Colorado School of Mines

‘Computer Vision _

W

. -.I l
ST Prqfemor

WDept of Elearicél&Engineeh_r_ing &Computer.Stience ... —
http://inside.mines.edu/~whoff/

Finding a Checkerboard

Colorado School of Mines Computer Vision

Checkerboard Calibration Patterns

* Most approaches in the literature are focused on finding
checkerboards used for camera calibration

 These are very clean images, and a variety of methods work
well

* The methods may not work well for actual images of checkers
and chess games

Colorado School of Mines Computer Vision

Real game images

omputer Vision

Finding Checker/Chess Gameboards

e Potential problems
— Board may be partially occluded or out of field of view
— Lighting problems: glare, shadows
— There may be pieces partially covering the squares

e Helpful facts
— Lines are prominent (long lines, high contrast edge points)
— Geometry is known (9x9 lines, pattern of b/w squares)

* Assumptions

— Board is almost all visible (there isn’t much occlusion)

Colorado School of Mines Computer Vision

Approach: Find Squares

* Threshold image

* Find contours around white regions; approximate
with line segments; keep those with 4 sides

Colorado School of Mines Computer Vision

Approach: Find Squares

* This is how OpenCV’s “findChessboardCorners”
works

 Doesn’t work so well with actual game images

Colorado School of Mines Computer Vision

Approach: Look

(5 - T <
A C A C

fo r corners (a) Corner Prototype 1 (b) Corner Prototype 2

Convolve
image with
templates for
the corners

Fit to a grid

Matlab’s
“detectChecker
boardPoints”
function

Histogram
I il

¥zl

(e) Orientation & Score (f) Detected Checkerboard Corners

C;eiger7 Andreas‘ et al. "Automatic camera and range Fig. 2. Cﬂmﬂr dEt’E‘Ctiﬂ‘n. WE ﬁ][ﬂl’ lhE iI]PLll imagﬂ I LlSi['lg cormer pl’G[U-

sensor calibration using a single shot." Robotics and types, apply non-maxima-suppression on the resulting corner likelihood C

Automation (ICRA), 2012 IEEE International Conference - : : 15 e : + - .
Automation (SRA) ! and verify corners by their gradient distribution. See Sec. I1I-A for details.

Approach: Look for the corners

clear variables
close all Example use of Matlab’s

% Open movie file. “detectCheckerboardPoints”

movieObj = VideoReader("checkers2._.mp4™);

nFrames = movieObj.NumberOfFrames;
fprintf("Opening movie fTile with %d images\n®, nFrames);

% Go through movie. We don"t need to process every frame.
for i1Frame=1:10:nFrames

I = read(movieObj,1Frame);

fprintf("Frame %d\n", iFrame);

% Reduce image size; i1s faster and we don"t need full size to find board.
it size(l1,2)>640
I = imresize(l, 640/size(1,2));
end
figure(l), imshow(l), title(sprintf("Frame %d", iFrame));

[imagePoints,boardSize] = detectCheckerboardPoints(l);
hold on; plot(imagePoints(:,1), imagePoints(:,2), "go");

pause(0.1);
end

Colorado School of Mines Computer Vision

Approach: Look for the corners

* Works better ... but if any corners are missed, the
whole pattern is rejected

Colorado School of Mines Computer Vision

10

Approach: Hough Lines

* Use Hough transform to find long lines

 Then try to match the detected lines to the known
model, consisting of a set of 9x9 lines

* Note that the image of the board can be mapped to
a reference image via a homography

* This helps to verify that the true lines are found

Colorado School of Mines Computer Vision

Matlab Code

* Enter the Matlab code on the next couple of pages
— A main program, save it as “main.m”
— A function, save it as “findCheckerBoard.m”

* Get the test video called “board.mp4”

* Run the code - it should read every 10t image and
detect edges

Colorado School of Mines Computer Vision

clear variables
close all

% Open movie FTile. Main program
movieObj = VideoReader("board.mp4®);

nFrames = movieObj.NumberOfFrames;
fprintf("Opening movie FTile with %d images\n®", nFrames);

% Go through movie. We don"t need to process every frame.
for i1Frame=1:10:nFrames

I = read(movieObj,1Frame);

fprintf("Frame %d\n", 1Frame);

% Reduce image size; i1s faster and we don"t need full size to find board.
it size(l1,2)>640

I = imresize(l, 640/size(l1,2));
end

figure(1l), imshow(l), title(sprintf("Frame %d", iFrame));
% Find the checkerboard. Return the four outer corners as a 4x2 array,

% in the form [[x1,y1]; [x2,y2]; --- 1]-
[corners, nMatches, avgErr] = findCheckerBoard(l);

pause;
end

Colorado School of Mines Computer Vision

13

Function
“findCheckerBoard”

function [corners, nMatches, avgErr] = findCheckerBoard(l)

% Find a 8x8 checkerboard in the image |I.

