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Abstract—Oil & Gas (O&G) industry is extending the extrac-
tion operation to remote offshore sites. Cost-effective, efficient,
and nature-friendly oil extraction is a challenging issue in these
remote sites, due to the disaster-prone nature of oil extraction
process and hurdles in accessing these sites. To overcome these
difficulties, smart oil fields use numerous sensors (e.g., pipeline
pressure, gas leakage, temperature sensors) and can generate
more than a terabyte of data per day. The data are transferred
to cloud datacenters via high-latency and unstable satellite com-
munication, which is not suitable for latency-intolerant (urgent)
disaster-related tasks. Edge computing can be deployed in oil
rigs to process the latency-intolerant tasks, however, processing
capacity of an edge system falls short at the time of a disaster—
when several coordinated activities must be processed within a
short time. To address this shortage, we propose robust smart
oil fields operating based on a federation of edge computing
systems, provisioned from nearby/mobile micro datacenters. Our
solution achieves robustness by capturing uncertainties exist both
in communication and computation of the federated environment
and allocating urgent tasks so that the likelihood of their on-time
completion is maximized. Evaluation results reflect significant
performance improvement (up to 27%) of the proposed solution
when compared to conventional solutions for smart oil fields.

Index Terms—Smart Oil Field, Edge Computing, Cloud Dat-
acenter, Sensors, Offshore Oil Field.

I. INTRODUCTION

A. Smart Oil Fields

Petroleum has been unarguably one of the most essential el-
ements of world economic growth throughout the past decades.
For nearly two centuries, petroleum has been exploited as the
primary natural source for many industrial products such as
gasoline, natural gas, diesel, oil, asphalt, and plastic. Nonethe-
less, oil and gas (O&G) industries currently face several
challenges mainly due to scarcity of petroleum reservoirs,
requiring the companies to extract O&G at remote and adverse
locations (e.g., Golf of Mexico, Persian Gulf, West Africa) [1]
where giant reservoir exist, hence, multiple oil extraction sites
are built within a short distance. Operating at such remote sites
is costly and constrained with limited crew and equipment.
In addition, petroleum extraction is a fault-intolerant process
and requires high-reliability e.g., for drilling and downhole
monitoring. Disasters, such as the Deepwater Horizon oil spill

in 2010 [2], occurred due to faults in the safety system of
the extraction. As such, strict regulations are being enforced
by governments (e.g., U.S. environmental protection agency
(EPA)) to prevent disasters and minimize the environmental
impacts of O&G extraction.

Fig. 1: A smart oil field scenario including different oil extraction
and monitoring sensors.

To avoid potential flaws and disasters, oil fields are equipped
with many cyber-physical devices (e.g., sensors and actuators,
as seen in Figure 1), and the concept of smart oil field
has emerged. Smart oil fields leverage numerous sensors,
including those for temperature, Hydrogen Sulphide (H2S) gas
emission, pipeline pressure, air pollution, and flow monitoring.
These sensors gather a large volume of data (up to two
Terabytes per day [3]) that most need to be analyzed and
used in a real-time manner. Various research works [3]–[7]
have collectively emphasized the need for smart oil fields with
following requirements:
(1) Real-time decision-making during the extraction process
to manage the drilling operation, which is challenging when
the operation is controlled remotely by the management team.
(2) Online monitoring of the site including rigs’ structure,
wells, and distribution lines to avoid any O&G leakage,
corrosions identification, and future incidents prediction.
(3) Numerous sensors generate a large amount of data [8] that
must be transferred to cloud datacenters for processing.

Services that utilize the sensors’ data are categorized as
either latency tolerant (aka non-urgent) or latency intolerant
(aka urgent). Analyzing cost-efficiency of drilling, compress-
ing and archiving captured surveillance videos, and generating
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weekly production reports are examples of non-urgent ser-
vices. Such services are generally more compute intensive. In
contrast, pipeline pressure alarm and gas (e.g., H2S) leakage
detection are instances of latency intolerant services. Such
services have real-time constraints and must be processed
within a short latency (deadline). For instance, preserving
workers’ safety in an oil field requires processing the data
generated by H2S sensors in less than five seconds [9].

