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An Intelligent Information Forwarder for Healthcare
Big Data Systems With Distributed

Wearable Sensors
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Abstract—An increasing number of the elderly population wish
to live an independent lifestyle, rather than rely on intrusive
care programmes. A big data solution is presented using wear-
able sensors capable of carrying out continuous monitoring of
the elderly, alerting the relevant caregivers when necessary and
forwarding pertinent information to a big data system for analysis.
A challenge for such a solution is the development of context-
awareness through the multidimensional, dynamic and nonlinear
sensor readings that have a weak correlation with observable hu-
man behaviours and health conditions. To address this challenge,
a wearable sensor system with an intelligent data forwarder is
discussed in this paper. The forwarder adopts a Hidden Markov
Model for human behaviour recognition. Locality sensitive hash-
ing is proposed as an efficient mechanism to learn sensor patterns.
A prototype solution is implemented to monitor health conditions
of dispersed users. It is shown that the intelligent forwarders can
provide the remote sensors with context-awareness. They transmit
only important information to the big data server for analytics
when certain behaviours happen and avoid overwhelming com-
munication and data storage. The system functions unobtrusively,
whilst giving the users peace of mind in the knowledge that their
safety is being monitored and analysed.

Index Terms—Ambient assisted living, behaviour monitoring,
big data, Hidden Markov Model, locality sensitive hashing, wear-
able sensors.

I. INTRODUCTION

THE NUMBER of elderly and infirm living in sheltered
accommodation is increasing, with more people of retire-

ment age in the U.K. choosing to “age in place” with some form
of support—473 000 in 2008/2009 [1]. On the other hand, in
figures calculated by Help the Aged, the number of those ac-
tually being supported has decreased by a dramatic 13% in the
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years 2000–2006 [2] with the trend declared likely to continue
in successive years. At the same time, AgeUK [2] noted that
“17% of older people have less than weekly contact with family,
friends, and neighbors.” These facts and figures show that there
is an increased risk for those not being monitored or personally
cared for: from minor incidents in the home, from illness that
causes immobility, or from other unforeseeable scenarios that
as such would go undetected if no contact is made with the
individual over a long period.

For a considerable time, many assistive devices have been
available for installation into residential environments or for
wearable sensors with the intention of interacting with a user
to ascertain their well-being or, in some cases, their physical
health [3], [4]. Elderly monitoring systems can be categorized
to two variations: autonomous problem determining and human
problem determining. While the former category is populated
with devices such as those by Zhou et al. [5] and Avci and
Passerini [6], these require only the gathered data to infer a
belief regarding the users’ state. The latter category has the
need for an element of further human involvement in order to
assess the status of a user. Such applications similarly utilize
environmentally located sensors or body-worn nodes [7], [8] to
gather readings relating to the user, before uploading them to
some “server” that is accessible by a healthcare professional
or some other monitoring service that can identify any issues
being faced by the user. These systems have a lower level of
processing involved and as such require heavier data throughput
to the server and time-consuming interpretation by healthcare
professionals, given that storage of the observations in their
raw form is usually required and inference of a behavior or
state is made by a human supervisor. When such healthcare
devices need to be deployed to a great amount of the elderly
population for continuous monitoring, acquiring and analyzing
data from the distributed devices become a challenge to data
communications and processing. The data generated by the
healthcare devices are often semi-structured or unstructured and
have the 3Vs characteristics of big data, i.e., volume, velocity,
and variety [9]. As a consequence, much of the value of the
data is not currently being fully appreciated and used in the
healthcare sectors.

This paper presents a big data pilot system for healthcare of
the elderly that combines the two categories, i.e., autonomous
problem determining and human problem determining, and
covers the services of both continuous behavior monitoring
and long-term health condition analysis. The system consists
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of a wrist-wearable sensor node for information collection,
a mobile phone for user interaction and remote access, and
a centralized big data system as a tool for health condition
monitoring. For managing such a system, there is a tradeoff
between distributed processing in the wearable sensors and
the centralized analytics in the server cluster. Thus, an intel-
ligent information forwarder embedded in the mobile devices
is proposed in this paper to monitor the behaviors of a wearer
continuously, alert a caregiver if any anomaly is detected, and
transmit only the interesting information to the healthcare big
data system for analysis. The intelligent information forwarder
based on a hidden Markov model (HMM) makes the distributed
sensors context aware and greatly reduces the communication
loads and data storage for a large-scale system.

With the ability to recover a hidden-state sequence from
only the visible observations, the HMM is utilized in a broad
spectrum of applications. Within the bioscience field, for ex-
ample, the model is ideal for gene prediction—where each
state emits random DNA strings of random length, which are
observable as a means to determine the gene producing them
[10]—and in protein structure prediction and genetic mapping
[11]. Cryptanalysis and cryptography benefit significantly from
the utilization of the HMM [12]; and in the measurement of
partial discharge (PD), the time-varying and sequential proper-
ties lend themselves to be modeled with an HMM such that
PD patterns can be classified to inform of insulation system
defects [13].

The traditional HMM uses probability distributions or dis-
crete probability values assigned to single observations. In the
behavior recognition task, more detailed models take obser-
vations from a variety of sources to ascertain an intelligent
estimate of the hidden state. When the hidden state can be
determined with greater accuracy if a number of observation
sources are reviewed, e.g., the wearable sensors developed in
this paper, the fusion of such inputs must be considered [14]–
[16]. What must be taken into consideration, however, is that
this fusion of multiple sensors can, in some cases, produce
worse results than the output of the best single sensor. This
can be due to the possibility of inaccurate sensor readings
being combined with those evaluated to be more accurate [15].
Nonlinear and high-dimensional issues of the sensor readings
[17], [18] also can contribute to this.