% Returns:

% corners: the locations of the four outer corners as a 4x2 array, In
% the form [[x1,y1l]; [x2,y2]; ---]-

% nMatches: number of matching points found (ideally is 81)

% avgErr: the average reprojection error of the matching points

% Return empty if not found.

corners = [];
nMatches = [];
avgerr = [];

1T size(l,3)>1

I = rgb2gray(l);
end

% Do edge detection.
E = edge(l, "canny®);
figure(10), imshow(E), title("Edges”);

end

14
Colorado School of Mines Computer Vision

Look at Edge Output Images

 There are too many edges — we only need the edge
points on the board, not all the ones in the
background

* The edges on the board should be relatively strong
* Raise Canny threshold and run again

— Replace
E = edge(l, “canny®);
— with
[~,thresh] = edge(l, “canny®); % First get the automatic threshold

E = edge(l, “canny®, 5*thresh); % Raise the threshold

Colorado School of Mines Computer Vision

Hough Transform

e Add this code to do the Hough transform on the
edge image E and extract peaks

% Do Hough transform to find lines.
[H, thetaValues, rhoValues] = hough(E);

% Extract peaks from the Hough array H. Parameters for this:
% houghThresh: Minimum value to be considered a peak. Default
% i1Is 0.5*max(H(:))
% NHoodSi1ze: Size of suppression neighborhood. Default is
% [size(H,1)/50, size(H,2)/50]. Must be odd numbers.
myThresh = ceitl(0.5*max(H(:)));
NHoodSize = ceill([size(H,1)/50, size(H,2)/50]);
% Force odd size
1T mod(NHoodSi1ze(1),2)==0 NHoodSi1ze(1)
1T mod(NHoodSi1ze(2),2)==0 NHoodSi1ze(2)
peaks = houghpeaks(H,
30, ... % Maximum number of peaks to find
"Threshold®, myThresh, ... % Threshold for peaks
"NHoodSi1ze", NHoodSize); % Default = floor(size(H)/50);

NHoodSize(1)+1; end
NHoodSize(2)+1; end

Colorado School of Mines Computer Vision

Display lines

Add this code to mark the peaks on the Hough array

% Display Hough array and draw peaks on Hough array.
figure(1l), imshow(H, []), title("Hough"), impixelinfo;
for 1=1:size(peaks,1)
rectangle("Position™, ...
[peaks(i,2)-NHoodSize(2)/2, peaks(i,l)-NHoodSize(1)/2, ...
NHoodSize(2), NHoodSize(1l)], "EdgeColor®, "r%);
end

Add this code to display all lines. This calls a function
“drawlLines” to draw lines on the edge image

% Show all lines.
figure(10), imshow(E), title("All lines");

drawLines(...
rhovalues(peaks(:,1)), --.. % rhos for the lines
thetaValues(peaks(:,2)), --. % thetas for the lines
size(E), --. % size of image being displayed
V9); % color of line to display

Also, add the function “drawlLines” on the next page, at
the end of file “findCheckerBoard”.

Colorado School of Mines Computer Vision

17

function drawLines(rhos, thetas, imageSize, color)

% This function draws lines on whatever image i1s being displayed.

% Input parameters:

% rhos,thetas: representation of the line (theta in degrees)

% imageSize: [height,width] of image being displayed

% color: color of line to draw Function

% Equation of the line is rho = x cos(theta) + y sin(theta), or “drawLines”
% y = (rho - x*cos(theta))/sin(theta)

for i=1:length(thetas)
1T abs(thetas(i)) > 45
% Line 1s mostly horizontal. Pick two values of x,
% and solve for y = (-ax-c)/b

x0 = 1;

y0 = (-cosd(thetas(i1))*x0+rhos(i1))/sind(thetas(i));

x1 = 1mageSize(2);

yl = (-cosd(thetas(i))*x1l+rhos(i))/sind(thetas(1));
else

% Line 1s mostly vertical. Pick two values of vy,
% and solve for x = (-by-c)/a

y0o = 1;

X0 = (-sind(thetas(i1))*y0O+rhos(i1))/cosd(thetas(i));
yl = imageSize(l);

x1 = (-sind(thetas(i1))*yl+rhos(i))/cosd(thetas(1));

end

line([x0 x1], [yO yl1], °“Color®, color);
text(x0,y0,sprintf("%d", 1), “Color®, color);
end

end

18
Colorado School of Mines Computer Vision

Hough Transform

* Look at detected lines. Some important ones aren’t
detected.

