COLORADO SCHOOL OF

MINES

CSCI370 Final Report

Whippomorphs

Nathan George
Grant Lemons
Byron Sharman

Revised 2025-06-16

CSCI370 Summer 2025
Advisor: Tree Lindemann-Michael

Revision Date Contents

1 2025-05-16 Initial revision. Added the following sections:

* Introduction

* Functional Requirements

* Non-Functional Requirements
* Risks

* Definition of Done

2 2025-05-23 Added the following sections:

* System Architecture
* Software Test and Quality
* Ethical Considerations

3 2025-06-01 Revised the following sections:

* Software Test and Quality
e Ethical Considerations

2025-06-08 Added the Results section.

5 2025-06-09 Altered the document structure to match the report require-
ments.
Added the following sections:

* Future Work
* Acknowledgements
e Technical Design

Revised the following sections:

* Introduction
* Functional Requirements
» System Architecture

6 2025-06-14 Editing for final submission.
* Updated diagrams

» Figure 1
» Figure 2
* Added diagrams

» Figure 3
» Figure 4
* Improved flow
* Expanded Lessons Learned
* Updated & Expanded Future Work
* Rearranged Technical Design
* Expanded Table of Contents depth

Table 1: Revision History

Contents

S 0V oY L6 Ut o) o P 4
I, REQUITEIMIEIITS « vttt ettt ettt ettt et ettt et e e eeeeanesaeenneeaneeneeanesasenneeanesnnenns 4
[Ta. Functional REQUITEMENS uttttt ittt et e e e te et ieieaanenans 4
ITb. Non-Functional ReqQUITemMentsuitinenriet e ie e eieateaeaneananennns 4
III. Definition Of DOME\ttt et ettt e e et e e e ieaeaeananas 5
IV RISKS ittt e e e e 5
V. System ArChiteCtUTettt ettt ettt et e e e e 5
Va. AWS Lambdaeieti ittt e e e e 6
Vb, AWS TransCribeottt e e e 6
Ve, Key-Value DB ... e e e e 7
A B N o (€ - 3 | 2P 7
VI. Authentication & AUthOTiZationc.iniiuie ittt et eia e ieienans 7
VIa. AP PTOPIIALEIIESS . vt vttt ettt ettt ettt e et e et e eeeeeneeenneeanaesaneeaneennnesaneens 8
VID. TaC and CI/CDuiitet ettt ettt e et e e e et e e et e e e e ieaeaeanans 8
VII. Technical DeSigm . ..ottt ettt ettt ettt et et e et e e e et eae e eeaneneanenns 9
VIIa. Match AmDiguity .. .ovouit it e e e e e et e 9
VIIb. Phonetic MatChingcuuuiuinitiet it e et eiaaeaens 10
VIIc. Part of Speech DeteCtionuuuueutut ettt eeaeaenes 11
VIII. Software Test and QUAlityvuenentn ittt et eaeaenens 11
V20 - TR = 0 11
VIIIb. Software QUAlityuntiniti ettt e e e e e eaens 12
IX. Ethical Considerationsc.vututneneneuete et e e a e eaenenenns 12
D GO 2 U=T] A 14
Xa. Project COmpletion Statlsvvne e ee e iet e et et e e e eaenneanenns 14
XD, FUtUre WOTK ..o e e e e e e e e 14
Xe. Lessons Learnedo.ouoniininiiiit e 15
XI. ACKNOWIEAZEMENLSeettt it ettt et ettt 16
XIL. Team Profileoneniii e e e e e e e 17
S 5] 43 01 18
APPendix 1: KeY TeITS .. .v ettt ettt ettt e ettt e e et e e e 19
Appendix 2: AWS-DigitalOcean Comparison RePOTtvuuveiriniinineeiieinneanannn. 20

I. Introduction
Redacted per client request.

II. Requirements

ITa. Functional Requirements

In our first meeting with SwimTech, we were provided with the following set of functional require-
ments for the audio processing pipeline:

The final service must:

* be deployable/installable for end-user testing

* use an API interface

* process a list of names for matching students with feedback
* have a simple UI for testing as a web app

We have broken those larger overarching requirements down into specific items related to the API
and demo we have built for this project.