This paper proposes a sensor fusion scheme to estimate the
observational probability of states for an HMM-based user
behavior detection utilizing the developed wearable sensors.
It uses a locality-sensitive hashing (LSH) table to carry out
instance-based learning (IBL). Experiments are conducted to
compare the performance of the proposed method with the non-
linear dimension reduction method [18], and the results show
that the proposed scheme is more efficient for both learning
and querying. It is obvious that such intelligent processing
embedded in a mobile device should take a resource-saving
approach due to the limited memory, computational power, and
communication bandwidth available on board.

The remainder of this paper is organized as follows. The
system architecture and software are described in Section II,
including the details of operational processes and the signal
processing for robust measurement. Section III presents the

HMM-based state and anomaly identification that is the key
component of the intelligent forwarder. Section IV explains
how LSH can be used as an efficient mechanism to estimate
the user’s state from the captured multiple sensor signals
using probabilistic modeling. Section V presents the developed
prototype system and results obtained from the system, which
are compared with another commonly used method, i.e., the
dimensional reduction method. Finally, Section VI contains the
conclusions drawn from application of the device in the test
scenario.

II. BIG DATA SYSTEM FOR HEALTHCARE OF THE ELDERLY

Public healthcare is facing serious difficulties due to the
rapidly growing aging population. These individuals have a
desire to live independently rather than relying on intrusive care
and support. They are also at a higher risk of suffering from
illness, accidents, and injuries in their day-to-day activities.
Consequently, there is a need for a system that can be con-
veniently wearable to monitor vital physiological parameters
and check health conditions of a user, while communicating
with the health service providers. The users are dispersed in
the whole country and with enormous diversity. Managing
such a diverse user group is a challenge faced by the health
service providers. The mobile computing and big data infras-
tructure are opening a new era to next-generation healthcare.
Individual users can access a tailored and instant health service
from the big data system. There can be a great variety of
services, e.g., daily health checks, medication reminders, first
aid instructions, comparative effectiveness research, preventive
care, and healthy lifestyle encouragement. Some applications
can be downloaded from cloud to a mobile device to provide
instant responses to emergency situations. Some others may be
computationally intensive in order to analyze a huge amount
of sensor data for a long-term healthcare service. Therefore, the
design of a big data system for healthcare should have a tradeoff
between distributed intelligence and centralized data analytics.

This paper presents the prototype of a big data system for
healthcare of the elderly. It can improve not only the long-
term care of this population but also increase the efficiency
of healthcare through the integration of distributed monitoring
with centralized analytics. The developed system includes three
separate components: a wrist device, a mobile phone, and a big
data cluster, as shown in Fig. 1. The first version of the system,
Verity, was reported in [18], which included a customized wrist
device and a mobile phone but without the centralized big data
system. This paper reports the second version of the system
for linking wireless measurement with a centralized big data
system.

A. Wrist Device

The new wrist device has been redesigned to include more
sensors and use Bluetooth low energy (BLE) technology for
connecting with an Android phone to form a personal area
network. It was developed by using TI CC2540, as shown in
Fig. 2, which is a system-on-a-chip with BLE support. The
wrist device board includes an accelerometer to measure ac-
tivities of the wearer, a temperature sensor to measure ambient
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Fig. 1. System architecture.

Fig. 2. Schematic and picture of the wrist device.

temperature, a thermopile to measure skin temperature, and two
reflective photoplethysmography sensors to measure heartbeat
and SPO2 in the blood.

The thermopile, temperature sensor, and accelerometer have
digital serial interfaces for the CC2540 to read. The pho-
toplethysmography (PPG) sensor is controlled by an analog
switcher to choose the type and intensity of the illumination as
red (660 nm) or infrared (905 nm) for heartbeat rate and SPO2
measurement. An adaptive threshold algorithm was developed
for robust measurement of the heartbeat rate.

The adaptive threshold algorithm was an effective extension
to the peak detection method proposed in [19], which used
a threshold with a decay constant. The PPG signal is a very
dynamic signal that can be subject to great variability in the
amplitude from cycle to cycle. According to [19], this variabil-
ity is due, at least in part, to the combination of respiratory
cycles and motion changes. The adaptation in their method was
to allow the decay constant to vary with the sample frequency,
the standard deviation of the signal, and the amplitude of the
previous peak pn−1. The first term is constant for any particular
sampled signal, and the second term does vary but only slightly
given a reasonable time frame to reduce noise; thus, effectively,

the only adaptive term was the previous peak height, with no
adaption for the timing of the signal used.

The main idea to improve their algorithm was to extend
the adaptive decay constant. The extension was to allow the
previous cycle characteristics to predict a height threshold at the
next peak arrival time. This sets the decay constant accordingly
and adaptively at every cycle. Therefore, the new definition of
the decay rate Dk is

Dk =
(pn−1 − Pminn−1

)H

Tbpn−1

(1)

Pminn−1
=

1

L

L∑
i=1

(pBn−i
) (2)

where pn−1 is the last peak greater than the threshold, Pminn−1

is the estimated noise floor that is estimated by the average bad
peaks detected, Tbpn−1 is the period of the previous heartbeat,
H is the coefficient to determine the decay rate, and L is the
number of bad peaks pB to look back over.