* Too few edge points on those lines ... peaks are too
low.

 Lower Hough peak threshold — change

myThresh = ceil(0.5*max(H(:)));

* To

myThresh = ceitl(0.05*max(H(:)));

* Verify that important lines are now detected.

Colorado School of Mines Computer Vision

III

“Orthogonal” Lines

* Now find the two (approximately orthogonal) sets of
lines.

 We'll search for the two largest peaks in the
histogram of line angles.

— (Note — a better way is to find the two “vanishing points” ...
see Szeliski book section 4.3.3)

 Keep only those lines that are near the angles
corresponding to the two largest peaks

* Enter the code on the next few pages to find the
lines and show them

Colorado School of Mines Computer Vision

III

“Orthogonal” Lines

* This goes just after finding the code to display all the
lines.
— It calls a function “findOrthogonallLines” (see next page)

% Find two sets of orthogonal lines.

[finesl, lines2] = findOrthogonalLines(...
rhovValues(peaks(:,1)), --. % rhos for the lines
thetaValues(peaks(:,2))); % thetas for the lines

% Show the two sets of lines.
figure(12), imshow(E), title("Orthogonal lines®);

drawLines(...
linesl(2,:), --. % rhos for the lines
linesl(l,:), -.-. % thetas for the lines
size(BE), --. % size of iImage being displayed
"09"); % color of line to display
drawLines(...
lines2(2,:), -.-. % rhos for the lines
lines2(1,:), -.-. % thetas for the lines
size(BE), --.. % size of image being displayed
rv); % color of line to display

Colorado School of Mines Computer Vision

21

9%%%%%%%%%%%%%%%%%%%%%%%%%%% % %% %% %% % %% %% %% %% % %% %% .
% Find two sets of orthogonal lines. Function

% Inputs: ug: . ”
% rhoValues: rho values for the lines flndorthogona“‘mes
% thetaValues: theta values (should be from -90..+89 degrees) (1 Of:Z)
% Outputs:
% linesl, lines2: the two sets of lines, each stored as a 2xN array,
% where each column is [theta;rho]
function [linesl, lines2] = findOrthogonalLines(...

rhovalues, ... % rhos for the lines

thetavalues) % thetas for the lines Put this at the end Of the
% Find the largest two modes in the distribution of angles. file “findCheckerBoard.m”
bins = -90:10:90; % Use bins with widths of 10 degrees
[counts, bins] = histcounts(thetaValues, bins); % Get histogram

[~,indices] = sort(counts, “descend®);

% The Ffirst angle corresponds to the largest histogram count.
al = (bins(indices(l)) + bins(indices(1)+1))/2; % Get first angle

% The 2nd angle corresponds to the next largest count. However, don"t
% find a bin that is too close to the first bin.
for i=2:length(indices)
if (abs(indices(l)-indices(i)) <= 2) || ---
(abs(indices(1)-indices(i)+length(indices)) <= 2) || --.
(abs(indices(1)-indices(i)-length(indices)) <= 2)
continue;
else
a2 = (bins(indices(i)) + bins(indices(i)+1))/2;
break;
end
end
fprintf("Most common angles: %f and %f\n", al, a2);

22
Colorado School of Mines Computer Vision

Function
“findOrthogonallines”
(1 of 2)

% Get the two sets of lines corresponding to the two angles. Lines will
% be a 2xN array, where
% linesl[1l,1] = theta_i
% linesl[2,1] = rho_i
linesl = [];
lines2 = [];
for i=1:length(rhovalues)
% Extract rho, theta for this line
r rhovValues(i);
t = thetaValues(i);

% Check 1f the line i1s close to one of the two angles.

