
System Architecture Design
Robert Kausch, Software Architect, iCR

9/9/2024

1https://icr-team.com/



Architecture

• Architecture is a constant series of tradeoffs

• The goal is to optimize a design for a set of criteria

• There is no one perfect architecture or style

• The architecture of a system is the underlying structure

• Can be thought of as the blueprint or roadmap of the system

https://icr-team.com/ 2



Architecture

• Designing software is similar to designing and building a house

• You don’t draw the exterior of the house and start building it
• This is how we learn to write software!

• You have to work through all of the individual subsystems and 
components, like the electrical, plumbing, roofing, structural, lighting, 
etc. before beginning to build
• These individual disciplines may not know anything about each other, but it is 

up to the architect to produce a unified plan

https://icr-team.com/ 3



Software Architecture Definition

• The shared understanding that the expert developers have of the 
system design (Fowler, 2019)

• The software architecture of a system represents the design decisions 
related to overall system structure and behavior. Architecture helps 
stakeholders understand and analyze how the system will achieve 
essential qualities such as modifiability, availability, and security. 
(Software Architecture | Software Engineering Institute, n.d.)

4https://icr-team.com/



Why do we care about Architecture?

• Properly designing a system’s architecture helps achieve target goals

• Informs the various engineering disciplines how to build, validate, 
operate, and maintain the system

• Exposes key design decisions early in the process

• Informs stakeholders throughout the product lifecycle

https://icr-team.com/ 5



Architecture Characteristics

https://icr-team.com/ 6

• There are many styles of 
architectures

• Each are stronger or weaker for 
these characteristics

• The chosen style is a trade-off, 
sacrificing less important 
characteristics for more 
important ones

• When designing, understand 
which characteristics are most 
important

(Ford & Richards, 2020)



Role of a Software Architect

• Communicate – with customer, team, leadership, other stakeholders

• Model and design systems

• Develop prototype solutions

• Analyze and Perform trade-offs

• Set team standards, e.g.: code quality, security, etc.

• Conduct code, architecture reviews

• Collaborate with, and mentor engineering teams

• Document and disseminate design and decisions

• Differs from development with a broad rather than deep knowledgebase

https://icr-team.com/ 7



Phases of Project Design

Greenfield
• Starting a new project from 

scratch

• Not all constraints are well 
known

• Less common 

Refactoring
• Evolving or adapting an existing 

system

• Better understanding of 
constraints after deployment

• Most common type of 
development

https://icr-team.com/ 8



Front-End Architectural Styles

• Installed Application – Traditional application installed locally, may not have a 
separate back-end at all

https://icr-team.com/ 9



Front-End Architectural Styles

• Installed Application – Traditional application installed locally, may not have a 
separate back-end at all

• Static Website – a simple website, with mostly static content, interacts with a 
backend server to provide functionality

https://icr-team.com/ 10



Front-End Architectural Styles

• Installed Application – Traditional application installed locally, may not have a 
separate back-end at all

• Static Website – a simple website, with mostly static content, interacts with a 
backend server to provide functionality

• Web Application – a multi-page application with dynamic content, interacting 
with a backend

https://icr-team.com/ 11



Front-End Architectural Styles

• Installed Application – Traditional application installed locally, may not have a 
separate back-end at all

• Static Website – a simple website, with mostly static content, interacts with a 
backend server to provide functionality

• Web Application – a multi-page application with dynamic content, interacting 
with a backend

• Single Page App (SPA) – a large and possibly complex application, similar to an 
installed application, but runs completely in the browser

https://icr-team.com/ 12



Front-End Architectural Styles

• Installed Application – Traditional application installed locally, may not have a 
separate back-end at all

• Static Website – a simple website, with mostly static content, interacts with a 
backend server to provide functionality

• Web Application – a multi-page application with dynamic content, interacting 
with a backend

• Single Page App (SPA) – a large and possibly complex application, similar to an 
installed application, but runs completely in the browser

