Colorado School of Mines

Image and Multidimensional Slgnﬁr
Processm

8 oo

e e

& s il e — A i g ; ’ o X 3 -
. ‘ - " e : i T —— : L
| s 4 ¥ = = e L.] \
3 - = . : - - o
- | i e ¥ A 3 . "
3 - 7 -3 ; : :
' z (] 1 T - 3 by,
1 aclf Y g r T
LI L] 1 . I - - - i 5 :
S 1 e F . & E U]
L. W T T E !
- e i & i
i R .
ik = - '8 \ "
4 \
= —
T ' |
i i &
]
£ P
v ro e Jolg m :
1) - o :1-1-... :_ -

% Dept of EIectrlcaI Engmeermg &Computer Sélence —
http://inside.mines.edu/~whoff/

Color

Colorado School of Mines Image and Multidimensional Signal Processing

Color

* Image values are a vector instead of a scalar
 Example: I(x,y) = (red, green, blue)
* Most gray scale methods are directly applicable to color images

OPTICAL PRISM

FIGURE 6.1 Color spectrum seen by passing white light through a prism. (Courtesy of the
General Electric Co., Lamp Business Division.)

W ﬂl Human vision
poln .t dom e e R U can perceive

.-F-"’_;J::R:;lol.ﬁr — VISIBLE SPECTRUM T INFRARED TTTm— e about 400-
700 nm

400 800 1uli] oo 1000 1800

WAVELENGTH [Manomeiers]
FIGURE 6.2 Wavelengths comprising the visible range of the electromagnetic spectrum.

(Courtesy of the General Electric Co., Lamp Business Division.)
Colorado Schc —— - Z -

RGB Color Model

B

Blge | -0 1) Cyan
|
|

Magenta | T White
|
| ,
| o
L
am
| -'Gray scale 0.1.0
BE&EI{;__ __________ !-G
p Green
(1.0,0) |~
Red Yellow
R

Colorado School of Mines Image and Multidimensional Signal Processing

Storage of Color Images

» Separate values for R,G,B
— Example: f(x,y,c), where c=1,2,3

e Using a colormap
— Image f(x,y) stores indices into a lookup table (colormap)
— Colormap specifies RGB for each index

Colorado School of Mines Image and Multidimensional Signal Processing

RGB Storage

» Separate values for R,G,B

2,3

=1,

— Example: f(x,y,c), where c

-
=
T
(=1}
(=11}
i
1=
=
=
)
(a5
e
B
=5

Help

File Edit ‘Window Hel

Image and Multidimensional Signal Processing

Colorado School of Mines

Visualizing RGB Image Values

o 4 3 " o 'ft F . :J’go
3 R PR ST -4
0.4 __r;'_.:’." IR o £ Q
SPCh A O = =
i~ by o 058
02- =
n ! T T T T ‘I
1 08 06 04 0.2 0
red

green 0

Colorado School of Mines Image and Multidimensional Signal Processing red 7

Principal Component Analysis (PCA)

e See if PCA can represent the RGB image more concisely, using fewer than
3 values per pixel

 We treat the image as a collection of vectors; each vector represents a
pixel (its R,G,B values)

 We compute the covariance matrix of this collection of vectors
* The eigenvectors of the covariance matrix are the principal components

RGB = im2double(imread("peppers.png®));

Convert 3-dimensional array array to 2D, where each row is a pixel (RGB)
reshape(RGB, [1, 3);

%
X
N size(X,1); % N is the number of pixels

% Get mean and covariance
mx = mean(X);
Cx = cov(X);

Colorado School of Mines Image and Multidimensional Signal Processing

Principal Component Analysis (PCA)

 We project the original input vectors onto the space of principal
components, using

y=A(x-m,)

 Here are the y vectors, shown as images

yl y2

Colorado School of Mines Image and Multidimensional Signal Processing 9

Principal Component Analysis (PCA)

 We reconstruct the original input vectors using only the first two principal
components, using