The voice categorization API must:

* be hosted on a cloud service
* process audio uploaded to that service
* return JSON associating verbal feedback from an instructor with a student

The demo site must:

* record audio from the host computer’s microphone

* access the voice categorization API to process the recorded audio

* access the voice categorization API to retrieve results related to an individual swimmer or
instructor

* display the feedback results after they have been processed

* be written in Vue (a JavaScript front-end framework)

The demo application need not be deployed, but the API should be hosted on a cloud platform.

ITb. Non-Functional Requirements

In addition to the functional requirements relating to the core features that the two systems we
built must have, we worked with SwimTech to establish a set of requirements on the performance,
cost, and maintainability of the software we would deliver to them.

* Feedback should be processed within 2 hours of the recording being uploaded.

* SwimTech should review and assent to the costs of the services used for speech to text and text
categorization.

* Project code should be well-documented and maintainable.

* The software should be accompanied with step-by-step documentation for how to set up and
run the service.

* Python code should use modern type hints.

* Code should be clean and easy to read.

I1I. Definition of Done

As with all projects, there are more features which we could have implemented given more time,
like attempting to filter out the echos and background noise of an indoor pool. However, adding
this feature would have come at the cost of our ability to meet the requirements of this project in
some other area. Thus, we established the following definition of done to set clear guidelines on
what the state of this project should be at the end of the five weeks.

This project is considered done when the following requirements are true:

e There is sufficient documentation to enable SwimTech to integrate the audio processing system
with their existing codebase.

* We can demonstrate the user experience of a swim instructor through a demo which enables an
instructor to record audio and see the feedback associated with a swimmer in their class.

* All of the functional and non-functional requirements have been fulfilled.

IV. Risks

Risk Likelihood Impact Mitigation

Not feasible to distinguish Unlikely Severe A new project direction

which voice lines go with would be necessary

which person

Voice recognition is too Unlikely Severe Rapid prototyping to assess

challenging the feasibility of voice
recognition

AWS goes down Unlikely Severe Accepted risk — AWS outages

across multiple availability
zones are very rare

Cloud provider bill is Moderate Moderate Estimate the cost of cloud
unacceptably high bills with simulation data
Echoing from an indoor pool Moderate Moderate Explore filtering options to
makes it challenging to run remove echoing from audio

speech to text

Table 2: Risks

V. System Architecture

For this project, we have used Amazon Web Services (AWS) as the cloud provider for hosting
the components of the voice categorization API. After the second week of the project we learned
that SwimTech’s development team is unfamiliar with AWS, preferring to use DigitalOcean. After
reviewing the services that DigitalOcean provides, we compiled a report for SwimTech detailing
the tradeoffs between DigitalOcean and AWS (See Appendix 2). In short, the reasons we have used
AWS for this project are that the transcription on AWS is cheaper and more accurate, and our team
was able to get more done in AWS because we were familiar with it.

Figure 1 shows a diagram of the AWS infrastructure we have provisioned for the voice categoriza-
tion API. The four main services in this diagram are AWS Transcribe, the Serverless Function, the
Key-Value DB, and API Gateway.