• Micro Front End – independent components that compose either a single page 
app, or web application

https://icr-team.com/ 13



Back-end Architectural Styles

• Many styles, broadly categorized as two main types:
• Monolithic – single deployment of all code

• Characterized by tightly coupled units of functionality

• Layered – units of functionality broken into layers, e.g.: 3 tier architecture

• Distributed Monolith – large interdependent distributed components

• Distributed – many independent components connected remotely
• Loosely coupled, independent components, deployed separately

• Event / Message driven – communication using events / messages

• Microservices – small components, loosely coupled, single responsibility

https://icr-team.com/ 14



Architectural Decomposition

• The act of breaking apart an item into smaller pieces

• The human mind is unable to comprehend infinite complexity

• To understand, design, and create complex systems, we use 
techniques to simplify the problem

• A “Layered Thinking” approach breaks complex problems into layers

• Each layer represents a high-level group of related functionality

• Each layer hides deeper complexity, but can be understood in relation 
to other high-level layers

https://icr-team.com/ 15



Architectural Decomposition

Which is easier to understand?

https://icr-team.com/ 16

Microservices with Spring. (2015, July 14). Microservices With Spring. 
https://spring.io/blog/2015/07/14/microservices-with-spring

Jayan, E. (2022, April 17). How Learning the Software’s Architecture can help a Business Analyst?
https://www.linkedin.com/pulse/how-learning-softwares-architecture-can-help-business-eksara-jayan



Example: Autonomous Weather Station

• A customer wants to build an autonomous weather station

• The customer outlines that the system should:
• Run for long periods without intervention, and accept remote updates

• Integrate many types of hardware sensors

• Keep historical data from each sensor

• Run on off-the-shelf hardware installed in the field

• Integrate multiple installations into a cohesive network

• Expose a web interface to stream current readings, and explore historical data

• Immediately send alerts if extreme readings are detected

https://icr-team.com/ 17



Where do we start?

• Requirements are vague, but there are important design criteria 
embedded in them

• First, identify which characteristics are most important

• Then distill concrete criteria, thinking about the system through 
several lenses:

https://icr-team.com/ 18

Communications 
Structure

Data Model Resiliency Functionality Infrastructure



Weather Station: Important Criteria

• What is most important?

https://icr-team.com/ 19

(Ford & Richards, 2020)



Weather Station: Important Criteria

• What is most important?
• Reliability – sensors should be 

collecting data all the time

https://icr-team.com/ 20

(Ford & Richards, 2020)



Weather Station: Important Criteria

• What is most important?
• Reliability – sensors should be 

collecting data all the time

• Fault Tolerance – Even if parts of 
the system are unavailable, the 
sensors should still collect data

https://icr-team.com/ 21

(Ford & Richards, 2020)



Weather Station: Important Criteria

• What is most important?
• Reliability – sensors should be 

collecting data all the time

• Fault Tolerance – Even if parts of 
the system are unavailable, the 
sensors should still collect data

• Deployability – The system must 
accept remote updates

https://icr-team.com/ 22

(Ford & Richards, 2020)



Weather Station: Important Criteria

• What is most important?
• Reliability – sensors should be 

collecting data all the time

• Fault Tolerance – Even if parts of 
the system are unavailable, the 
sensors should still collect data

• Deployability – The system must 
accept remote updates

• Availability – Alerting only works if 
the system is available

https://icr-team.com/ 23

(Ford & Richards, 2020)



The Communication Lens

• Asynchronous vs Synchronous
• Synchronous blocks the sender until the receiver acknowledges receipt

• Asynchronous allows the sender to perform other tasks after transmission

• Request / Response vs Event Driven vs Real Time Streaming

• What types are present inside the weather station?
• What parts produce data, and what consumes it?

• Is data flowing in real time, or by request?

• Do the senders need to know when data is received?