B. Challenges of the Current Smart Oil Field Solutions
Existing smart oil field solutions cannot meet the require-

ments of remote oil fields for the following two reasons:

1) Lack of reliable and fast communication infrastructure
to onshore cloud datacenters for real-time processing of
the extracted data.

2) Due to the harsh environment and shortage of manpower,
more automation, and real-time processing is required to
deal with abundant sensors and actuators.

Currently, remote smart oil fields use satellite communica-
tion to cloud and monitoring centers that are located in the
mainland. However, satellite communication is known to be
unstable and imposing a significant propagation delay leading
to the latency in the order of seconds, that is intolerable for
many real-time services in smart oil fields [10]. Current smart
oil field solutions [11] do not consider the latency exists in
communication between the oil fields and cloud datacenters.
As such, the goal of this study is to enable the idea of
smart oil fields in remote offshore sites. In this research, we
propose a robust edge computing system for remote smart oil
fields with high latency connectivity to cloud datacenters. The
edge computing system is defined as micro datacenter that
aims at handling latency-sensitive (i.e., urgent) tasks. At the
time of a disaster (e.g., oil spill or gas leakage), different
urgent activities must occur in the orchestrated manner to
manage the disaster. For instance, real-time simulations must
be conducted to predict oil spill expansion; emergency teams
must be notified, and Unmanned Aerial Vehicles (UAVs)
must be scheduled and dispatched for finer inspection [12].
However, edge computing resources are generally insufficient
to handle such surges in demands.

C. Contributions of this Research
To overcome resource constraints of a single edge system

and make it robust against the surge in demand, we leverage
the edge computing systems available in nearby oil rigs, drill-
ships, or even mobile micro datacenters and propose a mecha-
nism to engage them upon demand. Although federating edge
systems can potentially mitigate the shortage of resources,
such a federated environment involves new challenges that
must be addressed to achieve the intended robustness.

For a given task, the federated edge system imposes the
stochastic transmission latency to a neighboring edge and the
stochastic execution latency on the destination edge system.
These latency times collectively are called end-to-end latency.
For a latency-intolerant task, the end-to-end latency and its
implied uncertainties must be captured, so that the federated
environment can be helpful. As such, the research problem
we consider is how to design a dynamic federated edge
computing system that is robust against uncertainties exist in

both communication and computation and can handle surges
in demand for latency-intolerant tasks during a disaster?

To address this problem, we design a load balancer for
each edge computing system that provides robustness by
maintaining the federation view. The load balancer is aware
of both computation and communication uncertainties exist in
the federated environment and uses a probabilistic model to
capture them. The probabilistic model provides us with the
likelihood of meeting the latency constraint of the arriving
task (i.e., task’s deadline). Next, we leverage the probabilistic
model and develop a resource allocation heuristic for the load
balancer to utilize the federation such that the edge system
becomes robust against surges in task arrival. As the edge
computing system has a central role in the smart oil field, its
robustness leads to the robustness of the smart oil field, and
subsequently, a cleaner and more cost-efficient O&G industry.
In summary, The contributions of this paper are as follows:

• Proposing a resource allocation model that dynamically
federates edge computing systems to enable robust smart
oil fields.

• Establishing a probabilistic model to capture end-to-end
uncertainties exist in the federated edge environment
and calculate the probability of success for tasks in this
environment.

• Developing a federation- and QoS-aware resource alloca-
tion heuristic based on the probabilistic model.

• Analyzing the performance of the federated edge com-
puting system under various workload conditions.

The rest of the paper is organized in the following manner.
Section II represents the system model. Section III states the
end-to-end latency in edge computing systems. Section IV
demonstrates the robust resource allocation using federated
edge computing system while section V provides the perfor-
mance evaluation and experiments performed in our research.
Section VI presents related works. Finally, section VII con-
cludes the paper with some future avenues for exploration.

