disclose the worker to the application.

The benefits of hardware abstraction module are three-fold: i)

the set of heterogeneous edge devices form a unified homogeneous

worker pool for the social sensing application by mapping the

devices to workers; ii) the end users can register and control the

workers they would like to provide for a particular social sens-

ing application in a way that preserves their privacy; iii) the edge

device can easily keep track of their own dynamic status and pro-

vide necessary context information for the runtime decision and

optimization in SSEC.

4.3 A Supply Chain-based Task Mapping
Module

The above runtime and hardware abstraction modules are designed

to provide a “homogeneous" resource pool and execution interface

to the social sensing application. However, performing task map-

ping in SSEC is still challenging because 1) tasks are heterogeneous

and have complex execution requirements (e.g., sensing tasks can

only be done on devices with compatible sensors and computational

tasks may require specific computational resources such as a GPU);

2) the computing resources in our model are also heterogeneous

(e.g., some devices have sensors while others do not; some devices

are equipped with GPU while others are not); 3) various task allo-

cation strategies may yield complex tradeoffs between energy cost

and delay overhead.

To this end, we develop our own supply chain based task map-

ping model to address the above challenges. In order to adapt the

supply chain model to solve the task mapping problem, we develop

several novel technical components. In particular, we proposed a
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novel supply chain graph mapping technique and a node decomposi-
tion component to jointly model the heterogeneous tasks, comput-

ing resources, and the trade-off between energy and delay using

a directed supply chain graph. The combination of the two tech-

niques reduced the complex problem of finding the optimal task

mapping strategy that optimizes the delay-energy tradeoff to find-

ing the shortest path in the supply chain graph. We also designed a

new game-theoretic selfish routing algorithm to find the optimal

task mapping strategy with a bounded performance guarantee. We

elaborate these components in details below.

4.3.1 Supply Chain Graph Mapping. Our solution is motivated by

the observation of an interesting mapping between our problem

and the supply chainmodel in economics. The supply chain problem

involves the transformation of natural resources, raw materials,

and components into a finished product that is delivered to the

end customer. To become the end product, the raw material has to

be transported and processed at different factories/facilities with

different capabilities (e.g., sourcing, manufacturing, packaging, as-

sembly). In HeteroEdge, we consider the raw sensing measurements

as “raw material" and the sensing devices the “suppliers" of the raw

material. The raw material has to be processed through a set of

factories (i.e., edge devices) to become the final product (i.e., the end

results). We refer to the series of factories/devices that the raw ma-

terial travels through till reaching the consumer as a supply chain
path. The factories have to work collaboratively by sending the

processed material to one another for further processing. The edge

server can be considered as the “consumer" of the final product. In

particular, the chain of raw sensing data → computation nodes →

edge server is an exact mapping of raw material → factories →

consumer in the supply chain model.

Formally, we can map the task mapping problem into a supply
chain graph Gsc = (Vsc ,Lsc ). The supply chain graph consists

of a set of “device nodes" that represent the heterogeneous edge

devices. Each device node is associated with the computation delay

and energy cost for processing the tasks. Besides the device nodes,

we also add some “source nodes" and a “destination node". The

source nodes represent the locations that “supply" the raw sensing

data decided by the social sensing application. The destination

node represents the edge server who receives the end results (the

consumer of the supply chain). We also define a set of links to

represent the communication channels between edge devices. A

link l ∈ Lsc is associated with a transmission delay and energy

cost.

An example of a supply chain graph is illustrated in Figure 4. It

involves a social sensing job of three tasks (one sensing task, two

computation tasks) and three edge devices. The device capability

table shows the tasks the edge devices can execute. To model the

task dependency, we divide the supply chain into multiple stages. At

each stage, we list all the devices that can execute the corresponding

task. For example, stage 1 represents the “sensing task" to collect

raw data from two locations. All devices are listed because device

A is able to collect data from location 1 and devices B and C are

capable of collecting data from location 2. In the next stage, devices

B and C can perform the computation task (A1). In the final stage,

device C can perform the final task (A2). Note that the edge server

ES is added to all stages of computation tasks because the edge

devices can always choose to offload the computation tasks to the

edge server. We use dashed lines to represent “no cost" link (e.g.,

communication on the same device) and use solid lines to represent

a communication associated with delay and energy cost.