• What about between weather stations?

https://icr-team.com/ 24



Weather Station Communication

• Sensors
• Transmitted in real time, asynchronously

• Alerts
• Event driven, transmitted in real time, asynchronous

• User Interaction
• Searches, historic queries, request / response, asynchronous

• System Telemetry
• Health and status transmitted throughout the system, real time, event or streaming

• Multi-site synchronization
• Transmitted periodically, broadcast asynchronously

https://icr-team.com/ 25



Weather Station Communication Diagram

https://icr-team.com/ 26

Temperature 
Sensor

Pressure 
Sensor

Humidity 
Sensor

Rain Gauge

Log Aggregator

Log 
Database

Sensor 
Database

Site 
Synchronizer

User Alerting

Alert 
Subscription 

Database

Sensor 
Aggregator

External 
Sites

User Interface

User Services

Streaming

Request / Response

Event Driven



The Data Lens

• Types of data storage: 
• Relational, Time Series, Graph, Document, etc.
• Long-lived vs Temporary

• Retention Requirements:
• Critical Retention – needs backup and recovery strategy
• Ephemeral – historic information isn’t useful, can be reconstructed easily

• Sensitivity Requirements:
• Sensitive information should be encrypted (PII, Heath and Financial Records, etc.)

• Look at our target system in terms of Data
• What data is present in the system?
• Is all of the data the same type, and does have the same retention requirements?

https://icr-team.com/ 27



Weather Station Data

• Sensor Data
• Time-Series data, events are timestamped, retention not critical

• Sensor Metadata
• Relational data, outlines type of sensor, installation date, calibration info, etc., 

retention somewhat critical

• Station Metadata
• Document data, contains location information, installation date, software 

manifest, etc., retention somewhat critical

• User Account Data
• Relational data, contains subscription information, login information, etc., no 

personally identifiable information, retention not critical

https://icr-team.com/ 28



Weather Station Data Diagram

https://icr-team.com/ 29

Log 
Database

Sensor 
Database

Alert 
Subscription 

Database

Unstructured 
NoSQL database

Time Series 
database

Relational 
database

Station 
Metadata

Relational 
database



Functionality Lens

• Focusing on functionality, or business capabilities, allows us to design 
the system by defining what it should do
• Specific business requirements are used to define key system capabilities

• When using a microservice architecture, observe the “single 
responsibility principle” when defining a component
• A component should do one and only one thing, and do it well

• Define responsibility in a single sentence, ideally without using and/or

• Outline the desired functionality of each requirement, then define 
components

https://icr-team.com/ 30



Weather Station Functionality

• Many specific stated requirements, and several implied requirements

• Exploring the requirements, we come up with at least the following:
• Integrate new sensors automatically

• Stream real-time data from each sensor, capture into a database

• Send an alert when a threshold is breached on each sensor
• Allow end users to define thresholds (implied)

• Stream the current value for each sensor 

• Permit users to search historic sensor readings by time

• Replicate sensor data to other stations

https://icr-team.com/ 31



Sensors

Support

Weather Station Functional Diagram

https://icr-team.com/ 32

Business Components

Temperature 
Sensor

Pressure 
Sensor

Humidity 
Sensor

Rain Gauge

Logging

Storage

Log 
Database

Sensor 
Database

Subscription 
Database

History Streaming Alerting

IAAMonitoring

External 
Interfaces

Site 
Synchronizer

User 
Interface

Admin 
Interface

Performance 
Monitoring



Resiliency Lens

• The architecture can be designed to degrade in case of failure, instead 
of failing outright 

• Strategies to increase reliability
• Identify single points of failure, and mitigate them

• Use circuit breaker design pattern to avoid overloads when failure occurs

• Choose techniques that facilitate automatic recovery and failover

• Use load balancers / API gateways to enable horizontal scaling

• Use testing approaches to verify design, e.g.: load testing, chaos testing, 
testing to failure, etc.

https://icr-team.com/ 33



Resiliency Lens

• The customer wants the system to run without manual intervention 
for “long periods of time”
• This is an ambiguous requirement, and we should seek clarification on key 

performance criteria

• Until we receive that clarification, we can work against the ambiguity

• If the system suffers an anomaly, how can we minimize the impact? 
• Use a risk-based approach to weigh likelihood vs impact of a failure

