
goodagile>
scrum training in india and asia | www.goodagile.com

THE
SCRUM
PRIMER

An Introduction to Agile

Project Management
with Scrum

By Pete Deemer and
Gabrielle Benefield

Version 1.04

2

Pete Deemer is Chief Product Officer, Yahoo! Emerging Markets Group. Gabrielle Benefield
is Senior Director of Agile Development at Yahoo! Inc. They lead Yahoo!’s large-scale global
adoption of Scrum.

A note to readers: There are many concise descriptions of Scrum available online, and this
primer aims to provide the next level of detail on the practices. It is not intended as the final
step in a Scrum education; teams that are considering adopting Scrum are advised to equip
themselves with Ken Schwaber’s Agile Project Management with Scrum or Agile Software
Development with Scrum, and take advantage of the many excellent Scrum training and
coaching options that are available; full details are at scrumalliance.org. Our thanks go to Ken
Schwaber, Dr. Jeff Sutherland, and Mike Cohn for their generous input.

© 2007 Pete Deemer and Gabrielle Benefield

3

Traditional Software Development

The traditional way to build software, used by companies big and small, is commonly known
as “The Waterfall”. There are many variants, but it typically begins with a detailed planning
phase, where the end product is carefully thought through, designed, and documented in great
detail. The tasks necessary to execute the design are determined, and the work is planned using
tools like Gantt charts and programs like Microsoft Project. The team arrives at an estimate of
how long the project will take by adding up detailed estimates of the individual steps involved.
Once stakeholders have thoroughly reviewed the plan and provided their approvals, the team
starts to build. Team members complete their specialized portion of the work, and then hand it
off to others in production-line fashion. Once the work is complete, it is delivered to a Quality
Assurance organization, which completes testing prior to the product reaching the customer.
Throughout the process, strict controls are placed on deviations from the plan, to ensure that
what is produced is actually what was designed.

This approach has strengths and weaknesses. Its great strength is that it is supremely logical:
think before you build, write it all down, follow a plan, and keep everything as organized as
possible. It has just one great weakness: humans are involved.

For example: this approach requires that the good ideas all come at the beginning of the
development cycle, where they can be incorporated into the plan. But as we all know, good
ideas appear spontaneously throughout the process – in the beginning, the middle, and
sometimes even the day before launch, and a process that doesn’t permit change will stifle this
innovation. With the Waterfall approach, a great idea late in the development cycle is not a gift,
it’s a threat.

The Waterfall approach also places a great emphasis on writing things down as a primary
method for communicating critical information. The very reasonable assumption is that if I
can write down on paper as much as possible of what’s in my head, it will more reliably make it
into the head of everyone else on the team; plus, if it’s on paper, there is tangible proof that
I’ve done my job. The reality, though, is that most of the time, these highly detailed 50-page
requirements documents just don’t get read. And that’s probably just as well, because when
they do get read, the misunderstandings are often compounded. A written document is an
incomplete abstraction of a picture I have in my head; when you read that document, you
create yet another abstraction, which is now two steps away from what I’m really thinking of.
It should come as no surprise that serious misunderstandings would occur.

Something else that happens when you have humans involved is the hands-on “aha” moment
– the first time that you actually use the working product, and you immediately think of 20
ways you could have made it better. Unfortunately, these very valuable insights often come at
the end of the development cycle, when changes are most difficult and disruptive – in other
words, when doing the right thing is most expensive.

4

Humans also have a poor ability to predict the future. For example, the competition makes an
announcement that wasn’t expected. Unanticipated technical problems crop up that force a
change in direction. Furthermore, people tend to be particularly bad at planning things far into
the future – guessing today how you’ll be spending your week eight months from now is
something of a fallacy, and it’s been the downfall of many a Gantt chart.

In addition, the Waterfall also tends to foster an adversarial relationship between the team-
members that are handing work off from one to the next. “He’s asking me to build something
that’s not in the spec.” “She’s changing her mind about what she wants.” “I can’t be held
responsible for something I don’t control.” And this gets us to another observation about the
Waterfall – it’s not that much fun to work within. In fact, we’d go a step further and say that
the Waterfall is a cause of great misery for the people who build products, and the resulting
products fall well short of expressing the creativity, skill, and passion of their creators. People
aren’t robots, and a process that requires them to act like robots often results in unhappy
people.