Figure 4: Supply Chain Graph Setup

Given the supply chain graph, our goal is to find the best route

(i.e., supply chain path) from each source to the destination that

minimizes overall delay and energy consumption. Let Pz denote a

supply chain path from a source node sz to the destination node

t . πz is the total cost of Pz (including the delay and energy cost

during data transmission and processing on the device nodes of

Pz ). The goal is to find:

argmin

Pz
πz ,∀1 ≤ z ≤ Z (2)

To solve the objective function above, we perform i) a node

decomposition that unifies the computation cost and the data trans-
mission cost of the links. This step translates the supply chain

problem into a multi-source shortest-path problem; 2) a selfish rout-

ing algorithm that allows jobs to selfishly pick their paths to solve

the multi-source shortest-path problem.

4.3.2 Node Decomposition. For the supply chain graph problem

shown in Figure 4, the goal of the taskmapping is to find the optimal

path (with minimal delay and energy cost) for suppliers s1 and s2.
To solve this problem, we first transform the supply chain graph

into a uniform graph by associating all the cost with the links and

expanding the device nodes to model the heterogeneous workers of

the devices. The transformation considers the following scenarios.

Device with a single CPU worker: we transform a device

node into two virtual nodes: v I N denotes the “entry" of a factory

(edge device) and vOUT denotes the “exit". We create a “virtual

link" between v I N and vOUT and the link is associated with the

delay and energy cost of performing a task on the CPU worker. The

node decomposition of this scenario is illustrated in Figure 5(a).

Device with multiple CPU workers: Multiple CPU workers

represent the multi-threading capability of an edge device, which

adds more complexities in modeling the energy cost. We use a

linear energy model where power consumption = base enerдy +
extra enerдy consumption × number o f threads [3] where the

base enerдy represents the default energy consumption of a CPU

independent of the number of cores being used. To model this, we

introduce an extra intermediate virtual node vMID
in addition to

v I N and vOUT . The link from v I N to vMID
is created to model

the base energy consumption (with no delay). This link also has a
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capacity lcap that is equal to the number of cores. The link capacity

denotes the number of supply chain paths that can go through the

link simultaneously without causing any extra base energy cost.

For example, a three-core device has the capacity of 3 where three

tasks can be run on the device at the same time with only 1 unit of

base energy consumption plus three extra units per worker energy

consumption. We also created virtual links from vMID
to vOUT

and the number of the virtual links is the same as the number of

workers of the edge devicev . Multiple virtual links mean the device

can handle multiple tasks at the same time. The node decomposition

of this scenario is illustrated in Figure 5(a).

Device with a GPU worker: the node decomposition for a

device with GPU and 3 CPU cores is illustrated in Figure 5(b). Note

that in many scenarios, GPU requires at least one extra CPU core

to run programs [11]. Therefore, we dedicate one CPU worker to

the device with the GPU worker while the rest of the CPU workers

can process other tasks.

(a) Without GPU (b) With GPU

Figure 5: Node Decomposition Scenarios

After the above node decomposition, our problem becomes a

multi-source shortest path problemwhere the goal is to find the best

supply chain path from the source to destination that minimizes the

cost of the links on the path. In particular, a supply chain path Pz
consists of a set of links where each link l ∈ Pz is associated with

two types of cost: delay and energy consumption. For simplicity,

we use π
delay
l to denote the delay cost of a link l , and π

enerдy
l to

denote the energy cost of l . Then we have the objective:

minimize:

l ∈Pz∑
π
enerдy
l + λ × π

delay
l ,∀1 ≤ z ≤ Z (3)

where λ is a scalar to tune the importance of energy consumption

of edge devices versus the overall delay of the application.

One issue with the above objective is that the minimization

of energy cost depends heavily on the energy profile of the edge

devices and tends to be unfair to low-power devices. For example,

consider a scenario where the edge is composed of low-power

mobile device (e.g., 5W) and a high-power laptop (e.g., 300W), the

above objective function will try to push as many computation

tasks as possible to the mobile devices to save energy on the laptop,

creating an undesirable situation for mobile phone users. To address

this issue, we normalize the energy consumption as follows:

normalized(ex ) =
ex

powermax × ∆
, 1 ≤ x ≤ X (4)

where ex is the energy consumption of a device Ex in a sensing

cycle with the length of ∆ and powerx,max denotes the maximum

power consumption of the device.