D = 25; % threshold difference in angle

if abs(t-al) < D |] abs(t-180-al) < D || abs(t+180-al) < D
linesl = [linesl [t;r]];

elseif abs(t-a2) < D || abs(t-180-a2) < D || abs(t+180-a2) < D
lines2 = [lines2 [t;r]];

end

end

end

23
Colorado School of Mines Computer Vision

Sorting Lines

e Sort lines from top to bottom, left to right

* Strategy:
— if lines are mostly horizontal, sort on vertical position.
— If lines are mostly vertical, sort on horizontal position.

* [Insert this code just after the call to
“findOrthogonalLines”

— It calls “sortLines” (on the next page)

% Sort the lines, from top to bottom (for horizontal lines) and left to
% right (for vertical lines).

linesl sortLines(linesl, size(E));

lines2 sortLines(lines2, size(E));

Note that indices are (almost) in order now.

Colorado School of Mines Computer Vision

Function “sortLines”

%%%%%%%%%%%6%%%%6%%6%%6%%%% %% %% %% %6% %% %% %% %% %% % %% %% %%

% Sort the lines.

% ITf the lines are mostly horizontal, sort on vertical distance from yc.
% ITf the lines are mostly vertical, sort on horizontal distance from Xxc.
function lines = sortLines(lines, sizelmg)

xc = sizelmg(2)/2; % Center of image .

yc = sizelmg(1)/2; Put this at the end of the
file “findCheckerBoard.m”

t = lines(1,:); % Get all thetas

r = lines(2,:); % Get all rhos

% 1T most angles are between -45 .. +45 degrees, lines are mostly

% vertical.
nLines = size(lines,?2);
nVertical = sum(abs(t)<45);
iT nVertical/nLines > 0.5

% Mostly vertical lines.

dist = (-sind(t)*yc + r)./cosd(t) - xc; % horizontal distance from center
else

% Mostly horizontal lines.

dist = (-cosd(t)*xc + r)./sind(t) - yc; % vertical distance from center
end

[~,indices] = sort(dist, "ascend”);
lines = lines(:,indices);

end

25
Colorado School of Mines Computer Vision

Find Intersections

e (Calculate all possible intersections between the two sets of
lines.

e Note —the intersection of two lines can be found as follows
(see Szeliski book section 2.1.1)

— Aline is represented by the parameters (a,b,c), where the equation of
the line is ax+by+c =0

— Ifl; = (aq, by, c1) and I, = (a,, by, c,) , the point of intersection is
the cross productp = [; X [,

% Intersect every pair of lines, one from set 1 and one from set 2.
% Output is the x,y coordinates of the intersections:

% xIntersections(il,i2): x coord of intersection of il and i2

% yiIntersections(il,i2): y coord of intersection of il and 12
[xIntersections, ylntersections] = findIntersections(linesl, lines2);

% Plot all measured intersection points.
hold on

plot(xIntersections(:),ylntersections(:), “yd");
hold off

26
Colorado School of Mines Computer Vision

%%%9%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % %% % %% % %% %% %

% Intersect every pair of lines, one from set 1 and one from set 2.

% Output arrays contain the x,y coordinates of the intersections of lines.

% xIntersections(il,i2): x coord of intersection of il and i2

% ylntersections(il,i2): y coord of intersection of il and i2

function [xIntersections, ylntersections] = findIntersections(linesl, lines2)

N1 = size(linesl,?2);

N2 = size(lines2,2);

xIntersections = zeros(N1,N2); Function
yintersections = zeros(N1,N2); e . ”
for i1=1:N1 findIntersections

% Extract rho, theta for this line
rl = linesl(2,il);
tl lines1(1,i1l);

% A line is represented by (a,b,c), where ax+by+c=0.
% We have r = x cos(t) + y sin(t), or x cos(t) + y sin(t) - r = 0.
11 = [cosd(tl); sind(tl); -rl];

for i2=1:N2 Put this at the end of the
% Extract rho, theta for this line [“g 7
2 lines2(a. i2): file “findCheckerBoard.m
t2 = lines2(1,i2);
12 = [cosd(t2); sind(t2); -r2];

% Two lines 11 and 12 intersect at a point p where p = I1 cross 12
p = cross(11,12);
p = p/pC3);

xIntersections(il,i2) = p(1);
ylntersections(il,i2) = p(2);
end
end
end

27
Colorado School of Mines Computer Vision

Strategy

* |f we can find the four outer lines, their intersections
define the outer corners of the board.