The thresthold is therefore decayed with time t as

T (t) = pn−1 −Dkt. (3)

Any detected peaks lower than T (t) are classified as bad
peaks that are used to estimate the noise floor in (2). The first
peak greater than threshold T (t) is classified as the good peak
pn for the heartbeat rate calculation:

HB(n) = α× HB(n− 1) + (1− α)× 1/ (t(pn)− t(pn−1))
(4)

where α, 0 ≤ α ≤ 1, is the coefficient of the first-order low-
pass filter.

The adaptive threshold is robust to noise because it reduces
the decay rate if estimated noise floorPmin is high, which means
a peak has to overcome a higher noise floor in order to be
considered a valid peak. It is also robust to false peaks due to
motion changes between heartbeats because it adjusts the sen-
sitivity of the peak detector by taking previous period Tbpn−1

as a reference.

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on March 28,2022 at 19:07:45 UTC from IEEE Xplore.  Restrictions apply. 



1150 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 3, SEPTEMBER 2016

Fig. 3. (a) Sensor information. (b) State recognition.

The SPO2 can be calculated and given by the ratio of the two
reflected intensities from the PPG sensors [20] as follows:

R =

(
ACred/DCred

ACIR/DCIR

)
(5)

where ACred and ACIR are the peak-to-valley amplitude char-
acteristics of the received red and infrared light intensity, re-
spectively, and DCred and DCIR are the average amplitude of
received light under red and infrared, respectively. The SPO2
value can be obtained by a lookup table using R.

B. Mobile Application

The wrist device sends the measured parameters to the mo-
bile phone through BLE communication. A mobile application
for Android phones was developed to process the gathered data
and make a subsequent decision.

The mobile phone houses the data-gathering function and
main intelligence of the system, as shown in Fig. 3. It re-
ceives sensor readings from the wrist device [see Fig. 3(a)]
with sampling frequencies controlled by different timers, e.g.,
acceleration every 0.1 s, skin temperature and received signal
strength index (RSSI) every 2 s, heartbeat and SPO2 every 3 s,
and ambient temperature every 10 s.

The mobile application also enables intelligent behavior
recognition for instant and unobtrusive care, as shown in
Fig. 3(b), which will be discussed in detail in Sections III
and IV. It recognizes the states of a user and controls voice-
based human–machine interaction when an anomaly is de-
tected, which is mainly for avoiding false-positive detection. In
this scenario, the user is alerted of a situation by communication
(through the speaker) from the device, which is preloaded with
a series of statements or questions related to a number of sce-
narios possible during its use, as shown in Fig. 4 for a detected
fall. The alert follows a decision tree where, at each stage, the
user is required to either confirm or deny a statement, causing
the device to adjust its operation accordingly. The states include

Fig. 4. Speech dialog tree used to identify the necessity for calling for
assistance in the event of a detected fall.

observable states and hidden states, which are onTable, Fall,
Nolink, Link, Abnormal, Sleep, Sit, Stand, Walk, Run, Turn, Tap,
LowBattery, Call, and Text. The observable states, such as Fall
and Nolink (referring to no communication between the wrist
device and the mobile phone), can be determined from sensor
and component readings directly, with little to no algorithmic
processes. The typical result of the majority of the Fall and
Nolink states is to start a voice dialog and dial out if needed.

The hidden states, e.g., Sleep, Sit, Stand, Walk, Run, and
Abnormal are estimations of the inferable behaviors of a user,
which are not explicitly determinable from the sensor readings
alone. A behavior classifier is developed in this paper for their
detection.

C. Big Data Server

The sensor readings and the states of a user need to be sent to
the big data system for analytics, which can improve and per-
sonalize the quality of care, guarantee efficient use of scarce
health professional expertise, and provide statistic evidence for
government strategic planning. There is also potential to reach
rural patients without proper access to healthcare and to ensure
that patients know when and how medication should be adjusted.

In order to enhance efficiency for large-scale unstructured
data retrieval and analysis, A MapReduction model [21] is used
for parallelization with eliminated synchronization problems
as shown in Fig. 1. MapReduction is a software framework
introduced by Google in 2004 to support distributed computing
on large data sets using a cluster of computers. It has been
widely used as a standard model in big data systems. The big
data cluster includes several indexers in parallel and a reduction
server for search and statistic operations. It is designed to re-
ceive the data stream from mobile phones through a Transmis-
sion Control Protocol (TCP) or User Datagram Protocol (UDP)
ports. Usually, UDP is not desirable to transmit critical signals
because it does not guarantee a delivery. However, in some
applications with high velocity of data, the UDP can be more
appropriate than the TCP if additional delivery checking is
implemented over it. In addition, the system is flexible enough
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to input various machine-generated data streams in various
formats, which can be in log files, comma-separated value files,
databases, and networking messages, and through scripts. This
allows the system to connect with a large number of distributed
information sources with nonstandard data and unpredictable
formats, such as from hospital websites, medical data archives,
and diagnostic equipment. Data mining and pattern recognition
algorithms can be developed to achieve context awareness from
distributed information for historical behavior analysis, health
condition prediction, and anomaly alerts.

A record in a data stream to log information from a user
using a mobile phone is shown in JavaScript Object Notation
as follows.

