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Checkerboard Calibration Patterns

* Most approaches in the literature are focused on finding
checkerboards used for camera calibration

 These are very clean images, and a variety of methods work
well

* The methods may not work well for actual images of checkers
and chess games
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Real game images
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Finding Checker/Chess Gameboards

e Potential problems
— Board may be partially occluded or out of field of view
— Lighting problems: glare, shadows
— There may be pieces partially covering the squares

e Helpful facts
— Lines are prominent (long lines, high contrast edge points)
— Geometry is known (9x9 lines, pattern of b/w squares)

* Assumptions

— Board is almost all visible (there isn’t much occlusion)
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Approach: Find Squares

* Threshold image

* Find contours around white regions; approximate
with line segments; keep those with 4 sides
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Approach: Find Squares

* This is how OpenCV’s “findChessboardCorners”
works

 Doesn’t work so well with actual game images

Colorado School of Mines Computer Vision



Approach: Look
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Approach: Look for the corners

clear variables
close all Example use of Matlab’s

% Open movie file. “detectCheckerboardPoints”

movieObj = VideoReader("checkers2._.mp4™);

nFrames = movieObj.NumberOfFrames;
fprintf("Opening movie fTile with %d images\n®, nFrames);

% Go through movie. We don"t need to process every frame.
for i1Frame=1:10:nFrames

I = read(movieObj,1Frame);

fprintf("Frame %d\n", iFrame);

% Reduce image size; i1s faster and we don"t need full size to find board.
it size(l1,2)>640
I = imresize(l, 640/size(1,2));
end
figure(l), imshow(l), title(sprintf("Frame %d", iFrame));

[ imagePoints,boardSize] = detectCheckerboardPoints(l);
hold on; plot(imagePoints(:,1), imagePoints(:,2), "go");

pause(0.1);
end
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Approach: Look for the corners

* Works better ... but if any corners are missed, the
whole pattern is rejected
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Approach: Hough Lines

* Use Hough transform to find long lines

 Then try to match the detected lines to the known
model, consisting of a set of 9x9 lines

* Note that the image of the board can be mapped to
a reference image via a homography

* This helps to verify that the true lines are found
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Matlab Code

* Enter the Matlab code on the next couple of pages
— A main program, save it as “main.m”
— A function, save it as “findCheckerBoard.m”

* Get the test video called “board.mp4”

* Run the code - it should read every 10t image and
detect edges
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clear variables
close all

% Open movie FTile. Main program
movieObj = VideoReader("board.mp4®);

nFrames = movieObj.NumberOfFrames;
fprintf("Opening movie FTile with %d images\n®", nFrames);

% Go through movie. We don"t need to process every frame.
for i1Frame=1:10:nFrames

I = read(movieObj,1Frame);

fprintf("Frame %d\n", 1Frame);

% Reduce image size; i1s faster and we don"t need full size to find board.
it size(l1,2)>640

I = imresize(l, 640/size(l1,2));
end

figure(1l), imshow(l), title(sprintf("Frame %d", iFrame));
% Find the checkerboard. Return the four outer corners as a 4x2 array,

% in the form [ [x1,y1]; [x2,y2]; --- 1]-
[corners, nMatches, avgErr] = findCheckerBoard(l);

pause;
end
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Function
“findCheckerBoard”

function [corners, nMatches, avgErr] = findCheckerBoard(l)

% Find a 8x8 checkerboard in the image |I.