X' =ATy+m,

* Here are the reconstructed vectors, shown as an RGB image

Original Reconstructed

Colorado School of Mines Image and Multidimensional Signal Processing 10

Visualizing RGB Image Values

Reconstructed image RGB vectors

08 —

0.6 —

blue

0.4 —

0.2 -
1

15
red

Image and Multidimensional Signal Processing

Colorado School of Mines

11

Code for generating plots

e This generates a plot of the RGB vectors, and creates an “avi” format
movie

% Plot pixels in color space

figure

hold on

for 1=1:100:size(X,1)
mycolor = X(i,:);
mycolor = max(mycolor, [0 O 0]);
mycolor = min(mycolor, [1 1 1]);

plot3(X(i, 1), X(i, 2), X(i, 3), --.
".", "Color®, mycolor);
end
xlabel("red"), ylabel("green®), zlabel("blue”);
xhim([0 11), ylim([O0 1]), zlim([O 1]);
hold off
axis equal
moviel = avifile("moviel.avi®, “compression®, "None®", "fps®", 15);
for az=-180:3:180
view(az,30); % set azimuth, elevation
drawnow;
F = getframe(gcf);
moviel = addframe(moviel,F);
end
moviel = close(moviel);

Colorado School of Mines Image and Multidimensional Signal Processing

HSI Color Model

* Hue, saturation, intensity

White White

Cvan Yellow Cyan Yellow

Blue ¢ Red Blue Red

Black Black

a b

FIGURE 6.12 Conceptual relationships between the RGB and HSI color models.

Colorado School of Mines Image and Multidimensional Signal Processing

13

Green Yellow

Cyan White ‘1: Red
Blue Magenta
Yellow

Green Yellow Green

Green

Red Cyang

Cvang

Blue Ma g”e nta Red

B]e Magenta B]ue Magenta

a
b ¢ d

FIGURE 6.13 Hue and saturation in the HSI color model. The dot is an arbitrary color
point. The angle from the red axis gives the hue, and the length of the vector is the sat-
uration. The intensity of all colors in any of these planes 1s given by the position of the
plane on the vertical intensity axis.

................ g rmrrre—— e R T TR R I T Ty

14

Colorado School of Mines

I =075

4 Red

Black

Image and Multidimensional Signal Processing

Magenta

15

Conversion from RGB to HSI

| =1 (R+G +B)
S =1-=—-=min(R,G, B)

L 0 B<G
- 1360-6 B>G

— 1
3 R,G,B are0..1
=1

where
%[(R-G)+(R-B)]
(R-G)’+(R-B)G-B)|”

cosf =

Colorado School of Mines Image and Multidimensional Signal Processing

s B

FIGURE 6.15 HSI components of the image in Fig. 6.8. (a) Hue, (b) saturation, and (c) intensity images.

Colorado School of Mines Image and Multidimensional Signal Processing 17

Matlab Example

* rgb2hsv

== Saturation

RGB image

Value

Colorado School of Mines Image and Multidimensional Signal Processing 18

Segmentation

% Segment blue

Hmask = (H>0.4) & (H<0.6); % blue
Smask = (S5>0.5);

Vmask = (V>0.3);

figure;

subplot(1,3,1), imshow(Hmask,[]);
subplot(1,3,2), imshow(Smask,[]);
subplot(1,3,3), imshow(Vmask,[]);

% Combine
Result = Hmask & Smask & Vmask;

% Clean up

Result imopen(Result, strel("disk®, 2));
Result imclose(Result, strel("disk", 2));
figure, imshow(Result);

% Overlay
boundaries = bwboundaries(Result);
figure, imshow(RGB);
hold on
for k=1:l1ength(boundaries)
b = boundaries{k};
plot(b(:,2),b(:,1),"g", "LineWidth",3);
end
hold off

Colorado School of Mines Image and Multidimensional Signal Processing 19

#include <iostream>
#include <opencv2/opencv.hpp>

int main(int argc, char* argv[])

{

Colorado School of Mines

printf("Hit ESC key to quit ...\n");

cv::VideoCapture cap(9); // open the default camera

if(!cap.isOpened()) A // check if we succeeded
printf("error - can't open the camera\n");
system("PAUSE");
return -1;