4.3.3 A Selfish Routing Algorithm for Optimal Supply Chain. The
objective in Equation (3) is a non-trivial problem. Intuitively, each

supplier (job) can selfishly pick a path that minimizes its own cost.

However, the path can be congested if both suppliers pick the same

route, which would introduce extra delay and energy cost. We de-

velop a new Supply Chain Selfish Routing (SCSR) scheme to solve

this problem. The SCSR scheme is based on a game-theoretic frame-

work that allows each job to selfishly pick the route to maximize its

own utility while taking into account the other players’ strategies.

The benefits of the SCSR scheme are threefold: 1) it is simple and

effective; 2) it provides the theoretical guarantee on the conver-

gence and execution overhead, which is crucial for delay sensitive

applications; 3) it can nicely coordinate a large number of tasks to

simultaneously identify the optimal devices for execution. We first

define a few terms in SCSR.

Let P = P1, P2, ...PZ denote the supply chain paths of all jobs

and Pz is the task mapping strategy (i.e., supply chain path) for

job Jz . We use P−z to denote the strategies picked by all jobs other

than Jz . For the job Jz , we define a weight wz to represent its

workload which is assumed to be proportional to the size of the

raw sensing data. We also define d(l), l ∈ Lsc as all the jobs that

pick link l in their strategies. From d(l), we define the weighted
congestion rate N(l) of l as the sum of weights of all paths in d(l),

i.e., N(l) =
∑z∈d (l )(wz − (lcap − 1)). The utility of a strategy Pz

can then be calculated as:

uz (Pz ) =

l ∈Pz∑ z∈d (l )∑
(wz − lcap + 1) × (π

enerдy
l + λ × π

delay
l ) (5)

Based on the utility function, we say a job is satisfied with its path

if it cannot further decrease cost by ϵ by unilaterally changing its

path from Pz , i.e., uz (Pz ) ≤ uz (P
′
z ) + ϵ . If every job is satisfied, we

say a ϵ-Nash Equilibrium is reached. When ϵ = 0, the equilibrium is

referred to as Pure Nash Equilibrium (PNE). The Nash Equilibrium

can be found using a greedy algorithm based on the Best Response

Dynamics [25]. We summarize the algorithm in Algorithm 1.

4.3.4 Algorithm Analysis. The SCSR is an iterative algorithm and

the quick convergence is critical for delay-sensitive social sensing

applications. In this subsection, we derive the upper bound of the

iterations till convergence and prove SCSR converges to PNE in

polynomial time. We first map SCSR into an atomic network conges-
tion game where each link has the same cost. This can be achieved

by breaking a link l ∈ Lsc into multiple sub-links where each sub-

link l ′ ∈ l has a unit cost. For example, assuming the original link

cost has a maximum normalized cost of K, and unit cost of 1. Then

the cost can be normalized as K+1 integer values, i.e. [0, 1, 2, ...K],

the link can be broken into at most K sub-links.

It is known that in the atomic network congestion game, a po-
tential function exists according to [27]:

Φ(P) =

l ′∈Lsc∑
N(l ′) +

Z∑
z=1

wz ×

l ′∈Pz∑
wz (6)

and the potential function has the following property:

Φ(Pz , P−z ) − Φ(P ′z , P−z ) = 2 ×wz × (uz (Pz ) − uz (P
′
z )) (7)

In game theory, the potential function decreases each time a job

makes an improvement step, namely switch to another strategy to
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Algorithm 1 SCSR Algorithm

Input: Supply Chain Graph Gsc , ϵ
Output: Supply chain for all jobs, i.e., P1, P2 ..., PZ
1: function SCSR(Gsc )
2: Perform node decomposition, get transformed graph G’sc
3: Initialize: converдence = False , P = NewArray[Z ], P′ =

NewArray[Z ]
4: for all z ∈ [1, Z ] do
5: Randomly set initial strategy Pz for Jz
6: P[z] = P [z], P′[z] = P [z]
7: end for
8: while converдe == False do
9: for all z ∈ [1, Z ] do
10: run P ′

z = Shor testPath(sz, t, G’sc ) for Jz
11: if uz (P ′

z ) − uz (pz ) > ϵ then
12: P′[z] = P ′

z
13: end if
14: end for
15: if P′ == P then
16: Return P

17: end if
18: P = P′

19: end while
20: end function

improve its utilization (i.e., line 10-12 in Algorithm 1). The above

property shows that every time a job makes an improvement step

of ϵ by changing from Pz to P ′z , the potential function decreases by

2 ×wz × ϵ . We prove the convergence and upper-bound of SCSR

algorithm as follows.