«SimpleStorageServiceBucket» «Users»

S3 User Interface

%&

[Audio Storage] [Demo App]
«Transcribe» «APIGateway» «Cognito»
AWS Transcribe API Gateway AWS Cognito

=5 >
i _|
[Speech-to-Text] [Auth]
/
«SimpleStorageServiceBucket» «Lambda» «DynamoDB» «Lambda»
S3 AWS Lambda Key-Value DB AWS Lambda
[Transcription Storage] [Processing Worker] [Feedback Store] [Request Authorizer]

Figure 1: An overview of the project’s infrastructure

Va. AWS Lambda

AWS Lambda is an AWS service which spins up compute only when it is needed. It is essentially
a function that can be called from a webpage to do some more complicated logic on the backend,
like updating a database or running a transcription service. The Serverless Function is the control
hub for the main processing logic of the API. It is started by an event from the API containing
context: a timestamp, an instructor ID, and a list of students in the class. On a request to the /
process endpoint an instance of the Lambda is triggered, which does the following steps:

* Begin a transcription job and await completion.

* Retrieve and parse transcription output.

* Run categorization processing steps on transcription.
* Place categorized feedback in a database entry.

Vb. AWS Transcribe

AWS Transcribe is a managed speech-to-text transcription service provided by AWS. Transcribe
operates on objects in cloud file systems called AWS S3 buckets. Specifically, Transcribe must

be provided a file URI in the format s3://bucket-name/file-path. When Transcribe has finished
processing, the resulting transcription is saved to an S3 bucket along with additional metadata
about the models confidence of each word in the transcription. This is why the Serverless Function
is linked to both AWS Transcribe and its two S3 buckets. The request for processing recieved by
the Lambda provides context on the location of the audio file to be processed, and uses this to start
a job in AWS Transcribe. The transcription is placed in another S3 bucket, and is retrieved and
parsed by the Lambda to extract and process the text.

Vc. Key-Value DB

The results of each processing job are stored in a key-value database table. Database entries are
composed of the following fields:

* User ID of the student for whom the feedback applies.
* Timestamp at which the feedback was uploaded.

* User ID of the instructor who gave the feedback.

* The feedback itself.

As a NoSQL database, DynamoDB does not operate exactly like a traditional relational database.
Entries in a table have a primary key composed of a “partition key” and “sort key”. In our case, the
student’s User ID serves as the partition key, and the timestamp as a sort key. In order to retrieve
feedback from the database, the table is indexed in two ways: on the partition key, and on the
Instructor ID. This allows quick access to records for the two ways our API allows: by Student ID
or Instructor ID.

Vd. API Gateway

The API Gateway coordinates communication to services on the backend through a REST APIL
The gateway specifies which endpoints are available, what the format the requests and responses
should have (defined through JSON schemas), integrations with other services, and authorization
requirements for each endpoint among other things. The gateway serves to trigger different parts
of our infrastructure through integrations. These allow the gateway to either trigger a service
like a Lambda, or directly make an API call to a service, like DynamoDB. Because API Gateway
integrates some logic for mapping inputs and outputs to and from the integration, we were able
to directly integrate with the database table for feedback retrieval.

VI. Authentication & Authorization

One of the most critically important components of a secure system is the authentication and
authorization service. Simultaneously, it can be one of the most complex portions to create from
scratch. For this reason, we used AWS Cognito, which offers seamless SSO integration (logging
in w/ Google, Microsoft, &c.) and JSON Web Tokens, in order to secure student feedback from
outsiders and selectively provide access as appropriate for users, both students and instructors.

This system is disabled at the moment for two reasons. The first is that authentication got in the
way of the demo, and the second that the client is not yet sure how they want to integrate our
project into their ecosystem. This impacts the User IDs associated with students, which are deeply
intertwined with endpoint authorization for student feedback.