A rigid, change-resistant process will also tend to produce mediocre products. Customers may
get what they first ask for, but is it what they really want once they see the product begin to
emerge? By gathering all the requirements up front and having them set in stone with little
chance of change, the product is condemned to be only as good as the initial idea, instead of
being the best it could be once the team knows more about the possibilities.

Many users of the Waterfall experience these shortcomings again and again, but it seems like
such a logical approach, the natural reaction is to turn the blame inward: “If only we did it
better, it would work” – if we just planned more, documented more, resisted change more,
everything would work smoothly. Unfortunately, many teams find just the opposite: the harder
they try, the worse it gets!

Agile Development and Scrum

The Agile family of development methodologies was born out of a belief that an approach
more grounded in human reality would yield better results. Agile emphasizes building working
software that people can get hands on with quickly, versus spending a lot of time writing
specifications up front. Agile focuses on small, cross-functional teams empowered to make
decisions, versus big hierarchies and compartmentalization by function, and Agile focuses on
rapid iteration, with as much customer input along the way as possible. Often when folks learn
about Agile, there’s a glimmer of recognition – it sounds a lot like back in the start-up days,
when we “just did it”.

One of the fastest-growing Agile methods is Scrum. It was formalized over a decade ago by
Ken Schwaber and Dr. Jeff Sutherland, and it’s now being used by companies large and small,
including Yahoo!, Microsoft, Google, Lockheed Martin, Motorola, SAP, Cisco, GE,
CapitalOne and the US Federal Reserve. Many teams using Scrum report significant
improvements, and in some cases complete transformations, in both productivity and morale.

5

For product developers – many of whom have been burned by the “management fad of the
month club” – this is significant. Scrum is simple, powerful, and rooted in common sense.

Scrum Basics

Scrum is an iterative, incremental framework. Scrum structures product development in cycles
of work called Sprints, iterations of work which are typically 1-4 weeks in length, and which
take place one after the other. The Sprints are of fixed duration – they end on a specific date
whether the work has been completed or not, and are never extended. At the beginning of
each Sprint, a cross-functional team selects items from a prioritized list of requirements, and
commits to complete them by the end of the Sprint; during the Sprint, the deliverable does not
change. Each work day, the team gathers briefly to report to each other on progress, and
update simple charts that orient them to the work remaining. At the end of the Sprint, the
team demonstrates what they have built, and gets feedback which can then be incorporated in
the next Sprint. Scrum emphasizes producing working product at the end of the Sprint is really
“done”; in the case of software, this means code that is fully tested and potentially shippable.

Figure 1. Scrum

Scrum Roles

In Scrum, there are three primary roles: The Product Owner, The Team, and The
ScrumMaster. The Product Owner is responsible for achieving maximum business value, by
taking all the inputs into what should be produced – from the customer or end-user of the

6

product, as well as from Team Members and stakeholders – and translating this into a
prioritized list. In some cases, the Product Owner and the customer are the same person; in
other cases, the customer might actually be millions of different people with a variety of needs.
The Product Owner role maps to the Product Manager or Product Marketing Manager
position in many organizations.

The Team builds the product that the customer is going to consume: the software or website,
for example. The team in Scrum is “cross-functional” – it includes all the expertise necessary
to deliver the potentially shippable product each Sprint – and it is “self-managing”, with a very
high degree of autonomy and accountability. The team decides what to commit to, and how
best to accomplish that commitment; in Scrum lore, the team are known as “Pigs” and
everyone else in the organization are “Chickens” (which comes from a joke about a pig and a
chicken deciding to open a restaurant called “Ham and Eggs,” and the pig having second
thoughts because “he would be truly committed, but the chicken would only be involved”).

The team in Scrum is typically five to ten people, although teams as large as 15 and as small as
3 report benefits, and for a software project the team might include analysts, developers,
interface designers, and testers. The team builds the product, but they also provide input and
ideas to the Product Owner about how to make the product as good as it can be. While team
members can split their time between Scrum projects and other projects, it’s much more
productive to have team members fully dedicated. Team members can also change from one
Sprint to the next, but that also reduces the productivity of the team. Projects with larger teams
are organized as multiple Scrums, each focused on a different aspect of the product
development, with close coordination of their efforts.