{ “userName”: “DavidCarroll”
“deviceAdress”: [12, 42, 46, 68, 34, 12],
{
“time”:“09 : 20 : 112013/9/12 UK”,
“eventType”: [Sit],
“accValue”: [45, 23, 99],
“accL1”: 167,
“accAngle”: 1.5,
“RSSI”: −72.4,
“verityBattery”: 90,
“phoneBattery”: 65,
“ambientTemp”: 23.4,
“bodyTemp”: 35.6,
“location”: [77.134235,−0.4354365],
“callType”: [0, null]
“textType”: [1,“Hi, I am Verity. My friend, . . .”],
“PPG”: [12, 127, 0, 0, . . . , 127],
“HB”: 83,
“SPO2”: 97,
“voiceRecord”: [{“q31”, 1}, {“q32”, 2}, {“q33”,
”neil”}],
“interface”: 0,
“bleState”: 1
}

To support monitoring of many users, each record has a
unique 48-bit IEEE address as the identity of a wearable sensor
and a username to identify its wearer. Every record includes
a timestamp to define a time series of information. The infor-
mation stored can include events detected by the intelligent
algorithm, readings from sensors, geolocation, voice dialog,
machine triggered call and text, and so on. If the whole time
series of information is sent to the cluster of servers, e.g., one
record (assume 1 KB/record) sent to the system every 3 s,
Table I can be used to estimate the amount of storage required
by the big data system similar to [21], where the system is
expected to manage 10 000 users with a replication factor of
3 to have data redundancy in the big data system.

Big data systems can compress incoming data for their
storage and index, e.g., the compressed raw data file is ap-
proximately 10% of the incoming data, and the associated
index files range in size from approximately 10% to 110%
of the compressed raw data file in Splunk, which is what we
used for our implementation. For ten years running with a 5%
growth per year in users, we need to store 4-PB data, which

TABLE I
STORAGE ESTIMATION OF THE BIG DATA SYSTEM FOR 10 000 USERS

Fig. 5. State-driven information forwarder.

need 4× 103/18 = 222 nodes in the cluster at least. Running
such a cluster of servers can be very expensive, which requires
significant power, cooling, rack space, network port density, etc.

Avoiding oversampling is important for any big data system
design that needs to deal with the properties of 3Vs, particularly
the high velocity of data from distributed sensors. It is expected
that only valuable information is forwarded to the server and
ignores the other irrelevant data. An efficient method is to
provide remote sensor nodes with local intelligence that feed
data to the big data system when an interesting event happens.
In this paper, we use an HMM-based hidden-state estima-
tion to schedule a data forwarder to achieve context-aware
communications.

III. STATE-BASED DATA FORWARDER

A big data system manages high volume, high velocity,
and/or high variety information assets, which are often from
wireless sensors, handhelds, and websites. It is important to de-
velop intelligent data forwarders in individual data sources for
feeding meaningful data to the system. This requires a balance
between distributed intelligence and centralized analytics in the
big data system to avoid missing information or overwhelming
the system. Big data systems are often goal/objective driven.
For example, a big data healthcare system can be designed to
collect vital parameters of the elderly for understanding general
health conditions and exercise engagement through temporal
and geographical statistics. Therefore, distributed data sources
could be provided with intelligence to determine when and what
to feed to the system according to the objectives. This paper
develops a data forwarder that is embedded in each data source
with context-aware capability, as shown in Fig. 5.
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In this intelligent forwarder, a configurable schedule is devel-
oped. The schedule includes a set of rules about the conditions
for triggering a voice tree, as discussed in Section II, and
logging data to the big data system. According to different
analytic objectives, users can specify the rules using meaningful
states, e.g., “sending sensor data when running OR anomaly
detected OR any state transition.” The context awareness of the
forwarder is achieved by an HMM that is used to detect a user’s
hidden behaviors, such as running and anomaly, from its sensor
readings.

A. Viterbi Algorithm for Optimal State Estimation

The HMM in Fig. 5 has N hidden states S = [S1, S2, . . . ,
SN ], and M observations from sensors Ot = [O1, O2, . . . ,
OM ], t = 1, . . . , T , where aij denotes the transition probabil-
ity, i.e., aij = P (qt+1 = Si|qt = Si), and bj(Ot) represents the
observation probability that particular sensor readings Ot are
measured in the state j, bj(Ot) = P (Ot|qt = Sj).

Given an observation sequence O = [O1, O2, . . . , OT ] and
a model λ = (aij , bj , πj), where i, j = 1, . . . , N , and πj is
the initial probability of state j, the probability of the optimal
state sequence Q∗ = q∗1, q

∗
2, . . . , q

∗
T can be obtained by Viterbi

algorithm [22].
Define

δt(i)

= max
q1,q2,...,qt−1

P [q1, q2, . . . , qt−1, qt = Si, O1, O2, . . . , Ot|λ]

where δt(i) is the highest probability along a single state
sequence as calculated at time t, accounting for the first t
observations and terminating with state Si. The state sequence
itself is given in array ψ, which is populated with the state
maximizing that probability calculated by δt at each step.

1) Initialize:

δ1(i) =πibi(O1), 1 ≤ i ≤ N

ψ1(i) = 0, 1 ≤ i ≤ N.

2) Recursion Step:

δt(j) = max
1≤i≤N

[δt−1(i)aij ] bj(Ot)

ψt(j) = argmax
1≤i≤N

[δt−1(i)aij ]

2 ≤ t ≤ T ; 1 ≤ i ≤ N.

3) Terminate:

P ∗ = max
1≤i≤N

[δT (i)]

q∗T = argmax
1≤i≤N

[δT (i)] .