Theorem 4.1. The SCSR algorithm converges to ϵ-Nash Equilib-
rium in polynomial time and bounded by O(M×K×n2C

ϵ ), where C is
a constant.

Proof. Note that in Equation (6), we have

Φ(P) ≤ M × K ×w2

max (8)

where wmax is the maximum of wz , 1 ≤ z ≤ Z . Suppose that

wmax
z /wmin

z = O(nC ), wherewmin is the minimum ofwz , 1 ≤ z ≤

Z . We have the potential function Φ(P) takes at mostO(M×K×n2C

ϵ )

steps to become zero. Hence the SCSR algorithm requires at most

O(M×K×n2C

ϵ ) steps to converge to Nash Equilibrium.

The above proof shows the efficiency of the SCSR algorithm.

Note that ϵ is a key parameter that affects the convergence time

of the SCSR algorithm. The selection of ϵ really depends on the

size of the participation pool and the nature of the application: it

controls the trade-off between the optimality of the task mapping

and the efficiency of SCSR algorithm. In our experiment, we chose ϵ
pragmatically that gives the best delay. We provide a more detailed

analysis of the convergence and scalability of the SCSR algorithm

w.r.t ϵ in Section 5.6.

5 EVALUATION
In this section, we present an extensive evaluation of HeteroEdge

on a real-world edge computing test platform. We present the eval-

uation results through two real-world social sensing case studies:

Disaster Damage Assessment and Collaborative Traffic Monitoring.

The results show that HeteroEdge achieves significant performance

gains in terms of QoS and energy efficiency compared to the state-

of-the-art baselines.

5.1 Evaluation Platform
We implement the HeteroEdge framework on a real-world SSEC

platform that consists of a set of 10 edge devices and 1 local edge

server. In particular, we use a PC workstation with Intel E5-2600

V4 processor and 16GB of DDR4 memory as the local edge server.

The edge consists of 10 heterogeneous devices: 2 Jetson TX2 and 2

Jetson TK1 boards from Nvidia (commonly used in portable comput-

ers, UAVs, and autonomous vehicles), and 5 Raspberry Pi3 Model B

boards, and 1 personal computer. Figure 6 shows the implemented

hardware platform for the edge devices. These edge devices rep-

resent different system architectures, operating systems and hard-

ware capabilities. We summarize their specifications in Table 1.

All devices and the edge server are connected via a local wireless

router. The HeteroEdge system was implemented using Python. We

leverage TCP socket programming for reliable data communication

among edge devices.

Figure 6: Heterogeneous Edge Computing Platform

5.2 Energy Measurement
Monitoring energy expenditure is a critical performance bench-

mark in our evaluation. To measure the energy consumption, we

used an INA219 Current Sensor IC, as shown in Figure 7, interfaced

to an Arduino Uno Micro-controller board via I2C bus. The mecha-

nism of power calculation in the INA219 involves measuring the

voltage dropUsense across a sense resistor connected in series to

the main power rail of the device whose energy consumption is

to be monitored. The INA219 amplifies the voltage drop Usense ,
converts the analog reading to digital using an on-board ADC and

computes the power consumption at any given instant Pload as

Pload =
Usense
Rsense ×Uload where Uload is the main bus voltage and

Rsense is the electrical resistance of the sense resistor.

5.3 Experiment Setup
We choose the following representative baselines from recent liter-

ature.