The ScrumMaster is one of the most important elements of Scrum success. The
ScrumMaster does whatever is in their power to help the team be successful. The ScrumMaster
is not the manager of the team; instead, the ScrumMaster serves the team, protects the team
from outside interference, and guides the team’s use of Scrum. The ScrumMaster makes sure
everyone on the team (as well as those in management) understands and follows the practices
of Scrum, and they help lead the organization through the often difficult change required to
achieve success with Agile methods. Since Scrum makes visible many impediments and threats
to the team’s effectiveness, it’s important to have a strong ScrumMaster working energetically
to help resolve those issues, or the team will find it difficult to succeed. Scrum teams should
have someone dedicated full-time to the role of ScrumMaster (often the person who
previously played the role of Project Manager), although a smaller team might have a team
member play this role (carrying a lighter load of regular work when they do so). Great
ScrumMasters have come from all backgrounds and disciplines: Project Management,
Engineering, Design, Testing. The ScrumMaster and the Product Owner shouldn’t be the
same individual; at times, the ScrumMaster may be called upon to push back on the Product
Owner (for example, if they try to introduce new deliverables in the middle of a Sprint). And
unlike a Project Manager, the ScrumMaster doesn’t tell people what to do or assign tasks –
they facilitate the process, supporting the team as it organizes and manages itself – so if the

7

ScrumMaster was previously in a position managing the team, they will need to significantly
evolve their mindset and style of interaction in order for the team to be successful with Scrum.

In addition to these three roles, there are other important contributors to the success of the
project: Perhaps the most important of these are Managers. While their role evolves in Scrum,
they remain critically important – they support the team by respecting the rules and spirit of
Scrum, they help remove impediments that the team identifies, and they make their expertise
and experience available to the team. In Scrum, these individuals replace the time they
previously spent “playing nanny” (assigning tasks, getting status reports, and other forms of
micromanagement) with more time “playing guru” (mentoring, coaching, helping remove
obstacles, helping problem-solve, providing creative input, and guiding the skills development
of team members). In making this shift, managers may need to evolve their management style;
for example, using Socratic questioning to help the team discover the solution to a problem,
rather than simply deciding a solution and assigning it to the team.

Starting Scrum

The first step in Scrum is for the Product Owner to articulate the product vision. This takes
the form of a prioritized list of what’s required, ranked in order of value to the customer and
business, with the highest value items at the top of the list. This is called the Product
Backlog, and it exists (and evolves) over the lifetime of the project (figure 2). At any point, the
Product Backlog is the single, definitive view of “everything that could be done by the team
ever, in order of priority”. Only a single Product Backlog exists; this means the Product Owner

Figure 2. The Product Backlog

8

is required to make prioritization decisions across the entire spectrum of work that could be
done.

The Product Backlog will include a variety of items, such as features (“enable all users to place
book in shopping cart”), development requirements (“rework the transaction processing
module to make it scalable”), exploratory work (“investigate solutions for speeding up credit
card validation”), and known bugs (“diagnose and fix the order processing script errors”).
Many people like to articulate the requirements in terms of “user stories”: concise, clear
descriptions of the functionality in terms of its value to the end user of the product.

The Product Backlog is continuously updated by the Product Owner to reflect changes in the
needs of the customer, new ideas or insights, moves by the competition, technical hurdles that
appear, and so forth. The team provides the Product Owner with rough estimations of the
relative effort required for each item on the Product Backlog, and this helps the Product
Owner make prioritization decisions (since some items become less of a priority when the
Product Owner learns that major effort will be required to deliver them). Since these
estimations are relative, they can be measured in “points” rather than real-world units of effort
such as person-weeks; over time, though, as the team gathers data on its velocity (how many of
these relative “points” it is able to complete in a period of time), it is able to use this data in
projecting release dates and other longer-term planning.

The items in the Product Backlog can vary significantly in size; however, the larger ones will
often be broken into smaller pieces during the Sprint Planning Meeting, and the smaller ones
may be consolidated. One of the myths about Scrum is that it prevents you from writing
detailed specifications; in reality, it’s up to the Product Owner and Team to decide just how
much detail is required, and this may vary from one Product Backlog item to the next. The
general advice is to state what’s important in the least amount of space necessary – in other
words, one doesn’t have to describe every possible detail of an item, one should just make
clear what is necessary for it to be considered completed. The further down the Product
Backlog one goes, the larger and less detailed the items will be; as they get closer to being
worked on, additional detail gets filled in by the Product Owner.