D g o 0

User Presigned URL] Feedback DynamoDB Worker Transcribe Audio | | Transcriptions
I T T I T I I T T
[}) I I I I I I I I
I I I I I I I I I
| Presigned URL | | | | | | | |
I E I I I I I I I I
! File | | l l l l o l
T T T T T T T > I
I I I I I I I I I
| Context | | | <! | | | |
1 ‘ ‘ ‘ g l l l
			I Context		
			———	I	
				>	
				Fle	
				. —	
: : : : : Transcriptibn :					
	I I I T T Ll				
I I I I I I I I					
I I I	I _ Transcription ! !				
I I I I	<				
I I I I I I I I					
! ! ! ! ! Processing ! ! !					
I I I I I I I I					
I I I I I I I I					
: : :	Feedback	: : :			
I I I '~ I I I I I					
Student ID/Instructor ID J					
! ! o					
I I I Query				I I	
	f————>>				
I I I I I I I I I					
	I Feedback !				
		l			
I Feedback I I I I I I I I
L L J I I I I | |
\‘ I I I I I I I I

User : 5 .

Presigned URL | | Feedback Audio | | Transcriptions

DynamoDB W(élger Tran&c)rlbe

Figure 2: The data flow through our infrastructure

VIa. Appropriateness

Our client’s workload on our system is not constant; swim lessons occur at scheduled times of the
week, and since it is a local business, demand peaks at select times of day. As such, our architecture
was chosen for scalability. Deployment cost is linked to workload, which means we don’t waste
compute resources at times the system is unused, such as at night.

This architecture is also extremely resilient, as the serverless components distribute work across
multiple AWS Availability Zones. This mitigates the risk of infrastructure downtime, which, though
unlikely, would have a severe impact.

VIb. IaC and CI/CD

Infrastructure as Code (IaC) is the concept of defining infrastructure resources declaratively
through code, rather than provisioning them manually. This allows benefits such as making
infrastructure provisioning automated, well-defined, and reproducible, as well as tracking infra-
structure changes in source code. Additionally, since it makes applying infrastructure as trivial
as running a shell command, a continuous deployment pipeline can easily make infrastructure
changes on push. Automating this process makes it easier to hand off the project to our client’s
developer team.

To reap all these benefits, we defined our infrastructure in Terraform HCL, an industry standard
IaC language, and provisioned it using OpenTofu, an open-source fork of Terraform.

Our CI/CD pipeline integrates the client’s source control solution (a GitHub repository) with their
AWS account, in order to consistently deploy components of our infrastructure automatically on
commits. With this system in place, the learning curve for development is much simpler, which
helped us hand-off our product to the client. There are several steps in our pipeline, which the
client no-longer needs to concern themselves with:

* Building the environment needed for our processing in AWS Lambda (a Lambda layer.)
* Provisioning infrastructure.

* Updating the demo site and invaliding CDN cache.

* Updating hosted API Documentation. (SwaggerUI)

VII. Technical Design

The core logic of the Voice Categorization API matches feedback to students. To do this, we identify
proper nouns in the feedback as potential student names. These potential names are matched
against the students in the class. Sentences with a student’s name identified in them are associated
with said student.

Within this process, however, two main problems emerge:

1. Two swimmers may have the same first name making the name categorization ambiguous. (see
Match Ambiguity)

2. AWS Transcribe may use a spelling of the student’s name that does not match the proper spelling
character-for-character. (see Phonetic Matching)

To address these two problems, we developed the categorization pipeline shown in Figure 5.

VIIa. Match Ambiguity

To address the first problem where categorizing the feedback may be ambiguous with swimmers
with the same first name, we allow for varying levels of specificity to identify the swimmers names.
To match names, the following formats are checked in order:

1. [First] [Last]
2. [First]
3. [Last]

Figure 3 illustrates the control flow of an unambiguous match by last name.

If when checking a format, it can be matched ambiguously, then the matching fails. This can be
improved upon in the future by placing the unmatched feedback in a database to be manually
categorized later. Once the feedback is matched, we look up the name from the list of swimmer
names and match it with that piece of feedback.