II. SYSTEM MODEL

The system model, shown in Figure 2, includes two-tier of
computing systems where edge systems are located in local or
in the first tier, and cloud datacenters are in the second tier. An
edge system is defined as a set of machines with limited com-
putational power, storage, and communication capacity [13]
that work together under the same management platform (i.e.,
resource manager) to offer various services required at the
oil field. In analogy with gigantic cloud datacenters, the edge
systems are known as micro/mini datacenters [14]. The edge
system can be located within an oil rig structure or mounted on
a drill-ship near the rig [15]. In disaster-prone environments,
the edge systems are protected with temperature and water
resistive materials. As such, we assume that the edge system
itself is safe from oil field disasters.

Each edge system is equipped with a load balancer module
that can offload tasks to the central cloud. In addition, in
this work, we propose to enable the load balancer to com-
municate with its peer edge systems using an underlying
wireless network. The load balancer decides about assigning
(offloading) arriving tasks to its peers or central cloud based
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Fig. 2: Architecture of federated edge computing of smart oil field
where sensor-generated tasks are sent to edge nodes for execution.

on the workload intensity or the type of arriving task requests.
In particular, urgent tasks are suitable for processing at the
edge or edge federation, whereas non-urgent tasks are suitable
for processing on cloud datacenters. As such load balancer
should assign urgent tasks to edge federation and non-urgent
tasks are transferred to cloud datacenters. We consider hetero-
geneity across edge systems. That is, and some edge systems
have more computational power (in terms of the number of
processing cores and available memory) than others.

Different types of sensors (e.g., temperature sensor, pressure
sensor, gas sensor, camera) generate data that are consumed by
heterogeneous tasks (defined as task types) to offer various ser-
vices required in a smart oil field. The task types (e.g., image
processing for oil spill detection, toxic gas detection, weekly
report generation) are assumed to be limited and known in
advance. Also, each task is assumed to be independent of
other tasks. The format [16] and size of generated data by
some sensors can potentially vary, whereas, for some other
sensors, they are constant. For example, images captured by
cameras to detect oil spill can be of different sizes. This
randomness serves as one primary reason for uncertainty in the
execution time of the task type that processes images to detect
an oil spill [17]. A contrary example is the data periodically
generated by temperature sensors and is processed by a task
type that identifies fire hazards in the oil field [18]. In the
latter example, even though the data size does not vary, the
task execution time can have uncertainty due to the workload
of neighboring machines and multi-tenancy [19]. Apart from
the execution time uncertainties exist within each edge system,
due to heterogeneity, a task of a specific type can have different
(i.e., uncertain) execution times across different edge systems.

Upon arrival of a task of type i to an edge system j, an
individual deadline (denoted δi) is assigned to the task based
on its arrival time and the maximum latency the task can
tolerate. It is noteworthy that the deadline of tasks depends
on the service type they offer, and it varies from one service
type to another. Tasks arrive at an edge system dynamically,
and the arrival rate is not known in advance. Particularly,
we concentrate on surge demands in the edge system that

overload (i.e., oversubscribed) the system. Thus, the arrival
rate of tasks to the edge system is intense to the extent that
it is not feasible to meet the deadlines of all the tasks. We
assume that each arriving task is sequential and needs only
one processing unit (e.g., a processing core) for execution. In
this system, a resource allocation method aims at maximizing
the robustness of the edge system where robustness is defined
as the number of tasks meeting their deadline constraint.

III. END-TO-END LATENCY IN EDGE COMPUTING

SYSTEMS

Upon the arrival of a task request to the load balancer
of an edge system, there are two types of latencies, namely
communication and computational latencies, that together
form the end-to-end latency. Several factors influence each
one of these latencies and cause them to exhibit stochastic
behavior. For these reasons, estimating end-to-end latency and
capturing the stochastic nature of it is challenging in edge
computing systems. In the following subsections, we elaborate
on the influential factors in communication and computational
latencies. Also, we provide a model to estimate the end-to-end
latency while capturing its stochastic nature.

A. Estimating Communication Latency
Communication latency for a task request is the implication

of transferring the task’s data for processing and receiving the
response. More specifically, communication latency is caused
by transmission latency and propagation latency.