Sprint Planning Meeting

At the beginning of each Sprint, the Sprint Planning Meeting takes place.

In the first part of the Sprint Planning Meeting, the Product Owner and Scrum Team (with
facilitation from the ScrumMaster) review the Product Backlog, discussing the goals and
context for the items on the Product Backlog, and providing the Scrum Team with insight into
the Product Owner’s thinking.

In the second part of the meeting, the Scrum Team selects the items from the Product Backlog
to commit to complete by the end of the Sprint, starting at the top of the Product Backlog (in
others words, starting with the items that are the highest business value for the Product

9

Owner) and working down the list in order. This is one of the key practices in Scrum: the team
decides how much work they will commit to complete, rather than having it assigned to them
by the Product Owner. This makes for a much more reliable commitment; first, because the
team is making it, rather than having it “made” for them by someone else; and second, because
the team itself is determining how much work will be required, rather than having someone
else decide how much “should” be required. While the Product Owner doesn’t have any
control over how much the team commits to, he or she knows that the items the team is
committing to are drawn from the top of the Product Backlog – in other words, the items that
he or she has rated as most important. The team does have the ability to pull in items from
further down the list if it makes sense (for example, pulling in a slightly lower priority item that
can be quickly completed as part of higher priority work).

The Sprint Planning Meeting will often last a number of hours – the team is making a very
serious commitment to complete the work, and this commitment requires careful thought to
be successful. The team will begin the Sprint Planning Meeting by estimating how much time
each member has for Sprint-related work – in other words, their average workday minus the
time they spend attending meetings, doing email, taking lunch breaks, and so on. For most
people this works out to 4-6 hours of time per day available for Sprint-related work. (Figure 3.)

Figure 3. Estimating Available Hours

 Once the time available is determined, the team starts with the first item on the Product
Backlog – in other words, the Product Owner’s highest priority item – and working together,
breaks it down into individual tasks, which are recorded in a document called the Sprint
Backlog (figure 4). Once tasks are identified, team members will volunteer for them, thinking
through dependencies and sequencing, making time estimates for each task, and making sure
the workload of each individual is reasonable. There will be back and forth with the Product
Owner during this process, to clarify points, verify tradeoffs, break down bigger Backlog items

10

into smaller pieces, and generally ensure that the team fully understands what’s being asked of
it. The team will move sequentially down the Product Backlog in this way, until it’s used up all
its available hours. At the end of the meeting, the team will have produced a list of all the tasks,
and for each task who has signed up to complete it and how much time they estimate it will
take (typically in hours or fractions of a day). Many teams also make use of a visual task-
tracking tool, in the form of a wall-sized task board where tasks (written on Post-It Notes)
migrate during the Sprint across columns labeled “Not Yet Started,” “In Progress,” “To Test,”
and “Completed.”

Figure 4. Sprint Backlog

One of the key pillars of Scrum is that once the Team makes its commitment, any changes
from the Product Owner must be deferred until the next Sprint. This means that if halfway
through the Sprint the Product Owner decides that there is a new item they’d like the team to
work on, they cannot make the change until the start of the next Sprint. If an external
circumstance appears that significantly changes priorities, and means the team would be
wasting its time if it continued working, the Product Owner can terminate the Sprint; this
means the team stops all the work they are doing, and starts over with a Sprint Planning
meeting. The disruption of doing this is great, though, which serves as a disincentive for the
Product Owner to resort to it except in extreme circumstances.

There is a powerful, positive influence that comes from the team being protected from
changing goals during the Sprint. First, the team gets to work knowing with absolute certainty
that its commitments will not change, which only reinforces the team’s focus on ensuring
completion. Second, it disciplines the Product Owner into really thinking through the items he
or she prioritizes on the Product Backlog. Knowing that the commitment is for the duration of
the Sprint makes the Product Owner much more diligent in thinking through what to ask for
at the beginning.