First +
Last

Isabella McCann No —Yes—P> Match

Isabella George Names — > First —.—

George Wright No %--Ambiguaus---» e
' Ambiguous

— Last e

No Match

Figure 3: Flow chart representing tiered name matching specificity. Input “McCann” unambigu-
ously matches the last name of student “Isabella McCann”

VIIb. Phonetic Matching

Because Transcribe may use a different spelling of name, we attempt to compare names phonet-
ically instead of by character. To accomplish this, we use an algorithm developed by Lawrence
Philips called metaphone. The metaphone algorithm takes in a word and outputs a string of
characters representing the sounds in that word. It does this by applying a set of deterministic rules
to merge character sequences which sound similar. For instance, both kS and X sound the same,
so they are both represented by the sequence KS in metaphone’s phonetic representation. After
transforming the names that we would like to compare into their string phonetic representation we
compare the strings to determine if two names match. Figure 4 illustrates how transcribed names
and canonical spellings both map to the same metaphone representation.

r N
Katelyn [——{ KILN je«—— Caitlyn
Kristen |————{ KRSTN j«—— Christen
Transcription < Markus [————>{ MRKS j«————— Marquis ~ Actual Name

Nicholas [——{ NKLS j«—— Nickolas

Katherine [——{ KORN j«—— Cathryn

. J

Figure 4: Identical phonetic representations of common and uncommon name spellings

10

VIIc. Part of Speech Detection

To perform the name matching procedure, we need to extract the names from the feedback;
otherwise, matching words like Paul and pool with the same phonetic representation could be
confounded. To extract names, we use part of speech detection with the Python library Natural
Language Toolkit (NLTK). In Figure 5, the first yellow processing box after transcription shows
the part-of-speech tagging of the feedback “Nathan should keep his fingers together.”

To identify names, we look for words tagged by NLTK as proper nouns (NNP) and extract those as
names. Though this often works, it may mis-categorize the part of speech of a name leading to
errors in the categorization. A more resilient approach to name extraction might involve checking
each word against a dataset of first and last names to determine if it is a name. After extracting
the names from the transcription, we compute the phonetic representation of the names in the
feedback as well as the list of swimmer names.

Nathan should keep his fingers together.

[

Part of Categorize
- Extract
Transcription ———————» Speech —_— ————— > Metaphone, —————» >
. Names « Nathan «('NON'") Nathan George
Detection

[('Nathan', 'NNP'), ('should', 'MD'), ('keep', 'VB'), ('his', 'PRP$'),
('fingers', 'NNS'), ('together', 'RB'), ('.', '.")]
List of
Student Metaphone
- « Nathan George ? «('NON', "JRI')
« Grant Lemons ¢ ('"KRNT', 'LMNS')
« Byron Sharman «('PRN', 'XRMN')

Figure 5: The categorization pipeline

VIII. Software Test and Quality

To maximize the value of our project to SwimTech, we wanted to write bug-free code adhering to a
high standard of quality. These two characteristics make our code easier to integrate into another
software system, providing a solid foundation for our client to start with.

VIIIa. Testing

Testing is key to ruling out common faults in programs. We wrote automated unit tests for the core
functionality of the serverless function worker to verify that it handles normal cases as well as edge
cases, like alternate spellings of names and multiple students with the same name.

We attempted to implement automated end-to-end testing, but the asynchronous nature of our
product made doing so challenging. Due to the accelerated timeline of our project, we had to
de-prioritize automated end-to-end testing, and did not complete it. However, we do regularly
manually test the functionality of our component by using the demo to record audio and seeing if
feedback shows up.

11

Automated Tests

Test Description

test phonetic_eq() Alternative spellings of names are matched correctly

test extract names() Names are correctly extracted from the transcription

test _extract feedback() Feedback is split up correctly if a transcription includes
feedback for two students

test_match_name() Names are matched from most specific to least specific

test categorize transcription() Transcription matched to the correct name

test_transcription_to_feedback.py Collection of tests running through the entire categoriza-
tion pipeline including testing edge cases where students
have the same name

Non-Automated Tests

* Record audio from the demo site and ensure that feedback is visible on the feedback page.
* View network requests and verify status codes match the 2xx range.