* If they are correct, we can predict the intersections
of all 9x9 lines.

 We're going to need a reference image that is a
model of what we are looking for.
— Define a reference image of size 100x100

% Define a "'reference' 1mage.
IMG_SIZE _REF = 100; % Reference image is IMG_SIZE REF x IMG_SIZE REF

% Get predicted intersections of lines 1In the reference iImage.
[XIntersectionsRef, ylntersectionsRef] = createReference(IMG_SIZE REF);

28
Colorado School of Mines Computer Vision

%%96%9%6%%6%%6%%%%%%%% %% %% %%%6%%6%%6% %% %% % %% %% %% %% %% %% %% %% %% % %% %% %% 6% %% %% %%
% Get predicted intersections of lines In the reference i1mage.
function [xIntersectionsRef, ylntersectionsRef] = createReference(sizeRefT)

sizeSquare = sizeRef/8; % size of one square

% Predict all line intersections. Function
[xIntersectionsRef, ylntersectionsRef] = meshgrid(1:9, 1:9); “createReference”
xIntersectionsRef = (XIntersectionsRef-1)*sizeSquare + 1;

yIntersectionsRef (ylIntersectionsRef-1)*sizeSquare + 1;

% Draw reference iImage.
Iref = zeros(sizeRef+l, sizeRef+l);
figure(13), imshow(lref), title("Reference image”);

% Show all reference iImage iIntersections.

hold on

plot(xIntersectionsRef, ylntersectionsRef, “y+");
hold off

end .
Reference image

Put this at the end of the
file “findCheckerBoard.m”

29
Colorado School of Mines Computer Vision

Finding Correspondence

* Now, search for correspondences between the points from
the input image and the reference image

* Given correspondences of the four points representing the
outside corners of the board, we can compute a homography
between the input image and the reference image.

— We can then predict the locations of all interior points.
— The best fit has the most matches with lowest projection error.

% Find the best correspondence between the points In the i1nput image and
% the points in the reference image. |If found, the output Is the four
% outer corner points from the iImage, represented as a a 4x2 array, in the
% form [[x1,yl]; [x2,y2]; -.--]-
[corners, nMatches, avgErr] = findCorrespondence(...
xIntersections, ylntersections, ... % Input image points
xIntersectionsRef, ylntersectionsRef, ... % Reference image points

1);

Colorado School of Mines Computer Vision

% Find the best correspondence between the points in the input image and

% the points in the reference image. If found, the output is the four

% outer corner points from the image, represented as a a 4x2 array, in the

% form [[x1,yl]; [x2,y2], -.-]-

function [corners, nMatchesBest, avgErrBest] = findCorrespondence(...
xIntersections, ylntersections, ... % Input image points
xIntersectionsRef, ylntersectionsRef, ... % Reference image points
D

% Get the coordinates of the four outer corners of the reference image,

% in clockwise order starting from the top left.

pCornersRef = [...
xIntersectionsRef(1,1), ylntersectionsRef(1,1);
xIntersectionsRef(1,end), ylntersectionsRef(1,end);
xIntersectionsRef(end,end), ylntersectionsRef(end,end);
xIntersectionsRef(end,1l), ylntersectionsRef(end,1l)];

M = 4; % Number of lines to search in each direction
DMIN = 4; % To match, a predicted point must be within this distance

nMatchesBest = 0O; % Number of matches of best candidate found so far
avgErrBest = 1e9; % The average error of the best candidate

N1
N2

size(xIntersections,1);
size(xIntersections,2);

for ila=1:min(M,N1)
for i1l1lb=N1:-1:max(N1-M,ila+1l)
for i2a=1:min(M,N2)
for i12b=N2:-1:max(N2-M, i2a+1)

% Get the four corners corresponding to the intersections
% of lines (la,2a), (1a,2b), (1b,2b, and (1b,2a).
pCornersimg = zeros(4,2);

pCornersimg(l,:)
pCornersimg(2,:)
pCornersimg(3,:)
pCornersimg(4,:)

% Make sure that points are in clockwise order.
% If not, exchange points 2 and 4.