11

In return for all this, though, the Product Owner gets two things. First, he or she has the
confidence of knowing the team has made a very strong commitment to complete the work
they’ve signed up for, and over time Scrum teams get to be very good at delivering this.
Second, the Product Owner gets to make whatever changes he or she likes to the Product
Backlog before the start of the next Sprint. At that point, additions, deletions, modifications,
and re-prioritizations are all completely acceptable. While the Product Owner is not able to
make changes during the current Sprint, he or she is always only a Sprint’s duration or less
away from making any changes they like. Gone is the stigma around change – change of
direction, change of requirements, or just plain changing your mind – and it may be for this
reason that Product Owners are usually as enthusiastic about Scrum as anyone.

Daily Scrum

Once the Sprint has started, the Team engages in another of the key Scrum practices: The
Daily Scrum. This is a short (15 minutes or less) stand-up meeting that happens every
workday at an appointed time, and everyone on the Scrum Team attends; in order to keep it
brief, everyone stands (hence “stand-up meeting”). It’s the team’s opportunity to report to
itself on progress and obstacles. One by one, each member of the team reports three (and only
three) things to the other members of the team: What they were able to get done since the last
meeting; what they’re hoping to get done by the next meeting; and any blocks or impediments
that are in their way. The ScrumMaster makes note of the blocks, and then helps team
members to resolve them after the meeting. There’s no discussion during the Daily Scrum, just
the reporting of the three key pieces of information; if discussion is required, it takes place
right after the meeting. The Product Owner, Managers, and other stakeholders can attend the
meeting, but they should refrain from asking questions or opening discussion until after the
meeting concludes – everyone should be clear that the team is reporting to each other, not to
the Product Owner, Managers or ScrumMaster. Some teams find it useful to have the Product
Owners join and give a brief daily report of their own activities to the team, though this is at
the team’s discretion.

After the meeting, the team members update the amount of time remaining to complete each
of the tasks that they’ve signed up for on the Sprint Backlog (figure 5). Following this update,
the ScrumMaster adds up the hours remaining for the team as a whole, and plots it on the
Sprint Burndown Chart (figure 6). This graph shows, each day, how much work (measured

in hours or days) remains until the team’s commitment is completed. Ideally, this should be a
downward sloping graph that is on a trajectory to hit zero on the last day of the Sprint. And
while sometimes it looks like that, often it doesn’t. The important thing is that it show the
team their actual progress towards their goal – and not in terms of how much time has been
spent so far (an irrelevant fact, as far as Scrum is concerned), but in terms of how much work
remains – what separates the team from their goal. If the curve is not tracking towards
completion at the end of the Sprint, then the team needs to either pick up the pace, or simplify
and pare down what it’s doing. While this chart this can be maintained electronically using

12

Excel, many teams find it’s much more effective to do it on paper taped to a wall in their
workspace, with updates in pen; this low-tech solution is fast, simple, and often more visible
than an electronic one.

Figure 5. Daily Updates of Work Remaining on the Sprint Backlog

Figure 6. Burndown Chart

13

One of the core tenets of Scrum is that the duration of the Sprint is never extended – it ends
on the assigned date regardless of whether the team has completed the work it committed to.
If the team has not completed their Sprint Goal, they have to stand up at the end of the Sprint
and acknowledge that they did not meet their commitment. The idea is that this creates a very
visible feedback loop, and teams are forced to get better at estimating what they are capable of
accomplishing in a given Sprint, and then delivering it more reliably. Teams will typically over-
commit in their first few Sprints and fail to meet their Sprint Goal; they might then
overcompensate and under-commit, and finish early; but by the third or fourth Sprint, teams
will typically have figured out what they’re capable of delivering, and they’ll meet their Sprint
goals reliably after that. Teams are encouraged to pick one duration for their Sprints (say, 2
weeks) and not change it frequently – a consistent duration helps the team learn how much it
can accomplish (which helps in both estimation and longer-term release planning), and it also
helps the team achieve a rhythm for their work (this is often referred to as the “heartbeat” of
the team in Scrum).

Sprint Review

After the Sprint ends, there is the Sprint Review, where the team demos what they’ve built
during the Sprint. Present at this meeting are the Product Owner, Team Members, and
ScrumMaster, plus customers, stakeholders, experts, executives, and anyone else interested.
This is not a “presentation” the team gives – there are no PowerPoints, and typically no more
than 30 minutes is spent preparing for it – it’s literally just a demo of what’s been built, and
anyone present is free to ask questions and give input. It can last 10 minutes, or it can last two
hours – whatever it takes to show what’s been built and get feedback.