The transmission latency between any two points m and
n (e.g., two edge systems in the edge federation) for task
t of type i, denoted Θi(m,n), is defined as the sum of
uplink transmission latency, denoted τu(m,n, i), and downlink
transmission latency, denoted τd(m,n, i). That is, we have
Θi(m,n) = τu(m,n, i)+τd(m,n, i). Let Iu(i) be the size of data
payload (in bits), originally captured by a sensor, serving
as input for task type i. Note that, for some sensors (e.g.,
cameras), there can be randomness in the size of captured
data, in every sensor reading. Also, let Ru(m,n) represent the
uplink bandwidth, through which the data is transmitted. T is
the time required to transmit each data packet to the uplink
channel (known as Transmission Time Intervals (TTI)). Then,
the uplink latency is calculated based on Equation 1.

τu(m,n, i) =
⌈

Iu(i)
Ru(m,n)·T

⌉
(1)

Similarly, the downlink latency is defined as Equation 2.

τd(m,n, i) =
⌈

Id(i)
Rd(m,n)·T

⌉
(2)

An orthogonal frequency-division multiplexing (OFDM) with
total bandwidth W is divided equally into a set of k sub-
channels (where k ∈ K) each with bandwidth w. Accordingly,
the downlink bandwidth is defined based on Equation 3.

Rd(m,n) = w· ∑
k∈K

ymnk log2(1+ γd(m,n,k)) (3)

where ymnk = 1, if sub-channel k is allocated, otherwise
ymnk = 0. As the wireless communication is prone to noise
and interference from other edge systems in the federation,
the value of Rd(m,n) also depends on downlink signal to
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noise plus interference ratio (also known as SINR [20]).
SINR is defined as the power of a particular signal divided
by the sum of the interference power (from all the other
interfering signals) along with the power of background noise.
We note that, details of calculating uplink transmission latency
(τu(m,n, i)) is similar to those for downlink.

In edge federation, due to the vicinity, the propagation
latency between edge systems is negligible. In contrast, the
communication between edge systems and cloud datacenters
is commonly achieved via satellite that introduces a substantial
propagation latency [7]. The propagation latency, denoted τp,
is calculated based on Equation 4.

τp = 2· d(n,st)
Sl

(4)

In the Equation 4, d(n,st) is the distance between edge n to
satellite st and Sl is the propagation speed in medium or link.
To calculate propagation latency in the round trip time, the
fraction value should be doubled. Once we know propagation
latency, the overall communication latency, denoted dcomm, to
access cloud datacenter is calculated based on Equation 5.

dcomm = Θi(m,n)+ τp (5)

As we noticed, there are several factors that collectively form
the communication latency with stochastic behavior. To cap-
ture this stochastic behavior, we treat communication latency
as a random variable and model it using statistical distribution.
That is, we represent the communication latency between any
two points (e.g., two edge systems in the federation) using
a probability density function (PDF), built upon historical
communication information [21]. Based on the central limit
theorem, communication latency can be modeled using Nor-
mal distribution.

B. Estimating Computational Latency

Once the load balancer assigns arriving task request t to an
edge system, the task has to wait in the scheduling queues of
the edge system before its execution. For a given task t of type
i, denoted ti, its completion time (i.e., computational latency) is
influenced by the waiting time in the queue (queuing latency),
plus the task’s execution time (execution latency) on the
machines of the assigned edge system. Importantly, both of
these factors are stochastic, as a result, the task completion
time exhibits a stochastic behavior.

The queuing latency of task ti is dependent on the number
and execution times of tasks ahead of it in the edge system.
The stochasticity in execution time can be due to different
task types and characteristics of machines in different edge
systems. Even the execution time of tasks from the same
type on homogeneous machines of the same edge system is
stochastic. This can be because of variations in the size of
data to be processed and multi-tenancy of tasks in the edge
system [19]. Other factors, such as machine failure, can also
be reasons for stochastic task execution time. To capture the
stochasticity in computational latency, we consider the task
completion time of each task type on each edge system as a
random variable. Then, we model the computational latency
using statistical distribution. That is, the computational latency
is modeled using PDF, built upon historical completion time

information of each task type on each edge system. Based on
the central limit theorem, the computational latency of each
task type on each edge system can be modeled using Normal
distribution.