% Returns:

% corners: the locations of the four outer corners as a 4x2 array, In
% the form [ [x1,y1l]; [x2,y2]; --- ]-

% nMatches: number of matching points found (ideally is 81)

% avgErr: the average reprojection error of the matching points

% Return empty if not found.

corners = [];
nMatches = [];
avgerr = [];

1T size(l,3)>1

I = rgb2gray(l);
end

% Do edge detection.
E = edge(l, "canny®);
figure(10), imshow(E), title("Edges”);

end
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Look at Edge Output Images

 There are too many edges — we only need the edge
points on the board, not all the ones in the
background

* The edges on the board should be relatively strong
* Raise Canny threshold and run again

— Replace
E = edge(l, “canny®);
— with
[~,thresh] = edge(l, “canny®); % First get the automatic threshold

E = edge(l, “canny®, 5*thresh); % Raise the threshold
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Hough Transform

e Add this code to do the Hough transform on the
edge image E and extract peaks

% Do Hough transform to find lines.
[H, thetaValues, rhoValues] = hough(E);

% Extract peaks from the Hough array H. Parameters for this:
% houghThresh: Minimum value to be considered a peak. Default
% i1Is 0.5*max(H(:))
% NHoodSi1ze: Size of suppression neighborhood. Default is
% [size(H,1)/50, size(H,2)/50]. Must be odd numbers.
myThresh = ceitl(0.5*max(H(:)));
NHoodSize = ceill([size(H,1)/50, size(H,2)/50]);
% Force odd size
1T mod(NHoodSi1ze(1),2)==0 NHoodSi1ze(1)
1T mod(NHoodSi1ze(2),2)==0 NHoodSi1ze(2)
peaks = houghpeaks(H,
30, ... % Maximum number of peaks to find
"Threshold®, myThresh, ... % Threshold for peaks
"NHoodSi1ze", NHoodSize); % Default = floor(size(H)/50);

NHoodSize(1)+1; end
NHoodSize(2)+1; end
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Display lines

Add this code to mark the peaks on the Hough array

% Display Hough array and draw peaks on Hough array.
figure(1l), imshow(H, []), title("Hough"), impixelinfo;
for 1=1:size(peaks,1)
rectangle("Position™, ...
[peaks(i,2)-NHoodSize(2)/2, peaks(i,l)-NHoodSize(1)/2, ...
NHoodSize(2), NHoodSize(1l)], "EdgeColor®, "r%);
end

Add this code to display all lines. This calls a function
“drawlLines” to draw lines on the edge image

% Show all lines.
figure(10), imshow(E), title("All lines");

drawLines( ...
rhovalues(peaks(:,1)), --.. % rhos for the lines
thetaValues(peaks(:,2)), --. % thetas for the lines
size(E), --. % size of image being displayed
V9); % color of line to display

Also, add the function “drawlLines” on the next page, at
the end of file “findCheckerBoard”.
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function drawLines(rhos, thetas, imageSize, color)

% This function draws lines on whatever image i1s being displayed.

% Input parameters:

% rhos,thetas: representation of the line (theta in degrees)

% imageSize: [height,width] of image being displayed

% color: color of line to draw Function

% Equation of the line is rho = x cos(theta) + y sin(theta), or “drawLines”
% y = (rho - x*cos(theta))/sin(theta)

for i=1:length(thetas)
1T abs(thetas(i)) > 45
% Line 1s mostly horizontal. Pick two values of x,
% and solve for y = (-ax-c)/b

x0 = 1;

y0 = (-cosd(thetas(i1))*x0+rhos(i1))/sind(thetas(i));

x1 = 1mageSize(2);

yl = (-cosd(thetas(i))*x1l+rhos(i))/sind(thetas(1));
else

% Line 1s mostly vertical. Pick two values of vy,
% and solve for x = (-by-c)/a

y0o = 1;

X0 = (-sind(thetas(i1))*y0O+rhos(i1))/cosd(thetas(i));
yl = imageSize(l);

x1 = (-sind(thetas(i1))*yl+rhos(i))/cosd(thetas(1));

end

line([x0 x1], [yO yl1], °“Color®, color);
text(x0,y0,sprintf("%d", 1), “Color®, color);
end

end
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Hough Transform

* Look at detected lines. Some important ones aren’t
detected.

* Too few edge points on those lines ... peaks are too
low.

 Lower Hough peak threshold — change

myThresh = ceil(0.5*max(H(:)));

* To

myThresh = ceitl(0.05*max(H(:)));

* Verify that important lines are now detected.
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III

“Orthogonal” Lines

* Now find the two (approximately orthogonal) sets of
lines.