4) The backtracking procedure:

q∗t =ψt+1

(
q∗t+1

)
, t = T − 1, T − 2, . . . , 1.

The resulting state sequence ψ is the most possible sequence
that has emitted the observation at time T , given transitions
from previous states.

B. Anomaly Detection

The HMM can provide the most likely state sequence based
on observations. The probability returned for any state not only
provides information about the certainty of the activation of
the state but can be also interpreted as a value that classifies
its degree of anomalousness, where low probabilities denote
deviations from the norm [23], [24]. For an identified anomaly,
reactions are often to send the current sensor readings to the big
data system or to contact a caregiver, which can be specified by
the user in the schedule. The following three types of anomalies
are defined in this paper.

Type_1 Anomaly: A type_1 anomaly is based on the cer-
tainty of the winning state. If the probability of the winning
state occurring P ∗ is close to the other states’ probabilities, it
has very little dominating likelihood of occurring in the current
winning state. The proximity to the mean of the probability
over all states is calculated as a reference. When the winning
probability is close to the mean, the instance can be deemed
uncertain, as shown in the following:

ρ = |P ∗ − μ| ≤ β1, μ =
1

N

N∑
i=1

δT (i). (6)

In the case where the value of ρ falls within a specified
threshold β1, it indicates significant uncertainty of the identified
state. The illegible state means a wrongly defined model that
faces an unmodeled state or needs model parameter reestima-
tion using the Baum–Welch algorithm [25].

Type_2 Anomaly: An equally likely scenario develops when
the observation witnessed does not belong at all in the sequence.
Detecting such an error primarily requires monitoring of the
relevant observation probability. If the probabilities over all
states having seen observation Ot is low, the inference is that
the model has not seen such an observation before and therefore
requires either reassessing or triggering an alert, i.e.,

N∑
j=1

bj(Ot) ≤ β2. (7)

An instance where this form of anomaly could occur is
likely if not all of the possible observations and associated
states were captured during the training phase or if the user
exhibits a behavior typical of an unprogrammed state, which
is subsequently required to be included. In an instance where
the observation is indicative of a serious issue with the user,
e.g., a stroke or a heart attack indicated by an increase in
temperatures and heart rates, the observation would trigger this
type of anomaly due to the state not having been seen during
training.

Type_3 Anomaly: A type_3 anomaly is a slight variant on
the type_2 anomaly and can occur simply when the state at
a time step differs for each state determining method within
the HMM, e.g., the Viterbi state q∗t and the winning state
according to pure observation probability bj(Ot) do not match
significantly. For example, if the observation probability is
highest for perhaps the state of Running, yet the determined
state according to the Viterbi method q∗t returns Sleeping with
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much higher probability over its Running probability, this may
in fact indicate a period of distress for the user such as in
the instance of a heart attack or some other such observable
problem. The probability from Viterbi is first normalized as

δ̂t(j) =
δt(j)∑N
i=1 δt(i)

, j = 1, . . . , N. (8)

If q∗t �= argmax1≤j≤N [bj(Ot)] ≡ qOt , a type_3 anomaly is
identified by ∣∣∣δ̂t (q∗t )− δ̂t

(
q0t
)∣∣∣ ≥ β3 (9)

where β3 is a threshold to identify whether the difference
between the two differing states is significant enough to trigger
an alarm.

As well as identifying possible occurrences of serious health
problems, when viewing the entire state determining process
as a whole sequence—perhaps after a significant period of
monitoring—this type_3 anomaly will prove quite useful for
the detection of behavior changes as it has the potential to
highlight instances where the user exhibits a behavior not
considered likely according to the transition probabilities pro-
grammed at the start of the process. When a nonthreatening
state is observed (i.e., the user has in fact begun a higher level
of exertion immediately from a rest period, thereby triggering
a Sleeping to a Running state change) then the transition prob-
ability between the two requires amending to allow for such an
observation sequence.

The schedule in Fig. 5 can be configured to select under
which states or anomalies the sensor data should be sent to
the big data system for analytics. In order to avoid missing
important information when an event happens, a first-in–first-
out buffer is used to hold a series of the latest information and
will be sent to the big data system once fired by the schedule.

The context awareness of the intelligent forwarder relies on
correct behavior detection. In the case of an outdated Markov
model, detected states could be wrong, and important infor-
mation could be missed. It will cause an increasing number
of abnormal behaviors to be detected, which may be due to
health problems or due to outdated models. Due to the voice
verification mechanism of the system, false anomalies can be
easily identified and used to trigger a modeling process for
learning HMM parameters, such as using the Baum–Welch
algorithm.

IV. IBL OF OBSERVATION PROBABILITY

The HMM in Section III defines two probabilities, i.e.,
transition probabilities aij and observation probability bj(Ot)
representing the probability that state j has observation Ot. By
utilizing these probabilities, it is possible to identify the most
probable state at a specific time step based on the observations
made at that point along with the preceding states. It is also able
to provide a solid estimate of the most likely state sequence
for an entire set of observations over a prolonged period. As
the observation Ot includes readings from multiple sensors,
determining the observation probability becomes more difficult

due to involving high-dimensional similarity measures. In terms
of the wrist device developed in this paper, the dimensionality
of the sensor readings can reach eight, which includes skin and
ambient temperatures, heartbeat, two PPGs, and accelerations
in three axes. There is also a considerable chance of nonlin-
earity between data clusters present because the data may lie
on nonlinear manifolds, which make classification based on
data distance unreliable given its tendency to misrepresent true
topology. Physiological parameters often have such inherent
nonlinearity, for example, acceleration and heart rate exhibits
a hysteresis relation.