C. Estimating End-to-End Latency
Once we estimate the communication and computational

latencies, their compound latency forms the end-to-end la-
tency. More specifically, the compound latency can be obtained
by convolving the PDF of communication latency with the
PDF of the computational latency. For an arriving task ti to a
load balancer, let Ni be PDF of its communication latency to
another edge system in the federation. Also, let Mi be PDF
of the computational latency of ti on the other edge system.
Then, the end-to-end latency for ti, denoted Ei, is calculated
as Ei = Ni �Mi.
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Fig. 3: An edge system with load balancer module that facilitates
edge federation. Task requests generated by sensors are received by
the load balancer module and are assigned to the edge system that
maximizes the likelihood of success for the task.

IV. ROBUST RESOURCE ALLOCATION USING FEDERATED

EDGE COMPUTING SYSTEM

The synopsis of the proposed resource allocation model in
the federated edge computing system is demonstrated in Figure
3. The resource allocation model utilizes a load balancer
module that is the main enabler of edge federation. Every
edge system is equipped with a load balancer that, for each
arriving task, it determines the appropriate edge system (either
the receiving edge or to a neighboring one) where the task has
the highest likelihood of completion before its deadline.

The functionality of load balancer is particularly prominent
to cope with the uncertainty exists in task arrivals (e.g., during
disaster time) and make the edge system robust against it. The
load balancer operates in immediate mode [22] and assigns
arriving tasks to the appropriate edge system, immediately
upon task arrival. The appropriateness is characterized based
on the edge system that maximizes the probability of the task
meeting its deadline (known as the probability of success).
The probability of success for task ti with deadline δi can be
calculated for each neighboring edge system, by leveraging
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the end-to-end latency distribution of executing task ti on that
system. To avoid repetitive task reassignment and compound
latency, we determine that once a task assignment decision is
made, the task cannot be re-allocated.

The resource allocation of each edge system leverages the
historical information of computational and communication
latencies to build PDF of their distributions. For that purpose,
each load balancer maintains two matrices, namely Estimated
Task Completion (ETC) [23] and Estimated Task Transfer
(ETT), to keep track of computational and communication
latencies for each task type on each neighboring edge system.
Entry ETC(i, j) keeps the PDF of computational latency for
task type i on edge system j. Similarly, entry ET T (i, j) keeps
the PDF of communication latency for task type i to reach
edge system j. The entries of ETC and ETT matrices are
periodically updated in an offline manner and they do not
interfere with the real-time operation of the load balancer.

Upon arriving task ti, load balancer of the receiving edge
can calculate the end-to-end latency distribution of ti on any
neighboring edge j, using ETC(i, j) and ET T (i, j). The end-
to-end distribution can be used to obtain the probability of
completing ti before its deadline, denoted p j(ti), on any of
those edge systems. We have: p j(ti) = P(Ei ≤ δi). We note
that the probability calculation for task ti on the receiving edge
does not imply further communication latency. As such, for
the receiving edge r we have: pr(ti) = P(Mi ≤ δi). In the next
step, the edge system that provides the highest probability of
success is chosen as a suitable destination to assign task ti. This
implies that task ti is assigned to a neighboring edge system,
only if even after considering the communication latency, the
neighboring edge provides a higher probability of success.

It is noteworthy that the probability of success on a neigh-
boring edge can be higher than the receiving edge by a non-
significant amount. In practice, a task should be assigned to a
neighboring edge, only if the neighboring edge system offers
a substantially higher probability of success. To understand
if the difference between the probabilities is substantial, we
leverage confidence intervals (CI) of the underlying end-to-
end distributions, from which the probability of success for
receiving and remote edges are calculated. More specifically,
we determine a neighboring edge offers a significantly higher
probability of success for a given task, only if CI of end-to-
end distribution of the neighboring edge does not overlap with
the CI of end-to-end distribution of the receiving edge.