}

double WIDTH = cap.get(CV_CAP_PROP_FRAME_WIDTH);

double HEIGHT = cap.get(CV_CAP_PROP_FRAME_HEIGHT);

printf("Image width=%f, height=%f\n", WIDTH, HEIGHT);

// Create image windows. Meaning of flags:

//CV_WINDOW_NORMAL enables manual resizing; CV_WINDOW_AUTOSIZE is automatic

OpenCV example

First, capture
and display
images from a
camera

// You can "or" the above choice with CV_WINDOW KEEPRATIO, which keeps aspect ratio

cv: :namedWindow("Input image", CV_WINDOW_AUTOSIZE);

// Run an infinite loop until user hits the ESC key
while (1){
cv::Mat imgInput;
cap >> imgInput; // get image from camera
cv::imshow("Input image", imgInput);

// wait for x ms (@ means wait until a keypress)

if (cv::waitKey(33) == 27)
break; // ESC is ascii 27

return EXIT_SUCCESS;

Image and Multidimensional Signal Processing

Program 1

20

Split into bands

* from OpenCV documentation (http://docs.opencv.org/)

split

Divides a multi-channel array into several single-channel arrays.

C++: void split(const Mat& src, Mat* mvbegin)

* At the beginning of the program, add this line

char* windowNames[] = { "band ©", "band 1", "band 2" };

» After capturing image, add this code:

// Split into planes
cv::Mat planes[3];
split(imgInput, planes);

// Show images in the windows
for (int i=0; i<3; i++)
cv::imshow(windowNames[i], planes[i]);

Colorado School of Mines Image and Multidimensional Signal Processing

Program 2

21

Convert to HSV

e from OpenCV documentation

Parameters:

dst — Destination image of the same size and depth as src.
code — Color space conversion code. See the description below.

channels is derived automatically from src and code .

C++: void cvtColor(inputArray src, OutputArray dst, int code, int dstCn=0)

src — Source image: 8-bit unsigned, 16-bit unsigned (CV_16UC...), or single-precision floating-point.

dstCn — Number of channels in the destination image. If the parameter is 0, the number of the

* Soinstead of splitting the BGR image, first convert it to HSV and then split

// Convert to HSV
cv::Mat imgHSV;
cv::cvtColor(imgInput, imgHSV, CV_BGR2HSV);

// Split into planes

cv::Mat planes[3];
split(imgHSV, planes);

Colorado School of Mines Image and Multidimensional Signal Processing

Program 3

22

Thresholds

* We will threshold each band (H,S,V) using two thresholds tmin, tmax

— Example: Hmask = (H>tmin) & (H<tmax)
— We will create trackbars to interactively adjust thresholds
— There will be two trackbars for each band (one for tmin, the other for tmax)

* Before “main”, add these global variables

// Trackbar values
int low[] = {50, 50, 50};
int high[] = {250, 250, 250};

* Where you create windows, add
for (int i=0; i<3; i++)

cv::namedWindow(windowNames[i], CV_WINDOW_AUTOSIZE);

// Create trackbars

for (int i=0; i<3; i++){
cv::createTrackbar("low", windowNames[i], &low[i], 255, NULL);
cv::createTrackbar("high", windowNames[i], &high[i], 255, NULL);

Colorado School of Mines Image and Multidimensional Signal Processing

Thresholding

e from OpenCV documentation

C++: double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type)

Parameters:
src — Source array (single-channel, 8-bit or 32-bit floating point).
dst — Destination array of the same size and type as src.
thresh — Threshold value.
maxval — Maximum value to use with the THRESH_BINARY and THRESH_BINARY_INV thresholding types.
type — Thresholding type (see the details below).