• Random Assignment (Rand): A heuristic computation al-

location scheme where the social sensing tasks are randomly

assigned to edge devices [40].
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Table 1: Specifications of Edge Devices in SSEC

Device Type CPU GPU Memory OS

Pi3 1.2 GHz quad-core ARM Cortex-A53 N/A 1GB LPDDR2 Raspbian

TX2 2.0 GHz ARM quad-core Cortex-A57 256-core NVIDIA Pascal 8GB LPDDR4 Linux (Ubuntu)

TK1 2.32 GHz ARM quad-core Cortex-A15 192-core NVIDIA Kepler 2GB LPDDR3 Linux (Ubuntu)

PC 2.7 GHz i5-7500T quad-core N/A 8GB LPDDR4 Windows 10

Figure 7: Power Monitoring Module

• Greedy Shortest Path (GSP): A heuristic resource alloca-

tion schemewhere each job picks the shortest path of the sup-

ply chain graph to minimize the energy and delay cost [10].

• Centralized Edge Server-based Allocation (CES): A cen-

tralized resource management scheme where edge devices

send all data to the local edge server for processing [30].

• Bottom-UpGame-theoretic TaskAllocation (BGTA): A
game-theoretic edge computing resource allocation scheme

for non-cooperative edge devices. It uses a distributed Ficti-

tious Play algorithm to allow edge devices to selfishly pick

tasks and eventually achieve consensus [19].

Note that there exist some systems that also harness the heteroge-

neous computing resources such as HTCondor [18], CoGTA [43],

and FemtoCloud [8]. However, the homogeneous task assumption

in these systems does not hold in our problem setting as discussed

in Section 1. Therefore, we do not include them as baselines.

5.4 Case Study 1: Disaster Damage Assessment
The first case study is Disaster Damage Assessment (DDA) where
participants are tasked to sense and evaluate whether damages

(e.g., potholes and collapsed houses caused by an earthquake) have

happened and to what extent to the assigned locations during a

natural disaster. The output of this application offers real-time

situation awareness and timely alerts to citizens in the affected

areas of disasters.

We collected 2,000 images related to the Ecuador Earthquake

in 2016 from Instagram and Twitter. We run the application over

100 sensing cycles. The images are organized by the timestamp

and are split into 100 subsets and each of which is processed in a

sensing cycle. The social sensing jobs in this application consist of

3 pipeline tasks summarized below.

Tasks for DDA: i) edge devices equipped with cameras (e.g., dash

cameras, UAVs) are tasked to capture live images of locations of

interest; ii) extracting Damage DetectionMap (DDM) features using

Convolutional Neural Network (CNN) model from raw images; iii)

assess damage severity from DDM using the algorithm in [16].

5.4.1 Quality of Service. In the first set of experiments, we focus on

how the objective is achieved from the application side. In particular,

we evaluate the deadline hit rate (DHR) and end-to-end (E2E) delay

of all the compared schemes. The DHR is defined as the ratio of

tasks that are completed within the deadline. The results are shown

in Figure 8. We use all 10 edge devices and gradually increase the

deadline constraints. We observe that HeteroEdge has significantly

higher DHRs than all the baselines and is the first one that reaches

100% DHR as the deadline increases. We attribute such performance

gain to our SCSR algorithm that finds the optimal “supply chain

path" that allows the edge devices to search for the most efficient

way to collaboratively finish social sensing jobs.

Figure 8: DHR in DDA Figure 9: E2E Delay in DDA

Figure 9 summarizes the E2E delays of all the schemes as the

number of jobs varies. We show both the average delay and the

90% confidence bounds of the results. We observe that our Het-

eroEdge scheme has the least E2E delay and tightest confidence

bounds compared to the baselines. The results further demonstrate

the effectiveness of HeteroEdge for meeting real-time QoS require-

ments of the application. The performance gain of the HeteroEdge

is achieved by explicitly modeling the dynamic context of the edge

devices (i.e., the dynamic worker pool) and allocating tasks accord-

ing to the current device status.

We found HeteroEdge outperforms CES in the above experi-

ments. This is because the CES encountered a significant transmis-

sion delay by offloading the raw sensing data from edge devices to

the server. Such data transmission delay is independent of the com-

puting power available at the server. In contrast, the HeteroEdge

performs the computation tasks on the edge devices where the data

is collected. Therefore, HeteroEdge does not require a significant

resource provisioning on dedicated servers to outperform the cen-

tralized solution. Instead, it achieves a better QoS performance of

the applications by fully exploring the massive computing power

of the privately owned IoT devices at the edge.
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5.4.2 Energy Consumption. In the second set of experiments, we