The pseudo-code provided in Algorithm 1 expresses the
robust task assignment heuristic that load balancer utilizes
to take advantage of federated edge system and increase the
robustness of the system. The heuristic is called Maximum
Robustness (MR) and invoked upon arrival of a new task ti to
the load balancer of an edge system. Based on the deadline
of the arriving task (δi), the algorithm first calculates the
probability of success for ti on the receiving edge and on its
neighboring edge systems (Step 1-7 in Algorithm 1). Then, in
Step 8, the calculated probabilities are sorted in the descending
order. If the probability of success on the receiving edge is
higher, then the task is allocated to the receiving edge system
(Step 9). Otherwise, CI of the end-to-end latency distribution
for the neighbor with the highest probability of success is
compared against receiving edge CI. If the CIs do not overlap,

then task ti is assigned to the neighboring edge (Step 12).
Otherwise, the same procedure is performed for the rest of
the neighbors of the receiving edge system. If there is no no-
overlap neighbor found then, task ti is assigned to the receiving
edge system (default assignment in Step 9).

Algorithm 1: Task assignment algorithm for load balancer.

Input : Task ti; ETC and ET T matrices; G (set of

neighboring edge systems)

Output: Chosen edge j ∈ G to assign ti
1 pr(ti)← Probability of success on receiving edge r
2 foreach edge system j ∈ G do
3 p j(ti)← Probability of success on neighbor edge j
4 if p j(ti)> pr(ti) then
5 Add p j(ti) to P, as a potential edge for assignment

6 end
7 end
8 Sort elements of set P in descending order

9 Consider receiving edge r as default assignment for ti
10 foreach p j ∈ P do
11 if CI of E j does not overlap with CI of Nr then
12 Choose edge j as destination and assign ti to it

13 Exit the loop

14 end
15 end

V. PERFORMANCE EVALUATION

A. Experimental Setup
We have used EdgeCloudSim [24], which is a discrete

event simulator for performance evaluation. We simulate five
edge systems (micro-datacenters) each one with eight cores
and [1500, 2500] Million Instructions Per seconds (MIPs)
computational capacity. Cores of each edge system are homo-
geneous: however, different edge systems have different MIPs
that represents the heterogeneity across the edge systems. We
also consider a cloud datacenter with 40,000 MIPs to process
non-urgent tasks. Task within each edge is mapped in the first
come first serve manner. The bandwidth to access cloud is
based on satellite communication and set to 200 Mbps, and
the propagation delay is 0.57 seconds [17].

In each workload trial, generated to simulate load of a smart
oil field, we consider half of the tasks represent urgent and the
other half represent non-urgent tasks. Each task is of a certain
type that represents its service type. In each workload trial,
urgent tasks are instantiated from two different task types and
non-urgent tasks are instantiated from two other task types.
The execution time of each task instantiated from a certain
type is sampled from a normal distribution, representing that
particular task type. Each task is considered to be sequential
(requires one core) and its execution time is simulated in the
form of MIPs. Poisson distribution (with different means for
different task types) is used to generate the inter-arrival rate
of the tasks and simulate task arrival during oversubscription
periods. The number of tasks in each workload trial is varied
to represent different oversubscription levels.

Deadline for task i in a workload trial is generated as:
δi = arri + β·avgi

comp + α·avgi
comm + ε, where arri is the

task arrival time, avgi
comp is average computational latency of
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the task type across edge systems, and avgi
comm is average

communication latency. β and α are coefficients, respectively,
represent computation and communication uncertainties, and
ε is the slack of other uncertainties exist in the system.
We consider maintaining ETC and ETT matrices in every
edge system and update them in every 10% of the workload
execution. The entries of these matrices are considered as
normal distribution as mentioned in the system model. For
accuracy, each experiment was conducted 30 times and the
mean and 95% confidence interval of the results are reported.

B. Baseline Task Assignment Heuristics for Load Balancer
Minimum Expected Completion Time (MECT): This heuris-

tic [21] uses the ETC matrix to calculate the average expected
completion time for the arriving task on each edge system
and selects the edge system with the minimum expected
completion time.

Maximum Computation Certainty (MCC): This heuristic
(used in [25]) utilizes ETC matrix to calculate the difference
between the task’s deadline and average completion time
(called certainty). Then, the task is assigned to the edge that
offers the highest certainty.