The greater the number of data attributes (dimensions), the
lesser the ability to make sense of the data due to the fact that,
with nonlinearity in a higher dimension, standard Euclidean
distance functions lose their usefulness; thus, clustering with
such methods becomes less accurate. There are a multitude of
techniques for dealing with nonlinear high-dimensional data,
with many sharing basic underlying principles to reach the
lower dimensional representation of a complex nonlinear data
set: Sammon’s mapping [26], Isomap [27], and curvilinear
component (and distance) analysis [28], [29] all seek to repli-
cate similar distances between points located in a high dimen-
sion after placement in the lower dimension, by a means of
gradient descent or iterative error reduction methods.

A curvilinear distance analysis algorithm was presented in
[18] for determining the observation probability bj(Ot). The
observation Ot may be in a high dimensional and nonlinear
space. If it lies on a nonlinear manifold, Euclidean distance
makes less sense for classification but has to be replaced by
curvilinear distance to measure the distance along the manifold.
The algorithm unfolds high-dimensional manifold data to a
low-dimensional one by retaining topology, and it forces the
clusters to be linearly separable. The algorithm’s effectiveness
was validated by experiments using the Verity platform; how-
ever, it is quite time-consuming for the data unfolding because
it involves intensive computation to project prototypes in high-
dimensional space to a low-dimensional space and to maintain
equivalent curvilinear distances. Sometimes, such equivalence
may even not exist. IBL is proposed in this paper as an alterna-
tive to facilitate learning of bj(Ot) from demonstration.

A. LSH for IBL

IBL [30] takes directly sampled data from any system at a
known state and constructs a hypothesis regarding similarity
without the need to generalize a model based on the often
high-dimensional and nonlinear data. Through learning, data
instances are stored in some form of memory. This is then ac-
cessible for subsequent classification operations, where a query
is submitted and compared with all trained values according to
some distance metric in order to ascertain its membership to the
encoded classes. IBL has multiple advantages over parametric
and model-based algorithms, particularly in the storage of new
unseen instances. Other algorithms would typically require a
complete reexamination of the data set in order to be wholly
inclusive of the new data points where IBL methods simply
“insert” the new data instance without disrupting any earlier
determined model.
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It is commonly accepted that the genus of and starting point
for IBL algorithms are the simple k-nearest neighbor (k-NN)
classifier [30]: saving training instances to some data structure
such that other instances may be compared distance-wise with
those local data already classified to return a possible contain-
ing state for the new instance [31]. As highlighted in [32],
for large data sets with high dimensionality (M), searching
through n instances of a data set in order to determine those
within the closest proximity can take an extensive amount of
time, given that all pairs require evaluation using a distance
measure such as Euclidean or Hamming.

LSH [33], [34] provides adequate means to speed up the
process of nearest neighbor searching, overcoming the afore-
mentioned issue by storing the data in another variable-tolerant
compressed format, which is easily searchable and requires
only simple lookup operations to determine possible immediate
neighbors, which can take O(1) by using E2LSH [34] for
example. The principle behind LSH is to hash the sample data
in such a way that the probability of points p and q hashing to
the same bucket is higher for objects that are close to each other
than for those that are further apart, i.e.,

PH [h(p) = h(q)] ≥ P1 for ‖p− q‖ ≤ R1 (10)

PH [h(p) = h(q)] ≤ P2 for ‖p− q‖ ≥ cR1 = R2 (11)

where R2 > R1 and P1 > P2.
A family of LSH functions can be defined by p-stable distri-

butions [35], e.g., projection to linear bins as follows:

LSHh =

⌊
	zh · 	v + b

ω

⌋
(12)

where 	v is the M -dimensional vector to be hashed, and 	zh is a
random vector from a p-stable distribution, such as from a N (0,
1) Gaussian distribution. Another random value b uniformly in
the range [0, ω) is then added to the scalar projection, which is
then quantized by ω. ω is the width of the bin in which a data
point may fall into. �·	 is the floor operator.

This paper presents an LSH-based IBL for obtaining the
observation probability bj(Ot) from high-dimensional and non-
linear sensor readings. It includes two stages, i.e., learning and
querying.

B. Learning

The learning process is to sample typical sensor readings for
different states and encode them into a hash table H with L
independent LSH functions h1, h2, . . . , hL defined in (12). For
a given state, Sj , each sampled Ot(j) is first normalized, i.e.,
Ôt = Ot/‖Ot‖. All sampled sequence of Ot(j), t = 1, . . . , T ,
for state j are clustered with a tolerance of ε, i.e., if the
L2 distance between any two samples is less than ε, they
are merged using the k-means algorithm. A set of prototypes
Vt(j), t = 1, . . . , Tj , is obtained with Tj < T .

The prototypes Vt(j), t = 1, . . . , Tj , are then projected to L
bins in (12), as shown in Fig. 6.

After feeding in Vt(j) for all states j = 1, . . . , N , we have
learned the typical readings of different states. This will be

Fig. 6. Construction of the LSH table with ten prototypes and two hash
functions h1 and h2, where prototypes V1, . . . , V10 are projected into ten
bins(numbered from 1 to 10 in the figure) along two lines h1 and h2.

saved for real-time querying about bj for any sensor read-
ing Ot.