 We'll search for the two largest peaks in the
histogram of line angles.

— (Note — a better way is to find the two “vanishing points” ...
see Szeliski book section 4.3.3)

 Keep only those lines that are near the angles
corresponding to the two largest peaks

* Enter the code on the next few pages to find the
lines and show them

Colorado School of Mines Computer Vision



III

“Orthogonal” Lines

* This goes just after finding the code to display all the
lines.
— It calls a function “findOrthogonallLines” (see next page)

% Find two sets of orthogonal lines.

[finesl, lines2] = findOrthogonalLines( ...
rhovValues(peaks(:,1)), --. % rhos for the lines
thetaValues(peaks(:,2))); % thetas for the lines

% Show the two sets of lines.
figure(12), imshow(E), title("Orthogonal lines®);

drawLines( ...
linesl(2,:), --. % rhos for the lines
linesl(l,:), -.-. % thetas for the lines
size(BE), --. % size of iImage being displayed
"09"); % color of line to display
drawLines( ...
lines2(2,:), -.-. % rhos for the lines
lines2(1,:), -.-. % thetas for the lines
size(BE), --.. % size of image being displayed
rv); % color of line to display
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9%%%%%%%%%%%%%%%%%%%%%%%%%%% % %% %% %% % %% %% %% %% % %% %% .
% Find two sets of orthogonal lines. Function

% Inputs: ug: . ”
% rhoValues: rho values for the lines flndorthogona“‘mes
%  thetaValues: theta values (should be from -90..+89 degrees) (1 Of:Z)
% Outputs:
% linesl, lines2: the two sets of lines, each stored as a 2xN array,
% where each column is [theta;rho]
function [linesl, lines2] = findOrthogonalLines( ...

rhovalues, ... % rhos for the lines

thetavalues) % thetas for the lines Put this at the end Of the
% Find the largest two modes in the distribution of angles. file “findCheckerBoard.m”
bins = -90:10:90; % Use bins with widths of 10 degrees
[counts, bins] = histcounts(thetaValues, bins); % Get histogram

[~,indices] = sort(counts, “descend®);

% The Ffirst angle corresponds to the largest histogram count.
al = (bins(indices(l)) + bins(indices(1)+1))/2; % Get first angle

% The 2nd angle corresponds to the next largest count. However, don"t
% find a bin that is too close to the first bin.
for i=2:length(indices)
if (abs(indices(l)-indices(i)) <= 2) || ---
(abs(indices(1)-indices(i)+length(indices)) <= 2) || --.
(abs(indices(1)-indices(i)-length(indices)) <= 2)
continue;
else
a2 = (bins(indices(i)) + bins(indices(i)+1))/2;
break;
end
end
fprintf("Most common angles: %f and %f\n", al, a2);
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Function
“findOrthogonallines”
(1 of 2)

% Get the two sets of lines corresponding to the two angles. Lines will
% be a 2xN array, where
% linesl[1l,1] = theta_i
% linesl[2,1] = rho_i
linesl = [];
lines2 = [];
for i=1:length(rhovalues)
% Extract rho, theta for this line
r rhovValues(i);
t = thetaValues(i);

% Check 1f the line i1s close to one of the two angles.

D = 25; % threshold difference in angle

if abs(t-al) < D |] abs(t-180-al) < D || abs(t+180-al) < D
linesl = [linesl [t;r]];

elseif abs(t-a2) < D || abs(t-180-a2) < D || abs(t+180-a2) < D
lines2 = [lines2 [t;r]];

end

end

end
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Sorting Lines

e Sort lines from top to bottom, left to right

* Strategy:
— if lines are mostly horizontal, sort on vertical position.
— If lines are mostly vertical, sort on horizontal position.

* [Insert this code just after the call to
“findOrthogonalLines”

— It calls “sortLines” (on the next page)

% Sort the lines, from top to bottom (for horizontal lines) and left to
% right (for vertical lines).

linesl sortLines(linesl, size(E));

lines2 sortLines(lines2, size(E));

Note that indices are (almost) in order now.
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Function “sortLines”

%%%%%%%%%%%6%%%%6%%6%%6%%%% %% %% %% %6% %% %% %% %% %% % %% %% %%

% Sort the lines.