Sprint Retrospective

Following the Sprint Review, the team gets together for the Sprint Retrospective. This is a
practice that some teams skip, and that’s unfortunate, because it’s the main mechanism for
taking the visibility that Scrum provides into areas of potential improvement, and turning it
into results. It’s an opportunity for the team to discuss what’s working and what’s not working,
and agree on changes to try. The Scrum Team, the Product Owner, and the ScrumMaster will
all attend, and a neutral outsider will facilitate the meeting; a good approach is for
ScrumMasters to facilitate each others’ retrospectives, which enables cross-pollination among
teams.

A simple way to structure the Sprint Retrospective is to draw two columns on a whiteboard,
labeled “What’s Working Well” and “What Could Work Better” – and then go around the
room, with each person adding one or more items to either list. As items are repeated, check-
marks are added next to them, so the common items become clear. Then the team looks for
underlying causes, and agrees on a small number of changes to try in the upcoming Sprint,
along with a commitment to review the results at the next Sprint Retrospective.

14

A very useful practice at the end of the Retrospective is for the team to label each of the items
in each column with either a “C” if it is caused by Scrum (in other words, without Scrum it
would not be happening), or an “E” if it is exposed by Scrum (in other words, it would be
happening with or without Scrum, but Scrum makes it known to the team), or a “U” if it’s
unrelated to Scrum (like the weather). The team may find a lot of C’s on the “What’s Working”
side of the board, and a lot of E’s on the “What’s Not Working”; this is good news, even if the
“What’s Not Working” list is a long one, because the first step to solving underlying issues is
making them visible, and Scrum is a powerful catalyst for that.

Starting the Next Sprint

Following the Sprint Review Meeting, the Product Owner takes all the input, as well as all new
priorities that have appeared during the Sprint, and incorporates them into the Product
Backlog; new items are added, and existing ones are modified, reordered, or deleted. Once this
updating of the Product Backlog is complete, the cycle is ready to begin all over again, with the
next Sprint Planning Meeting.

One practice many teams find useful is to hold a Prioritization Meeting toward the end of each
Sprint, to review the Product Backlog for the upcoming Sprint with the Product Owner. In
addition to giving the team an opportunity to suggest items the Product Owner may not be
aware of – technical maintenance, for example – this meeting also kicks off any preliminary
thinking that’s required before the Sprint Planning Meeting.

There’s no downtime between Sprints – teams will often go from a Sprint Review one
afternoon into the next Sprint Planning Meeting the following morning. One of the values of
Agile development is “sustainable pace”, and only by working regular hours at a reasonable
level of intensity can teams continue this cycle indefinitely.

Release Planning

Sprints continue until the Product Owner decides the product is almost ready for release, at
which point there may be a “Release Sprint” to do final integration and testing in preparation
for launch. If the team has followed good development practices along the way, with
continuous refactoring and integration, and effective testing during each Sprint, there should
be little pre-release stabilization required.

A question that’s sometimes asked is how, in an iterative model, long-term release planning
takes place. At the beginning of a project the team will do high-level release planning; since
they cannot possibly know everything up front, the focus is on creating a rough plan to give
the project broad direction, and clarify how tradeoff decisions will be made (scope versus
schedule, for example). Think of this as the roadmap guiding you towards your final
destination; which exact roads you take and the decisions you make during the journey may be
determined en route.

15

Some releases are date-driven; for example: “We will release version 2.0 of our project at a
trade-show on November 10.” In this situation, the team will complete as many Sprints (and
build as many features) as is possible in the time available. Other products require certain
features to be built before they can be called complete and the product will not launch until
these requirements are satisfied, however long that takes. Since Scrum emphasizes producing
potentially shippable code each Sprint, teams may choose to start doing interim releases, to
allow the customer to reap the benefits of completed work sooner.

Most Product Owners will choose one release approach, but inform it with the other – for
example, they’ll decide a release date, but they’ll work with the team to come up with a rough
estimate of the Backlog items that will be completed by that date. In situations where a “fixed
price / fixed date / fixed deliverable” commitment is required – for example, contract
development – one or more of those parameters must have a built-in buffer to allow for
uncertainty and change; in that respect, Scrum is no different from other development
methodologies.