These tests validate the ability of the entire system to work as one cohesive unit from uploading
audio to retrieving feedback. There were key to validating that we met the requirements for
both the voice categorization API and the demo application.

VIIIb. Software Quality

Our code quality evaluation process was augmented with formatting and linting tools which check
for style, obtuse formatting, and some syntax-related bugs. We integrated two such tools, pylint
and biome, into the development of our categorization worker (Python 3) and demo (TypeScript)
codebases, respectively. Both run when we push code to GitHub as part of the continuous integra-
tion process. We do not merge pull requests that fail these tools’ quality requirements.

In addition to automated quality checks, our code review process included manual approval from
another team member. Beyond filtering common errors, code reviews helped our team stay on the
same page about how each component of our system works, maintaining a healthy knowledge
of the codebase. This knowledge improved quality by facilitating the development of a cohesive
system rather than a hodgepodge of clumsily connected components.

Our testing tools and quality assurance tools are part of our continuous integration pipeline on
GitHub. This reduced the developer friction in running these tools manually and ensured that code
merged into the main branch adheres to our testing and quality standards.

IX. Ethical Considerations

The ACM and IEEE publish a set of ethical standards for engineers. [1] Within our work for
SwimTech, a few of these principles stand out as especially significant to our work in this field
session project.

2.01 Provide service in their areas of competence, being honest and forthright about any limita-
tions of their experience and education.

12

2.05 Keep private any confidential information gained in their professional work, where such
confidentiality is consistent with the public interest and consistent with the law.

3.12 Work to develop software and related documents that respect the privacy of those who will
be affected by that software.

8.01 Further their knowledge of developments in the analysis, specification, design, development,
maintenance and testing of software and related documents, together with the management
of the development process.

With regards to the first principle, our team lacked extensive industry experience and had not
completed our degrees. Thus, it was important for us to not only learn quickly but also commu-
nicate gaps in our knowledge so SwimTech has a solid understanding of our skills and an accurate
expectation of our results. Confidentiality is pertinent to this project; we signed NDAs about specific
details of the project. The voice categorization service interacts with sensitive user data, including
audio recordings as well as transcribed feedback of swimmers. Thus, our exclusive use of cloud
services is motivated by a desire to choose a platform known to be secure for data at rest and in
transit, greatly lessening the likelihood that data is accessible to unauthorized users. Lastly, as this
experience was designed to grow our skills as software engineers, it was key that we utilized this
opportunity to grow as more ethical programmers.

There are a few additional ethical principles relevant to our work:

3.10 Ensure adequate testing, debugging, and review of software and related documents on which
they work.

3.11 Ensure adequate documentation, including significant problems discovered and solutions
adopted, for any project on which they work.

These are both related to the hand-off, when we deliver the voice categorization service to
SwimTech. If we run out of time adding testing or sufficient documentation, the value of this
project to SwimTech may be severely degraded.

In order to address these ethical considerations, we implemented a few ethical tests which we can
evaluate throughout the project. The first test is the legality test, where we need to make decisions
within the context of the NDAs we signed, which includes hosting our code in a private repository.
The second test is the reversibility test. The team which we are delivering this software to are
developers like ourselves, so we must consider how our decisions might burden our successors and
how they impact the cloud bill this software incurs.

As our project revolves around machine learning processing of audio files by swim instructors
about swim students, most of whom are children, data privacy is an ethical concern. To mitigate
this, we are using a transcription service from a reputable source that does not train on inputs and
does not retain copies of the input.

To mitigate the impact of potential security vulnerabilities, we implement a two-day deletion policy
on all audio recordings and their transcripts. We also have extremely tight access control policies
that ensure least access to all our services, including but not limited to our database and the buckets
containing audio recordings and transcripts.

13

Our API has strict authentication and authorization requirements, which ensures customer feed-
back is private to said student and authorized employees and is not visible to other students or
unrelated parties.