* Look at the help page

We will use both types
— THRESH_BINARY
— THRESH_BINARY_INV

Colorado School of Mines Image and Multidimensional Signal Processing

Thresholding

* After splitting the HSV image into planes, add this code

// Threshold
for (int i=0; i<3; i++){
cv::Mat imageThreshLow, imageThreshHigh;

threshold(planes[i],
imageThreshLow, // output thresholded image
low[i], // value to use for threshold
255, // output value

cv::THRESH_BINARY); // threshold_type

threshold(planes[i],
imageThreshHigh, // output thresholded image
high[i], // value to use for threshold
255, // output value

cv::THRESH_BINARY_INV); // threshold type

bitwise_and(imageThreshLow, imageThreshHigh, planes[i]);

Colorado School of Mines Image and Multidimensional Signal Processing

Program 4

25

Thresholding

* Finally, AND all the masks together and display

// Finally, AND all the thresholded images together

cv::Mat imgResult(
cv::Size(WIDTH,HEIGHT), // size of image
Cv_8uc1, // type: CV_8UC1=8bit, unsigned, 1 channel

cv::Scalar(255)); // initialize to this value

for (int i=0; i<3; i++)
bitwise_and(imgResult, planes[i], imgResult);
// Clean up binary image using morphological operators
cv::Mat structuringElmt(7,7,CV_8U,cv::Scalar(1));
morphologyEx(imgResult, imgResult, cv::MORPH_CLOSE, structuringElmt);

cv::imshow("Binary result", imgResult);

Program 5

Colorado School of Mines Image and Multidimensional Signal Processing

26

Connected components

C++: void findContours(InputOutputArray image, OutputArrayOfArrays
contours, int mode, int method, Point offset=Point())

Parameters:
image — Source, an 8-bit single-channel image. Non-zero pixels are treated as 1’s. Zero pixels remain Q’s, so the image is treated as binary
. You can use compare() , inRange() , threshold() , adaptiveThreshold() , Canny() , and others to create a binary image out of a grayscale
or color one. The function modifies the image while extracting the contours.

contours — Detected contours. Each contour is stored as a vector of points.

mode — Contour retrieval mode (if you use Python see also a note below).

CV_RETR_EXTERNAL retrieves only the extreme outer contours. It sets hierarchyl[i][2]=hierarchy[i][3]=-1 for all the contours.

CV_RETR_LIST retrieves all of the contours without establishing any hierarchical relationships.

CV_RETR_CCOMP retrieves all of the contours and organizes them into a two-level hierarchy. At the top level, there are external
boundaries of the components. At the second level, there are boundaries of the holes. If there is another contour inside a hole of a
connected component, it is still put at the top level.

CV_RETR_TREE retrieves all of the contours and reconstructs a full hierarchy of nested contours. This full hierarchy is built and shown
in the OpenCV contours.c demo.

method — Contour approximation method (if you use Python see also a note below).
CV_CHAIN_APPROX_NONE stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and (x2,y2) of the contour
will be either horizontal, vertical or diagonal neighbors, that is, max(abs(x1-x2),abs(y2-y1))==1.
CV_CHAIN_APPROX_SIMPLE compresses horizontal, vertical, and diagonal segments and leaves only their end points. For example, an
up-right rectangular contour is encoded with 4 points.
CV_CHAIN_APPROX_TC89 L1,CV_CHAIN_APPROX_TC89 KCOS applies one of the flavors of the Teh-Chin chain approximation
algorithm. See [TehChin89] for details.

offset — Optional offset by which every contour point is shifted. This is useful if the contours are extracted from the image ROl and then
they should be analyzed in the whole image context.

Colorado School of Mines Image and Multidimensional Signal Processing

Connected components

* After creating the binary result image, add this code:

// Find connected components (contours)
std::vector<std::vector<cv::Point>> contours;

findContours(
imgResult, // input image (is destroyed)
contours, // output vector of contours
CV_RETR_LIST, // retrieve all contours

CV_CHAIN_APPROX_NONE); // all pixels of each contours

// Draw contours on original image
drawContours(imgInput, contours,

-1, // contour number to draw (-1 means draw all)
cv::Scalar(255,255,255), // color
2, // thickness (-1 means fill)
8); // line connectivity
cv::imshow("Overlay", imgInput); Program 6

Colorado School of Mines Image and Multidimensional Signal Processing

28

Summary / Questions

* Color values can be represented using red, green,
blue (RGB) values.

— An alternative representation is hue, saturation, intensity
(HSI).

— HSV is similar to HSI.

 How would you smooth a color image (e.g., with a
Gaussian low pass filter)?

Colorado School of Mines Image and Multidimensional Signal Processing