Colorado School of Mines Computer Vision

Function
“findCorrespondence”
(1 of 3)

Put this at the end of the
file “findCheckerBoard.m”

[xIntersections(ila,i2a) ylntersections(ila,i2a)];
[xIntersections(ila,i2b) ylntersections(ila,i2b)];
[XIntersections(ilb,i2b) ylntersections(ilb,i2b)];
[XIntersections(ilb,i2a) ylntersections(ilb,i2a)];

31

v12 = pCornersimg(2,:) - pCornersimg(l,:);
v13 = pCornersimg(3,:) - pCornersimg(l,:);
it vi2(1)*v13(2) - vi2(2)*v13(1) < 0
temp = pCornersimg(2,:);
pCornersimg(2,:) = pCornersimg(4,:);
pCornersimg(4,:) = temp;
end

% Fit a homography using those four points.

T = Ffitgeotrans(pCornersRef, pCornerslimg, "projective”); FlJr]CtiC)n
% Transform all reference points to the image. "findCorrespondence”
plntersectionsRefWarp = transformPointsForward(T, ...

[xIntersectionsRef(:) ylntersectionsRef(:)]); (2 Of 3)

% For each predicted reference point, find the closest
% detected image point.
dPts = 1le6 * ones(size(plntersectionsRefWarp,1),1);
for i=1l:size(plntersectionsRefWarp,1l)
= plIntersectionsRefWarp(i,1l);
= plIntersectionsRefWarp(i,2);
= ((x-xIntersections(:))."2 + (y-ylntersections(:))."2).70.5;
dmin = min(d);
dPts(i) = dmin;

i
X
y
d

end

% If the distance is less than DMIN, count it as a match.
nMatches = sum(dPts < DMIN);

% Calculate the avg error of the matched points.
avgerr = mean(dPts(dPts < DMIN));

% Keep the best combination found so far, in terms of
% the number of matches and the minimum error.
if nMatches < nMatchesBest

continue;

end

ifT (nMatches == nMatchesBest) && (avgErr > avgErrBest)
continue;

end

Function

% Got a better combination; save it. ”findCorrespondence”
avgErrBest = avgErr;
nMatchesBest = nMatches; (3 Of 3)

corners = pCornersimg;

% Display the predicted and measured points.

figure(14), imshow(l,[D);

title("Predicted and measured points®);

hold on

plot(xIntersections(:), ylntersections(:), "g.-");
plot(pIntersectionsRefWarp(:,1), plntersectionsRefWarp(:,2), "yo");
hold off

rectangle("Position”, [pCornersimg(l,1)-10 pCornersimg(1,2)-10 20 20], -.-.
"Curvature®, [1 1], "EdgeColor®, "r", "LineWidth", 2);
rectangle("Position”, [pCornersimg(2,1)-10 pCornersimg(2,2)-10 20 20], ...
"Curvature®, [1 1], "EdgeColor®, "g", "LineWidth", 2);
rectangle("Position”, [pCornersimg(3,1)-10 pCornersimg(3,2)-10 20 20], ...
"Curvature®, [1 1], "EdgeColor®, "b", "LineWidth", 2);
rectangle("Position”, [pCornersimg(4,1)-10 pCornersimg(4,2)-10 20 20], ...
"Curvature®, [1 1], "EdgeColor®, "y", "LineWidth", 2);
fprintf(®" Found %d matches, average error = %f\n", ...
nMatchesBest, avgErrBest);

pause
end
end
end
end

end

33
Colorado School of Mines Computer Vision

Displaying the Board

% Find the checkerboard. Return the four outer corners as a 4x2 array,
% 1n the form [[x1,y1l]; [x2,y2]; --- 1]-
[corners, nMatches, avgErr] = findCheckerBoard(l);

* Inthe main program, check the number of matches returned by
“findCheckerBoard”.

— The ideal number is 81.
— If the number found is much less than this, the board was probably not found.

 Then you can draw lines around the four outer corners.

Frame 1

34
Colorado School of Mines Computer Vision

Displaying the Board

Convert the image of the board to an “orthophoto”.
* Define the ideal corners in the orthophoto:

% Define the outside corners for a square "reference' image, size LXxL.
cornersRef = [1,1; L,1; L,L; 1,L];

* (Call fitgeotrans to compute the homography:

% Fit a projective transform that will map image to reference.
T = fitgeotrans(corners, cornersRef, “projective”);

* Then call “imwarp” to warp the input image to the
output orthophoto:
% Create an "orthophoto"™ of the image of the board.
Iboard = imwarp(l, T, "OutputView®, imref2d([L L], [1 L], [1 L]D);

35
Colorado School of Mines Computer Vision