focus on the energy consumption of edge devices. As mentioned

in Section 4, the energy consumption is normalized to reflect the

proportion of battery that is consumed by a scheme to accomplish

all social sensing jobs. The reason for this normalization is to avoid

the unfair scenario where minimizing the absolute energy would

end up with a strategy that always pushes heavy computation from

high-power devices to low-power ones. The results of the average

normalized energy consumption on edge devices are shown in Ta-

ble 2. We use all 10 edge devices and set the number of jobs to 10 and

deadline to 3 seconds. We can observe that HeteroEdge consumes

significantly less energy as compared to all other baselines except

CES. CES consumes the least amount of energy on every edge de-

vice because it simply pushes all the computation tasks to the local

edge server. In another word, the CES scheme under-utilizes the

diverse resources on the edge devices and pushes the extra burden

to the server. The results illustrate that the edge devices can achieve

the longest battery life under HeteroEdge, which is particularly

important for edge devices with limited power supply.

Table 2: Normalized Energy Consumption in DDA

HeteroEdge RAND GSP CES BGTA

Jetson TX2 0.913 0.915 0.897 0.572 0.901

Jetson TK1 0.824 0.985 0.904 0.754 0.877

Raspberry Pi3 0.613 0.952 0.803 0.589 0.724

PC 0.798 0.844 0.831 0.766 0.825

All 7.337 9.404 8.448 6.363 8.001

“All" denotes the sum of normalized energy consumption of all 10 devices.

5.5 Case Study 2: Collaborative Traffic
Monitoring

The second case study is Collaborative Traffic Monitoring (CTM)
where participants in a social sensing application use personal

mobile devices (e.g., mobile phones, dash cameras) to record and

analyze the current traffic conditions. For example, a traffic moni-

toring application can task a set of drivers to use their dash cameras

to take videos of the traffic in front of their vehicles and then infer

the congestion rate of the road.

We collected the video data using dash cameras from two vehi-

cles. The data contains a total of 30 video clips and 15 of them are

used for training. We divided the application into 100 sensing cycles

and each sensing cycle processes video clips of 6 seconds (with each

video sampled at 15 frames per cycle). The social sensing job in this

application consists of 4 pipeline tasks summarized below.

Tasks for CTM: i) data collection of traffic video signal as image

frames; ii) extracting optical flow and Histogram of oriented gra-

dients (HOG) features; iii) object detection using trained SVM to

identify vehicle counts; iv) infer the overall traffic condition based

on the detected vehicles using the algorithm in [52].

5.5.1 Quality of Service. We perform similar experiments as those

discussed in the previous case study. In particular, we evaluate all

the schemes in terms of DHR and E2E delay. The results are shown

in Figure 10 and Figure 11 respectively.We observe similar results of

HeteroEdge as the previous case study. This continues to show that

Figure 10: DHR in CTM Figure 11: E2E Delay in CTM

the HeteroEdge scheme can provide desirable QoS under different

application scenarios.

5.5.2 Energy Consumption. The results of energy consumption

at the edge devices are shown in Table 3. We observe that our

scheme continues to provide significantly more energy savings to

the edge devices than other baselines. This again demonstrates that

HeteroEdge is more energy efficient (“user-friendly") by offering

participating edge devices a longer battery life.

Table 3: Normalized Energy Consumption in CTM

HeteroEdge RAND GSP CES BGTA

Jetson TX2 0.817 0.891 0.884 0.572 0.875

Jetson TK1 0.841 0.903 0.863 0.722 0.886

Raspberry Pi3 0.696 0.913 0.833 0.580 0.822

PC 0.819 0.837 0.820 0.775 0.825

All 7.615 8.990 8.479 6.263 8.457

“All" denotes the sum of normalized energy consumption of all 10 devices.

5.6 Convergence and Scalability
Finally, we study the convergence and computation overhead of the

resource management scheme (i.e., SCSR) in HeteroEdge. We set K

=1 and the unit cost as 0.1 to normalize the link costs. Figures 12 and

13 show the average number of iterations of SCSR till convergence

whenwe change the number of devices.We observe that the number

of iterations significantly decreases as the ϵ value increases. Here ϵ
controls how likely a player would change its strategy. The lower

value is, the more likely a player is going to change its strategy in

the game, which often requires more iterations for the algorithm

to reach the convergence. The curves also show a linear trend

as the number of devices increases. These results also verify the

convergence analysis of SCSR scheme in Section 4.3.4.

