
Software Design
On the importance of planning…

Why do Projects Fail?

Steve McConnell describes how small projects aren't necessarily
representative of the problems you'll encounter on larger
projects:

People who have written a few small programs in college
sometimes think that writing large, professional programs is
the same kind of work -- only on a larger scale. It is not the
same kind of work. I can build a beautiful doghouse in my
backyard in a few hours. It might even take first prize at the
county fair's doghouse competition. But that does not imply
that I have the expertise to build a skyscraper. The
skyscraper project requires an entirely more sophisticated
kind of expertise.

Architecting

Greek: ἀρχιτέκτων (architéktōn)
● ἀρχι- (arkhi-) meaning

"chief" or "master"
● τέκτων (tektōn) meaning

"builder" or "carpenter"

Architecting

What Doesn’t Work

Dr. Paul Dorsey:
Projects are frequently built using a strategy that
almost guarantees failure.
Building a large information system is like
constructing a 20-story office building. If a bunch of
electricians, plumbers, carpenters and contractors
meet in a field, talk for a few hours and then start
building, the building will be unstable if it even gets
built at all. At one of my presentations, an audience
member shared the quip that:

“If building engineers built buildings with the same care as
software engineers build systems, the first woodpecker to
come along would be the end of civilization as we know it.”

https://www.dulcian.com/articles/dorsey_top10reasonssystemsprojectsfail.pdf

http://www.dulcian.com/articles/dorsey_top10reasonssystemsprojectsfail.pdf
http://www.dulcian.com/articles/dorsey_top10reasonssystemsprojectsfail.pdf
http://www.dulcian.com/articles/dorsey_top10reasonssystemsprojectsfail.pdf

Software Engineering Failures

IBM survey in the success / failure rates of “change”
projects finds;

1. Only 40% of projects met schedule, budget and quality goals
2. Best organizations are 10 times more successful than worst

organizations
3. Biggest barriers to success listed as people factors:

• Changing mindsets and attitudes - 58%
• Corporate culture - 49%.
• Lack of senior management support - 32%.

4. Underestimation of complexity listed as a factor in 35% of
projects

http://calleam.com/WTPF/?page_id=1445

10x

http://calleam.com/WTPF/?page_id=1445

Speaking of …

Mythical Person-Month

● Optimism and Estimation,
● Person-Month Myth,
● Conceptual Integrity,
● Communication Breakdown,
● Changing Requirements,
● Lack of Testing,
● Inadequate Documentation.

Best Practices

1. Development process. Make this a conscious choice.
Consider size and scope of project. Agile is not always
the answer.

2. Requirements. Are you creating what the customer
wants? Are there non-functional requirements?
(efficiency etc.)

3. Architecture. How do the pieces fit together?
…

Best Practices (continued)

4. Design. Agile does not mean no planning! (or no
documentation) Guiding principle: keep it simple
(You Ain’t Gonna Need It – YAGNI). How much design
before coding?

5. Construction. Daily build and smoke test.
Continuous or frequent integration.

6. Peer reviews of code.
7. Testing.

Mythical Person-Month

● Conceptual Integrity,
● Realistic Planning & Estimation,
● Effective Communication,
● Change Management,
● Thorough Testing,
● Comprehensive Documentation,
● Team Dynamics.

System Architecture

Making a plan

Software Architecture

The software architecture of a system is the set of
structures needed to reason about the system, which
comprise software elements, relations among them, and
properties of both. The term also refers to documentation
of a system's "software architecture." Documenting
software architecture:

• facilitates communication between stakeholders,
• documents decisions about high-level design, and

• allows reuse of design components and patterns
between projects.

from Wikipedia

Software Architecture – Why?

• The software architecture discipline is centered on the
idea of reducing complexity through abstraction and
separation of concerns.

Fundamental Theorem of Software Engineering
– Butler Lampson

“All problems in computer science can be
solved by another level of indirection.”

“…except for the problem of too many levels
of indirection.”

Software Architecture – Why?

• The software architecture of a program or computing
system is a depiction of the system that aids in the
understanding of how the system will behave.

• Need a unifying architectural vision to ensure system
qualities such as performance, modifiability, and
security.

• Focus on the interface between the components (one of
the most error-prone aspects of system design)

http://www.sei.cmu.edu/architecture/

http://www.sei.cmu.edu/architecture/

Architecture– Example 1

From Avaya final report (2015)

Architecture– Example 2

From Pivotal final
report (2016)

Architecture– Example 3

From ModsDesigns final report (2011)

State Diagram

See ModsDesigns (2011)

System flow, supplements architecture

Architecture– Example 4

From FullContact final report (2014)

Architecture– Example 5

From SMT final report (2011)

Architecture– Example 6

From SMT (2011)

Finite Automata/Activity
Diagram

From SMT (2011)

System flow, supplements architecture

More Examples

More links available on Design Document page

TechnicalDesign

Adding some details

Technical Design

• Architecture diagrams focus on the interface between
components. They are “big picture” drawings.

• It can also be important to focus on details of a
particular component.

• These diagrams are likely more familiar to you.

Flowchart

From JumpCloud
final report (2014)

Entity-Relationship Diagram

From CSM Paone (Fall 2020)

Database Schema

From ModsDesigns
(2011)

Database Schema

From Newmont 2 (2011)

For database tables you create, include supporting text that describes
the various fields and relationships. That level of detail is not needed
for tables in an existing customer system.

UML

From ModsDesigns (2011)

Remember that Dia has an option to not show attributes/methods.

Sequence Diagram

From CSM Paone (Fall 2020)

InterfaceDesign

Can humans use this?

Rough Sketches

From CSM Thompson (2022)

Sketches Don’t Have to be
Drawings

From CSM Thompson (2022)

User Interface Flow

From CO Mountain Mamas (2015)

User Interface Flow

From CSM Thompson (2022)

Sketches and
Prototypes

How sure are you?

Sketches

• Fast
• Cheap
• Numerous
• Ambiguous

Use when you’re still figuring things out

Prototypes

• Expensive (time or $)
• Formal
• Presentational
• Finalized

Use when you’ve got it mostly figured out

Sketches vs. Prototypes

• Questions to ask:
• How sure are you about the design?
• How deep into implementation are you?
• What level of detail does your client want?
• What is a good balance between cost and fidelity?
• What audience are you presenting this to?

vs.

Your Turn

Design exploration

Design Presentation

• Dates/Times/Locations on website (Coming soon!)
• Go to Schedule and look for Design Proposal Presentations (in an

open week before Sprint 3)
• Your team should be listed (if not, contact your advisor ASAP)

• Present to 2-3 other teams
• Practice with an audience
• Immediate feedback

• 12 minutes in length
• Overview of project requirements
• Overview of implementation design

• See website for rubric and other details

Brainstorm with Your Team

• Talk about your requirements
• Brainstorm how to represent the architecture

• These will be reviewed during advisor meetings… goal here is
just to ensure you have some ideas to flesh out

• This is the planning phase. For the final report you will
update the architecture diagram and add text

descriptions of all the components. For now you just
need diagrams.

• You may also add more technical design details in the
final report.