Common Challenges

Scrum is not a process – rather, it’s a framework which provides a lot of visibility to the team,
and a mechanism that allows them to “inspect and adapt” accordingly. Scrum works by
making visible the dysfunction and impediments that are impacting the team’s effectiveness, so
that they can be addressed. For example, most teams are not good at estimating how much
they can get done in a certain period, and so will fail to deliver what they committed to in the
first Sprint. To the team, this feels like failure. But in reality, this experience is the necessary
first step toward becoming more realistic and thoughtful about their commitments, and also
being even more committed to delivering what they signed up for. This pattern – of Scrum
helping make visible dysfunction, enabling the team to do something about it – is the basic
mechanism that produces the most significant benefits which teams using Scrum experience.

One very common mistake teams make, when presented with a Scrum practice that challenges
them, is to change the practice, not change themselves. For example, teams that have trouble
delivering on their Sprint commitment might decide to make the Sprint duration extendable,
so they never run out of time – and in the process, ensure they never have to learn how to do a
better job of estimating and managing their time. In this way, without training and the support
of an experienced Scrum coach, teams can morph Scrum into just a mirror image of their own
weaknesses and dysfunction, and undermine the real benefit that Scrum offers: Making visible
the good and the bad, and giving the team the choice of elevating itself to a higher level.

Another common mistake is to assume that a practice is discouraged or prohibited just because
Scrum doesn’t specifically require it. For example, Scrum doesn’t specifically require the
Product Owner to set a long-term strategy for his or her product; nor does it require engineers
to seek advice from more experienced engineers about complex technical problems. Scrum
leaves it to the individuals involved to make the right decision; and in most cases, both of these
practices (along with many others) would be well-advised.

16

Something else to be wary of is managers imposing Scrum on their teams; Scrum is about
giving a team space and tools to self-organize, and having this dictated from above is not a
recipe for success. A better approach might begin with a team learning about Scrum from a
peer or manager, getting comprehensively educated in professional training, and then making a
decision as a team to follow the practices faithfully for a defined period (say, 90 days); at the
end of that period, the team will evaluate its experience, and decide whether to continue.

The good news is that while the first Sprint is often very challenging to the team, the benefits
of Scrum tend to be visible by the end of it, leading many new Scrum teams to exclaim:
“Scrum is hard, but it sure is a whole lot better than what we were doing before!”

Results From Scrum

The benefits of Scrum reported by teams come in various aspects of their experience. At
Yahoo!, we have migrated nearly 90 projects to Scrum in the last 30 months, totaling almost
900 people, and the list of teams using it is quickly growing. These projects have ranged from
consumer-facing, design-heavy websites like Yahoo! Photos, to the mission-critical back-end
infrastructure of services like Yahoo! Mail, which serves hundreds of millions of customers;
they range from entirely new products like Yahoo! Podcasts, which used Scrum from concept
through launch (and won a Webby Award for best product in its category that year), to more
incremental projects, which included work on new features as well as bug fixes and other
maintenance; and we’ve used Scrum for distributed projects, where the team is on separate
continents. Several times each year we survey everyone at Yahoo! that is using Scrum
(including Product Owners, Team Members, ScrumMasters, and the functional managers of
those individuals) and ask them to compare Scrum to the approach they were using previously.
Some summary data is presented here:
 Productivity: 68% of respondents reported Scrum is better or much better (4 or 5 on a 5-

point scale); 5% reported Scrum is worse or much worse (1 or 2 on a 5-point scale); 27%
reported Scrum is about the same (3 on a 5-point scale).

 Team Morale: 52% of respondents reported Scrum is better or much better; 9% reported
Scrum is worse or much worse; 39% reported Scrum is about the same.

 Adaptability: 63% of respondents reported Scrum is better or much better; 4% reported
Scrum is worse or much worse; 33% reported Scrum is about the same.

 Accountability: 62% of respondents reported Scrum is better or much better; 6%
reported Scrum is worse or much worse; 32% reported Scrum is about the same.

 Collaboration and Cooperation: 81% of respondents reported Scrum is better or much
better; 1% reported Scrum is worse or much worse; 18% reported Scrum about the same.

 Team productivity increased an average of 36%, based on the estimates of the
Product Owners.

 85% of team-members stated that they would continue using Scrum if the decision
were solely up to them.