Figure 14 shows the execution time of SCSR. The execution time

includes the running time of the SCSR algorithm as well as the

communication delay between the edge servers and the edge de-

vices. We observe the execution time of SCSR grows almost linearly

as the number of edge devices increases. The above results again

demonstrate the suitability of using HeteroEdge for delay-sensitive

social sensing applications. We note that the execution time of the

SCSR scheme might still become a non-trivial overhead when the

number of edge devices in the system becomes very large. A possi-

ble solution to such a scalability problem is to increase the number

of local edge servers and run HeteroEdge in the cluster of edge
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Figure 12: Convergence (DDA) of SCSR Figure 13: Convergence (CTM) of SCSR Figure 14: Execution Overhead of SCSR

devices coordinated by the same local edge server. This solution

is practical in real-world applications thanks to the increasingly

popular hierarchical structure of edge computing systems [12].

6 CONCLUSION AND FUTUREWORK
This paper presents the HeteroEdge framework to addresses funda-

mental challenges in taming heterogeneity issue in social sensing

based edge computing (SSEC) systems. We have implemented our

proposed framework on a real-world edge computing testbed in-

cluding Nvidia Jetson TK1, TX2, Raspberry Pi3 boards, and personal

computer. The evaluation results from two real-world social sens-

ing applications demonstrate that HeteroEdge achieves significant

performance gains compared to state-of-the-art baselines.

Our work has some limitations that deserve further investiga-

tion. First, HeteroEdge entails security concerns. In particular, we

assume that edge devices are cooperative. However, this assump-

tion may not hold in scenarios where malicious devices do exist:

they may intentionally delay the task execution, making it miss its

deadline. This issue can be mitigated by adding an extra function in

HeteroEdge to keep track of the normal behaviors of edge devices

and actively block the identified lazy devices.

Second, HeteroEdge is a soft real-time task allocation scheme

that minimizes delay of the system instead of providing the hard

deadline guarantee. This is due to several factors. First, the worst-

case estimation of the task execution time is not precise due to the

complicated computing and communication environment in SSEC

systems. Second, the convergence time of the Nash Equilibrium

solution is also dynamic and hard to predict precisely. In the future,

we plan to explore more sophisticated execution time prediction

schemes (e.g., static program analysis [9] and narrow spectrum

benchmarking [28]) in HeteroEdge.

Third, HeteroEdge relies on containerization to provide runtime

abstraction of edge devices. Therefore, whether a device can be inte-

grated into HeteroEdge depends on the compatibility of the specific

container technology that is employed in HeteroEdge. For example,

the state-of-the-art Docker container has yet to support Android

and IOS systems at the time of writing. The current HeteroEdge

system cannot support mobile devices running these operating sys-

tems. We envision the portability of HeteroEdge can be expanded

to mobile phones in the future.

Fourth, we found HeteroEdge is particularly suitable for social

sensing applications where the heterogeneous hardware on each

device can be fully leveraged (e.g., the DDA and CTM applications

studied in our evaluation). However, there are some cases where

HeteroEdge may not be the best choice. For example, it will not

be possible to use heterogeneous devices to share the computation

tasks if the jobs cannot be further split (e.g., a standalone executable)

[23]. Also, the benefit of using HeteroEdge to reduce the transmis-

sion overhead will be marginal if the volume of raw sensing data

in the application is too small. In both cases, a cloud-based solution

may be more appropriate. Furthermore, HeteroEdge is not designed

for hard real-time systems with strict deadline requirements. This

is because the IoT devices in HeteroEdge may have unreliable net-

work connections and the execution time on a privately owned

device can be highly dynamic and unpredictable [8].

Finally, our current experiment platform consists of a limited

number of edge devices and the scalability aspect of HeteroEdge

deserves further investigation. The HeteroEdge has the nice prop-

erty of guaranteed Nash Equilibrium and is shown to have quick

convergence in real-world social sensing applications. In the future

work, we plan to perform additional simulation studies to investi-

gate the scalability of HeteroEdge using the simulator in [34] that

is specifically designed for heterogeneous edge devices.
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