Edge Cloud (EC): This heuristic operates based on conven-
tional edge computing model where no federation is recog-
nized. Specifically, urgent tasks are assigned to the receiving
edge and non-urgent tasks are assigned to the cloud datacenter.

C. Experimental Results
1) Analyzing the Impact of Oversubscription: The main

metric to measure the robustness of an oversubscribed edge
system in a smart oil field is the deadline miss rate of
tasks. In this experiment, we study the performance of our
system by increasing the number of tasks sensors generate
(i.e., oversubscription level). Figure 4 shows the results of
varying the number of arriving tasks (from 1,500 to 7,500 in
the horizontal axis) on deadline miss rate (vertical axis) when
different task assignment heuristics is applied.

Fig. 4: The impact of increasing oversubscription level (number of
arriving tasks) on deadline miss rate using different task assignment
heuristics in the load balancer.

In Figure 4, it is visible that as the number of tasks
increases, the deadline miss rate grows for all of the heuristics.
Under low oversubscription level (1,500 tasks), MR, MECT,
and MCC perform similarly. However, as the system gets more
oversubscribed (4,500 tasks) the difference becomes substan-
tial. With 7,500 tasks, MR offers around 16% lower deadline

miss rate than MECT and MCC and approximately 21% better
than EC. The reason is that MR captures end-to-end latency
and proactively utilizes federation, only if it has a remarkable
impact on the probability of success. Nonetheless, EC does not
consider federation, and other baseline heuristics only consider
the computational latency. We can conclude that considering
end-to-end latency and capturing its underlying uncertainties
can remarkably improve the robustness, particularly, when the
system is oversubscribed (e.g., at a disaster time).

2) Analyzing the Impact of Urgent Tasks Ratio: In this
experiment, while the system is oversubscribed with 8,000
tasks, we vary the percentage of urgent tasks in the workload
from 10% to 90% (horizontal axis in Figure 5) and in each case
we measure the deadline miss rate (vertical axis in Figure 5).

Fig. 5: Impact of increasing urgent tasks on deadline miss rate.

As we can see in Figure 5, EC provides lower deadline
miss rate than MECT and MCC at 10% the urgent tasks (i.e.,
90% no-urgent tasks). The reason is that EC redirects non-
urgent tasks to the cloud datacenter and the remaining urgent
tasks can complete on-time on the receiving edge system.
Although MECT and MCC use the cloud for non-urgent tasks
too, they utilize federation for some of the remaining urgent
tasks without considering end-to-end latency. Hence, their
performance is degraded. However, for more than 20% urgent
tasks, EC performs worse than MECT and MCC, because it
cannot utilize the federation. In all cases, we observe that MR
outperforms other heuristics due to consideration of end-to-
end latency and its underlying uncertainties.

3) Analyzing Communication Overhead of Edge Federa-
tion: Although we showed in the previous experiment that
using federation improves system robustness, we are unaware
of the communication overhead of task assignment in the fed-
erated environment. Therefore, in this experiment, we evaluate
the communication latency imposed as a result of applying
different task assignment heuristics. Specifically, we measure
the mean communication latency overhead (vertical axis in
Figure 6) induced to each task, for the various number of
arriving tasks (horizontal axis in Figure 6).

Figure 6 shows that MECT and MCC cause higher average
communication latency. The reason is that these heuristics
do not consider the communication latency and aggressively
redirect tasks to the same edge system, making that particular
network link (between receiving edge and redirected edge sys-
tem) congested. In contrast, MR that considers communication
latency and redirect tasks more conservatively, only if the
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Fig. 6: Mean communication latency overhead introduced to each
task in edge federation by different heuristics.

improvement in the probability of success is substantial.

4) Analyzing Average Makespan of Tasks: Different task
assignment heuristics cause various computational latencies
for the tasks. To understand the computational latency, we
measure the average makespan of tasks, resulted by applying
various task assignment heuristics.

Fig. 7: Average makespan of tasks using various task assignment
heuristics.