% ITf the lines are mostly horizontal, sort on vertical distance from yc.
% ITf the lines are mostly vertical, sort on horizontal distance from Xxc.
function lines = sortLines(lines, sizelmg)

xc = sizelmg(2)/2; % Center of image .

yc = sizelmg(1)/2; Put this at the end of the
file “findCheckerBoard.m”

t = lines(1,:); % Get all thetas

r = lines(2,:); % Get all rhos

% 1T most angles are between -45 .. +45 degrees, lines are mostly

% vertical.
nLines = size(lines,?2);
nVertical = sum(abs(t)<45);
iT nVertical/nLines > 0.5

% Mostly vertical lines.

dist = (-sind(t)*yc + r)./cosd(t) - xc; % horizontal distance from center
else

% Mostly horizontal lines.

dist = (-cosd(t)*xc + r)./sind(t) - yc; % vertical distance from center
end

[~,indices] = sort(dist, "ascend”);
lines = lines(:,indices);

end
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Find Intersections

e (Calculate all possible intersections between the two sets of
lines.

e Note —the intersection of two lines can be found as follows
(see Szeliski book section 2.1.1)

— Aline is represented by the parameters (a,b,c), where the equation of
the line is ax+by+c =0

— Ifl; = (aq, by, c1) and I, = (a,, by, c,) , the point of intersection is
the cross productp = [; X [,

% Intersect every pair of lines, one from set 1 and one from set 2.
% Output is the x,y coordinates of the intersections:

% xIntersections(il,i2): x coord of intersection of il and i2

% yiIntersections(il,i2): y coord of intersection of il and 12
[xIntersections, ylntersections] = findIntersections(linesl, lines2);

% Plot all measured intersection points.
hold on

plot(xIntersections(:),ylntersections(:), “yd");
hold off
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%%%9%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % %% % %% % %% %% %

% Intersect every pair of lines, one from set 1 and one from set 2.

% Output arrays contain the x,y coordinates of the intersections of lines.

% xIntersections(il,i2): x coord of intersection of il and i2

%  ylntersections(il,i2): y coord of intersection of il and i2

function [xIntersections, ylntersections] = findIntersections(linesl, lines2)

N1 = size(linesl,?2);

N2 = size(lines2,2);

xIntersections = zeros(N1,N2); Function
yintersections = zeros(N1,N2); e . ”
for i1=1:N1 findIntersections

% Extract rho, theta for this line
rl = linesl(2,il);
tl lines1(1,i1l);

% A line is represented by (a,b,c), where ax+by+c=0.
% We have r = x cos(t) + y sin(t), or x cos(t) + y sin(t) - r = 0.
11 = [cosd(tl); sind(tl); -rl];

for i2=1:N2 Put this at the end of the
% Extract rho, theta for this line [ “g 7
2 lines2(a. i2): file “findCheckerBoard.m
t2 = lines2(1,i2);
12 = [cosd(t2); sind(t2); -r2];

% Two lines 11 and 12 intersect at a point p where p = I1 cross 12
p = cross(11,12);
p = p/pC3);

xIntersections(il,i2) = p(1);
ylntersections(il,i2) = p(2);
end
end
end
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Strategy

* |f we can find the four outer lines, their intersections
define the outer corners of the board.

* If they are correct, we can predict the intersections
of all 9x9 lines.