C. Querying

The retrieval method for any Ot is an LSH recall procedure
with “bucket” checking. Different from the conventional LSH
for k-NNs, we want to calculate the density of observations of a
given state j near Ot in a given radius R ∈ Z for the probability
bj(Ot) estimation.

First, Ot is projected to L bins in the L hash functions in
(12) with 	v = Ot, i.e., we have h1(Ot), h2(Ot), . . . , hL(Ot).
The prototypes of state j, i.e., Vt(j), encoded in the same bins
as Ot are counted α1(j), where j = 1, . . . , N .

Increasing the searching radius by 1, with additional 2L
neighbor bins, h1(Ot)± 1, h2(Ot)± 1, . . . , hL(Ot)± 1, are
checked. The prototypes encoded in them are counted to have
α2(j), where j = 1, . . . , N . The search is expanded to ra-
dius R to have the total numbers of prototypes in the radius
R, αR(j), j = 1, . . . , N .
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Fig. 7. Dimensional reduction method implemented in [18].

We define a radius density of state j with r = 1, . . . , R as
follows:

RDr(j) =
αr(j)− αr−1(j)∑N

k=1 (αr(k)− αr−1(k))
,with α0(j) = 0. (13)

The state weighted density (SWD) can be then defined by
taking into account the distance between the query point and
the prototypes, i.e., inverse distance weighting, as follows:

SWD(j) =
R∑

r=1

RDr(j)/r. (14)

Observation probability bj(Ot) can be then estimated by the
SWD in the R radius as follows:

bj(Ot) =
SWD(j)∑N
k=1 SWD(k)

. (15)

It estimates the likelihood of a state happening by consider-
ing the local distributions of the prototypes sampled during the
learning stage. This is considered to be robust to nonlinearity
and fast in both learning and querying stages, with only hash
table insertion and check operations.

V. TESTING AND EXPERIMENTS

A. State Detection

The LHS-based HMM for state identification has been imple-
mented and compared with the dimensional reduction method
reported in [18], which is shown in Fig 7.

The set of two classes X = [XA, XB ]
T ∈ RM×N is pro-

jected to a lower dimension [Xa, Xb]
T ∈ RM×n, n < N ,

where the curvilinear distances in a single class are kept, thus
“flattening” the high-dimensional data and linearly separating
the clusters Xa and Xb in the lower dimensional space. Based
on distance to their closest prototype, successive points can be
interpolated efficiently and projected from the high dimension
to the low dimension. Once they are separated, a simple classi-
fier, e.g., a single-layer perceptron, can be used to identify their
parent cluster.

The same sensor readings as the experiments in [18] were
used for the comparison, which included ambient temperature,
skin temperature, heart rate, acceleration magnitude, and its

TABLE II
RESULT OF STATE DETECTION USING DIMENSIONAL REDUCTION

METHOD ON UNSEEN DATA POINTS

TABLE III
RESULT OF CLASSIFICATION WITH THE LSH SCHEME

FOR UNSEEN DATA POINTS

direction with an attributed state that was observed to have
produced such readings.

Five states are expected to be identified, which are
S = [Sleep, Sit, Stand, Walk, Run] corresponding to states
from 0 to 4. The transition parameters of the HMM remain
the same, with aij specified as in (16) and the initial state
probability vector π as in (17) in the following, where there is
an observed higher likelihood that the starting state is Standing
over all others:

aij =

⎡
⎢⎢⎢⎣

0.45 0.35 0.20 0 0
0.25 0.35 0.30 0.10 0
0 0.35 0.20 0.35 0.10
0 0.10 0.25 0.40 0.25
0 0.10 0.15 0.25 0.50

⎤
⎥⎥⎥⎦ (16)

π = [0.1 0.2 0.4 0.2 0.1]. (17)

The readings and the known state that were producing them
were first submitted to the dimensional reduction algorithm
detailed in [17] and [18]. It successfully took the readings from
their initial five dimensions to the more easily viewable two di-
mensions, without loss of structure and resulting in the creation
of four linearly separable state clusters with which subsequent
classification of unseen data points can occur (note that the
state of Sleeping was not observed in this test of Verity and
data-gathering procedure due to the conditions indicating such a
state not being easily obtainable during testing). A single-layer
perceptron network was trained for the classification. Table II
illustrates some examples of classification with the perceptron
for unseen data points.

The same training instances were submitted to the LSH
table. Table III shows the results, returning 100% classification
correctness on the same unseen data as used in the previous
experiment.

Table IV details a comparison between the two different
state probability determining methods, with key parameters that
resulted in the best classification rates during experimentation.
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TABLE IV
PERFORMANCE TIMES FOR THE STATE DETERMINING METHODS

Fig. 8. Architecture of the healthcare big data prototype system.

The classification with dimension reduction scheme took
154 ms for querying; however, it is in the training (projection)
of the prototypes that took an outlay of nearly 6 s to prototype
and project the 30-member training set. Classification is 100%
accurate for the experiment, with the returned membership
values tending very close to one due to the certainty through
dimension reduction that the unseen data points fall within the
newly created linear boundaries between classes through the
perceptron.

The LSH provides a better result over the dimensional reduc-
tion method, with a much shorter training period (32 ms) and
classification speed (94 ms); the 100% correctness and format
of probability values seems most appropriate for use in the
proceeding HMM as the observation probability. The number
of hash functions used in the experiment to produce the results
was 30.