Figure 7 demonstrates that EC leads to the maximum
average makespan time. The reason is that EC does not
utilize federation, making the receiving edge system highly
oversubscribed while other neighboring edge systems are un-
derutilized. Hence, average makespan time rapidly rises after
the receiving edge is saturated with 3,000 tasks. MECT and
MCC do not consider the stochastic nature of task completion
time; hence, they can potentially assign arriving tasks to one
edge and oversubscribe that. As a result, the average makespan
of tasks rises. In contrast, MR considers stochastic nature of
end-to-end latency and calculates the probability of success
on neighboring edge systems. Besides, it assigns tasks to a
neighboring edge system, only if it offers a sufficiently higher
probability of success. Hence, MR offers the lowest average
makespan time than other heuristics.

VI. RELATED WORKS

To improve the response time of latency intolerant ser-
vices, edge computing systems have been exploited in the
literature from the network latency perspective. Lorenzo et al.
[26] proposed a resource allocation model for wireless edge
systems that harvest unused resources of mobile devices to

mitigate network congestion. The proposed model utilizes
solutions at physical, access, networking, application, and
business layers to reinforce the network robustness. This
work solely considers networking latency and not end-to-end
latency. In [27], Chang et al. proposed an optimized resource
migration scheme from mobile IoT devices to heterogeneous
Cloud-Fog-Edge computing environment that is aware of the
resource-constrained nature of edge devices. It focuses on the
performance gain of process migration and assigns tasks based
on their run time expectations on the participating systems.
The problem of heterogeneous data acquisition from sensors
in different sectors (e.g., upstream, midstream, downstream)
of smart oil fields are addressed in [18] where khan et al.
proposed an IoT based architecture to enable data acquisition
process more simple, secure, robust, reliable and quick. There
are several other works (e.g., [28]–[30]) that either do not
consider emergency situation (oversubscription) or ignore the
uncertainties exists in federated edge environments. In our
previous work [31], the main focus was on optimizing the
wireless network while no resource allocation performed at
the edge system.

There has been limited work conducted by researchers from
academia and industry to model networking characteristics of
remote smart oil fields [3], [4], [6]. The key challenges for
remote sites that have not been addressed by previous works
are as follows: First, the communication medium between
the remote sites and management centers depends on satel-
lite communication [17] which is not suitable for real-time
decision making during a disaster or oversubscription time.
Second, current works (e.g., [32]) consider wireless support
from cellular Base Station at a nearby location that is not the
case for remote offshore oil fields.

Although there are several research works (e.g., [33]–[35])
on smart oil fields, there is no rigorous study on resource
provisioning for disaster management applications using edge
computing and by considering low-connectivity to the back-
end cloud datacenters. Instead, major efforts have concentrated
on big data analytics and machine learning applications for
smart oil fields. Parapuram et al. [36] studied the use of
artificial intelligence and data mining model to predict geome-
chanical properties of future oil wells. To reduce exploration
and drilling costs, in [37], machine learning methods have
been developed by Cameron et al. .

VII. CONCLUSIONS

In this paper, our goal was to provide a smart oil field
that is robust against disasters and surges in real-time service
requests. To achieve that, we presented dynamic federation
of edge computing systems, exist in nearby oil fields. Within
the federated environment, we captured two sources of un-
certainty, namely communication and computation, that are
otherwise detrimental to the real-time services. The federation
is achieved by a load-balancer module in each edge system that
is aware of the end-to-end latency between edge systems and
can capture the stochasticity in it. The load balancer leverages
this awareness to find the edge system that can substantially
improve the probability of success for each arriving task.
Experimental results demonstrate that our proposed federated
system can enhance the robustness of edge computing systems
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against uncertainties in arrival time, communication, and com-
putational latencies. We concluded that the load balancer could
be particularly useful (by up to 27%) for higher levels of over-
subscription. Even for naı̈ve load balancing methods (MCC
and MECT) in the federation, the performance improvement
is approximately 13%. In future we plan to explore the use of
Markov Chain model in load balancer to predict the success
rate and to improve the overall performance of the system. We
also plan to explore heterogeneity within each edge system,
in addition to heterogeneity across edge systems.
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