 We're going to need a reference image that is a
model of what we are looking for.
— Define a reference image of size 100x100

% Define a "'reference' 1mage.
IMG_SIZE _REF = 100; % Reference image is IMG_SIZE REF x IMG_SIZE REF

% Get predicted intersections of lines 1In the reference iImage.
[XIntersectionsRef, ylntersectionsRef] = createReference(IMG_SIZE REF);
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%%96%9%6%%6%%6%%%%%%%% %% %% %%%6%%6%%6% %% %% % %% %% %% %% %% %% %% %% %% % %% %% %% 6% %% %% %%
% Get predicted intersections of lines In the reference i1mage.
function [xIntersectionsRef, ylntersectionsRef] = createReference(sizeRefT)

sizeSquare = sizeRef/8; % size of one square

% Predict all line intersections. Function
[xIntersectionsRef, ylntersectionsRef] = meshgrid(1:9, 1:9); “createReference”
xIntersectionsRef = (XIntersectionsRef-1)*sizeSquare + 1;

yIntersectionsRef (ylIntersectionsRef-1)*sizeSquare + 1;

% Draw reference iImage.
Iref = zeros(sizeRef+l, sizeRef+l);
figure(13), imshow(lref), title("Reference image”);

% Show all reference iImage iIntersections.

hold on

plot(xIntersectionsRef, ylntersectionsRef, “y+");
hold off

end .
Reference image

Put this at the end of the
file “findCheckerBoard.m”
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Finding Correspondence

* Now, search for correspondences between the points from
the input image and the reference image

* Given correspondences of the four points representing the
outside corners of the board, we can compute a homography
between the input image and the reference image.

— We can then predict the locations of all interior points.
— The best fit has the most matches with lowest projection error.

% Find the best correspondence between the points In the i1nput image and
% the points in the reference image. |If found, the output Is the four
% outer corner points from the iImage, represented as a a 4x2 array, in the
% form [ [x1,yl]; [x2,y2]; -.-- ]-
[corners, nMatches, avgErr] = findCorrespondence( ...
xIntersections, ylntersections, ... % Input image points
xIntersectionsRef, ylntersectionsRef, ... % Reference image points

1);
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% Find the best correspondence between the points in the input image and

% the points in the reference image. If found, the output is the four

% outer corner points from the image, represented as a a 4x2 array, in the

% form [ [x1,yl]; [x2,y2], -.- ]-

function [corners, nMatchesBest, avgErrBest] = findCorrespondence( ...
xIntersections, ylntersections, ... % Input image points
xIntersectionsRef, ylntersectionsRef, ... % Reference image points
D

% Get the coordinates of the four outer corners of the reference image,

% in clockwise order starting from the top left.

pCornersRef = [ ...
xIntersectionsRef(1,1), ylntersectionsRef(1,1);
xIntersectionsRef(1,end), ylntersectionsRef(1,end);
xIntersectionsRef(end,end), ylntersectionsRef(end,end);
xIntersectionsRef(end,1l), ylntersectionsRef(end,1l) ];

M = 4; % Number of lines to search in each direction
DMIN = 4; % To match, a predicted point must be within this distance

nMatchesBest = 0O; % Number of matches of best candidate found so far
avgErrBest = 1e9; % The average error of the best candidate

N1
N2

size(xIntersections,1);
size(xIntersections,2);

for ila=1:min(M,N1)
for i1l1lb=N1:-1:max(N1-M,ila+1l)
for i2a=1:min(M,N2)
for i12b=N2:-1:max(N2-M, i2a+1)

% Get the four corners corresponding to the intersections
% of lines (la,2a), (1a,2b), (1b,2b, and (1b,2a).
pCornersimg = zeros(4,2);

pCornersimg(l,:)
pCornersimg(2,:)
pCornersimg(3,:)
pCornersimg(4,:)

% Make sure that points are in clockwise order.
% If not, exchange points 2 and 4.

Colorado School of Mines Computer Vision

Function
“findCorrespondence”
(1 of 3)

Put this at the end of the
file “findCheckerBoard.m”

[xIntersections(ila,i2a) ylntersections(ila,i2a)];
[xIntersections(ila,i2b) ylntersections(ila,i2b)];
[XIntersections(ilb,i2b) ylntersections(ilb,i2b)];
[XIntersections(ilb,i2a) ylntersections(ilb,i2a)];
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v12 = pCornersimg(2,:) - pCornersimg(l,:);
v13 = pCornersimg(3,:) - pCornersimg(l,:);
it vi2(1)*v13(2) - vi2(2)*v13(1) < 0
temp = pCornersimg(2,:);
pCornersimg(2,:) = pCornersimg(4,:);
pCornersimg(4,:) = temp;
end

% Fit a homography using those four points.