B. Healthcare Big Data System

A prototype of the big data system has been developed by
using Splunk Enterprise 6.0 for analytics of the behaviors of
wearers, as shown in Fig. 8. Splunk is a time-series engine that
can collect, index, and analyze machine-generated data. It can
support large-scale data collection and processing with paral-
lelizing analytics via the MapReduction mechanism. Therefore,
it can handle distributed information with the 3V characteristics
from a great amount of wearable sensors very well.

In this prototype system, we used the Dropbox system as
a medium to transfer distributed user’s information to Splunk
engines via Wi-Fi or cellular networks. Each user’s mobile
phone was deployed with the intelligent forwarder that carries
out HMM-based state detection continuously, as presented in
Sections III and IV. The forwarder can be scheduled to log the
records or start a voice dialog for alerting a caregiver based on

Fig. 9. Forwarding statistics for all events, state changes, walk, and abnormal
states.

the detected states. Because of the HMM-based state detection,
the forwarder is aware of the wearer’s behaviors, and only the
records associated with certain events are saved to local files
according to the schedule. The files are then synced with a
folder in Dropbox by using an Android-synchronized appli-
cation programming interface once communications becomes
available. If the Dropbox folder is shared with the big data
system, Splunk can monitor any changes in the folder and
index the data for analytics. It is a concern that big data pose
big privacy risks [36]. Therefore, the approach using personal
Dropbox folders gives individual users the right to decide if
they want to keep the collected information privately or share
with someone they trust; for example, they can select to share
the folder with caregivers or family members, rather than an
insurance company.
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Fig. 10. (a) Body temperature. (b) Geolocation statistics. (c) State statistics. (d) Ambient temperature.

Small-scale field trials have been carried out since September
2013 with three subjects. An example is shown in Fig. 9. A
subject, David Carroll, with the wrist sensor was monitored
about 2 h from 09/18/2013:21:40:00 to 09/18/2013:24:00:00.
Without scheduling the forwarder, events were sent to the
big data system every 3 s, with a total number of 1875 in
this period. The forwarder can be scheduled according to the
subject’s behaviors. If only the information during walking is
of interest to a caregiver, 150 records would be then sent to
the big data system. Sometimes, the state change could be
important; the forwarder can be configured to send only when a
change happens, with 315 changes in the example. As discussed
in Section III, anomalies can imply an alarm on the health
conditions or indicate that the HMM is no longer valid, thus
needing a reestimation of the model. Detected abnormal events
should be sent to the big data system for analysis. There were
62 events during the period. A dramatic increase in anomalies
often indicates a poor model to describe behaviors of the wearer
and needs recalibration. A big data system can be an effective
tool to manage distributed models remotely.

As an example, a dashboard with several panels was devel-
oped to provide useful clues about a subject’s lifestyle and
health conditions. Fig. 10(a) shows the body temperature of
the subject, which is an important physiological parameter
for healthcare. Fig. 10(b) illustrates the geolocation distribu-
tion of the subject’s activities in a month. A change in the
distribution usually indicates a change of health conditions,
lifestyle, or social engagement. Fig. 10(c) shows the behaviors
of the subject during a day. It indicates that the subject did not
walk enough as recommended by the caregiver to gain health
benefits. A reminder needs to be sent to promote a healthy
lifestyle. Fig. 10(d) shows the average ambient temperature
in the home. The system monitors living conditions of the
subject that can also provide added value for energy manage-
ment etc.

The preliminary field trials reported here are only with
a small scale and a single server implementation of Splunk
Enterprise. However, it is sufficient to prove the concept of
the proposed architecture and intelligent forwarder to be a
big data solution for the healthcare of a great amount of the
elderly population. Splunk Enterprise can be deployed into a
distributed architecture following the MapReduction model. It
can scale flexibly from a single server to multiple data centers
to cloud, considering the amount of users to be monitored
and analyzed. Its parallel architecture also means search and
indexing performance scales linearly across servers.

VI. CONCLUSION

This paper has presented a big data healthcare system for
elderly people. The system connects with remote wrist sensors
through mobile phones to monitor the wearers’ well-being.
Due to a tremendous number of users involved, collecting real-
time sensor information to the centralized servers becomes very
expensive and difficult. However, such a big data system can
provide rich information to healthcare providers about individ-
uals’ health conditions and their living environment. Therefore,
this paper proposed an intelligent information forwarder em-
bedded in a mobile phone. It can be configured by a user to
determine under which circumstances data should be logged to
the system. It uses an HMM to estimate a wearer’s behaviors,
which includes an LSH table to determine the observation prob-
ability of a state. Considering nonlinear and high-dimensional
aspects of the sensor observations, the LSH table is proposed
to improve efficiency. It can be learned by inserting sample
data and queried by checking their local density. Experiments
have verified that the LSH-based behavior estimation is more
efficient than the dimensional reduction method, which is im-
portant for implementation on a mobile device. A prototype of
the big data system to work with distributed wearable sensors
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has been built up for use in the healthcare of the elderly. It
demonstrates that the state-based forwarder makes the remote
sensing context aware when feeding information to the big data
healthcare system.

There could be a large group population of the elderly to be
monitored using this system. All of them will have their own
behavior models, e.g., HMMs, about their daily life. Possible
future work will be on how the models can be maintained re-
motely and automatically by the big data system. As Section III
discussed, frequent false anomalies would be an indication of a
mismatching model. With rich information collected in the big
data system, the model could be rectified or recreated to fit a
user’s actual behavior pattern automatically or through active
remote instructions.
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