• We cannot define all types of failures, this is far too broad of a problem space

https://icr-team.com/ 34



Weather Station Resiliency

• A microservice design allows for the use of an orchestration platform
• Kubernetes, Docker Swarm are some examples

• The orchestration platform ensures that at least one instance of a given 
service is always running

• Can also “horizontally” scale a service if load is too high

• After identification of single points of failure, those can be 
remediated via duplication

• Key locations of redundancy: 
• Sensors, servers, data storage

https://icr-team.com/ 35



Clustered Components

Single Points of 
Failure, 

Replicated 
Hardware

Orchestration Cluster

Weather Station Resiliency Diagram

https://icr-team.com/ 36

Temperature 
Sensor(s) x2

Pressure 
Sensor(s) x2

Humidity 
Sensor(s) x2

Rain Gauge(s) 
x2 Log 

Aggregation

Log 
Database

Sensor 
Database 

cluster

Site 
Synchronizer

Alerting

Subscription 
Database 

cluster

Sensor 
Aggregation

User 
Interface

Streaming

History API Gateway



Infrastructure Lens

• When examining a system’s design, consider the underlying 
infrastructure requirements, including:
• Network requirements, including bandwidth, latency, throughput, and types 

of communication protocols

• Processing requirements, including CPU and GPUs

• Storage requirements, driven by retention policies and data volumes

• Memory requirements, which includes container needs

• Cost requirements, driven by size of system, and potential scaling

• Scalability requirements, driven by anticipated usage loads

• Infrastructure includes on-premises vs cloud hosted solutions

https://icr-team.com/ 37



Infrastructure Lens: Cloud vs On-Premises

Constraint Cloud On-Premises

Cost Can start small, but increase quickly, can be less 
predictable

Higher initially, but predictable lifecycle, must 
include hardware refresh, power, space, cooling, and 
labor costs

Scalability Extremely scalable with load Scaling difficult, requires additional hardware

Labor Little infrastructure maintenance, higher up front High up front, high infrastructure maintenance

Deployability Simple deployments, typically automated More complex, requires configuration of hardware 

Maintenance Lower infrastructure maintenance Higher infrastructure maintenance, patching, etc.

https://icr-team.com/ 38



Weather Station Infrastructure

• Due to the nature of the system being tied to sensors, this is likely a 
good candidate for an on-premises hardware solution

• Consider load on the system for scaling:
• Sensor load is relatively static

• User load is dynamic, but not high

• An in-depth analysis of potential usage is critical to this decision point
• Will yield a usage profile, i.e.: How many users are streaming data, vs 

performing historic searching, etc.

• This part of the process will yield a comprehensive infrastructure 
design

https://icr-team.com/ 39



Weather Station Design: Wrapup

• Through these lenses, we decomposed the system into smaller, 
focused subsystems and components

• Components are understandable to less technical stakeholders

• This decomposition is a good starting point to estimate cost, 
schedule, and complexity at a high level

• Each component will be further decomposed by engineering team(s)

• Further decomposition can yield better cost, schedule and complexity 
estimates

https://icr-team.com/ 40



Resources and Reading

• Fundamentals of Software Architecture: An Engineering Approach, 
Ford, N., & Richards, M. (2020)

• Software Architecture: The Hard Parts, Ford, N., Richards, M., 
Sadalage, P., & Dehghani, Z. (2021)

https://icr-team.com/ 41



Resources and Reading

• Microservice Patterns, Richardson, C. (2018)

• The Cathedral and the Bazaar, Raymond, E. (1999)

https://icr-team.com/ 42



Resources and Reading

• The 12 Factor App – www.12factor.net

• https://microservices.io

• Software Architecture (Software Engineering Institute), 
https://www.sei.cmu.edu/our-work/software-architecture/

• Software Architecture Guide, Fowler, M., 
https://martinfowler.com/architecture/

https://icr-team.com/ 43

http://www.12factor.net/
https://microservices.io/
https://www.sei.cmu.edu/our-work/software-architecture/
https://martinfowler.com/architecture/


Questions?

https://icr-team.com/ 44