T = Ffitgeotrans(pCornersRef, pCornerslimg, "projective”); FlJr]CtiC)n
% Transform all reference points to the image. "findCorrespondence”
plntersectionsRefWarp = transformPointsForward(T, ...

[xIntersectionsRef(:) ylntersectionsRef(:)]); (2 Of 3)

% For each predicted reference point, find the closest
% detected image point.
dPts = 1le6 * ones(size(plntersectionsRefWarp,1),1);
for i=1l:size(plntersectionsRefWarp,1l)
= plIntersectionsRefWarp(i,1l);
= plIntersectionsRefWarp(i,2);
= ((x-xIntersections(:))."2 + (y-ylntersections(:))."2).70.5;
dmin = min(d);
dPts(i) = dmin;

i
X
y
d

end

% If the distance is less than DMIN, count it as a match.
nMatches = sum(dPts < DMIN);

% Calculate the avg error of the matched points.
avgerr = mean(dPts(dPts < DMIN));

% Keep the best combination found so far, in terms of
% the number of matches and the minimum error.
if nMatches < nMatchesBest

continue;

end

ifT (nMatches == nMatchesBest) && (avgErr > avgErrBest)
continue;

end



Function

% Got a better combination; save it. ”findCorrespondence”
avgErrBest = avgErr;
nMatchesBest = nMatches; (3 Of 3)

corners = pCornersimg;

% Display the predicted and measured points.

figure(14), imshow(l,[D);

title("Predicted and measured points®);

hold on

plot(xIntersections(:), ylntersections(:), "g.-");
plot(pIntersectionsRefWarp(:,1), plntersectionsRefWarp(:,2), "yo");
hold off

rectangle("Position”, [pCornersimg(l,1)-10 pCornersimg(1,2)-10 20 20], -.-.
"Curvature®, [1 1], "EdgeColor®, "r", "LineWidth", 2);
rectangle("Position”, [pCornersimg(2,1)-10 pCornersimg(2,2)-10 20 20], ...
"Curvature®, [1 1], "EdgeColor®, "g", "LineWidth", 2);
rectangle("Position”, [pCornersimg(3,1)-10 pCornersimg(3,2)-10 20 20], ...
"Curvature®, [1 1], "EdgeColor®, "b", "LineWidth", 2);
rectangle("Position”, [pCornersimg(4,1)-10 pCornersimg(4,2)-10 20 20], ...
"Curvature®, [1 1], "EdgeColor®, "y", "LineWidth", 2);
fprintf(®" Found %d matches, average error = %f\n", ...
nMatchesBest, avgErrBest);

pause
end
end
end
end

end
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Displaying the Board

% Find the checkerboard. Return the four outer corners as a 4x2 array,
% 1n the form [ [x1,y1l]; [x2,y2]; --- 1]-
[corners, nMatches, avgErr] = findCheckerBoard(l);

* Inthe main program, check the number of matches returned by
“findCheckerBoard”.

— The ideal number is 81.
— If the number found is much less than this, the board was probably not found.

 Then you can draw lines around the four outer corners.

Frame 1
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Displaying the Board

Convert the image of the board to an “orthophoto”.
* Define the ideal corners in the orthophoto:

% Define the outside corners for a square "reference' image, size LXxL.
cornersRef = [ 1,1; L,1; L,L; 1,L ];

* (Call fitgeotrans to compute the homography:

% Fit a projective transform that will map image to reference.
T = fitgeotrans(corners, cornersRef, “projective”);

* Then call “imwarp” to warp the input image to the
output orthophoto:
% Create an "orthophoto"™ of the image of the board.
Iboard = imwarp(l, T, "OutputView®, imref2d([L L], [1 L], [1 L]D);
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