X. Results

See the Definition of Done section for a summary of what we expected to accomplish at the end
of the project.

Xa. Project Completion Status

We have successfully created an API that performs all the requirements. We learned that the client
does not yet have any existing database to track students and instructors, so we made a placeholder
one designed to be easily replaceable in case the client decides to make their own. We also made
a demo that records audio, uploads it to the API, and displays the resulting feedback. Our main
deliverable is the API, and other goals, such as allowing instructors and students to log in to the
demo and displaying feedback specific to them, are out of scope.

Our API has three main endpoints, /get presigned url, /process, and /feedback. These are quite

performant, returning responses within a few hundred milliseconds, though the speed can vary

based on if any Lambdas involved need to cold-start.

/get_presigned_url returns a URL the frontend can use to upload directly to an S3 bucket,
including the authorization information required.

/process asynchronously runs the speech-to-text and voice categorization processes, putting the
results in a database.

/feedback has some sub-endpoints which query feedback by instructor ID or student ID from the
database.

We have fully documented all the endpoints and their schemas using OpenAPI, autogenerated
from the AWS API Gateway based on the documentation we’ve attached to each endpoint and the
schemas we’ve defined. This OpenAPI spec is then used to generate a static SwaggerUI site, which
presents the API spec in a clear manner at the path /api/v2/spec from our demo site.

Additional extensive documentation for all the components of the project has been written and is
available through GitHub.

Deploying the API, SwaggerUI site, and demo are fully automated thanks to our comprehensive
CI/CD pipeline.

Xb. Future Work

The largest batch of work to be done is deciding on how the application will retrieve the list of
names of the swimmers in the class. Currently, the voice categorization service needs a list of names
and User ID’s as input. If this stays the same then, the app that the swim coaches use will need to
pull a list of names from a database managed by SwimTech. Alternatively, a class id could be sent
to the categorization service, and the service could directly lookup a list of names.

Additionally, within our testing suite, we intended to write some end-to-end tests. Unfortunately,
due to the infrastructure and the time constraints of the project this became more challenging than
we initially anticipated. Specifically, due to the fact that no event is sent out when a request to the
service is finished, it is difficult to get the results in a deterministic manner.

14

Instead of triggering the /process endpoint with context, a good way to re-architect our infrastruc-
ture would be transitioning to an event-based pipeline from the current hub-and-spoke structure
currently implemented with our worker Lambda. In this model, context would be associated with
a job name via the /get presigned url endpoint (renamed to something like /create job) and
placed in a DynamoDB table. Then, the AWS Transcribe job and categorization Lambda invocations
would be triggered by events in the audio file and transcription output S3 buckets respectfully. If
the job name is maintained within the pipeline, the categorization Lambda can retrieve job context
from the DynamoDB table.

Because the surrounding context for our project within our client’s systems is unclear, we were
unable to fully implement Authentication and Authorization within the project (see Authentication
& Authorization). For authorization,

Xc. Lessons Learned

Our team learned a great deal while working on this project. For instance, most of us had minimal
DevOps experience, and during our first attempts at writing the CI/CD pipeline, we found ourselves
constantly dealing with corrupted Terraform state and AWS resources strewn everywhere. Through
these experiences we have learned the limitations of per-branch infrastructure and also why larger
projects define infrastructure in separate Terraform configurations, using tools like Terragrunt to
batch-process them.

We also learned to avoid long-running feature branches. Our migration from our v1 prototype
backend to the more robust v2 backend was on a single branch, and it took much longer than
anticipated. This became a major blocker for other features, and stalled the work most developers
on our team could do.

A final lesson was that creating and enforcing timelines matters. Our v1 prototype was done by
the end of the first sprint, so we felt we would surely be able to iron out the rest of the project
in the remaining four weeks. We found that tasks take the time they’re given, however, and our
velocity slowed such that those last few tasks took the entirety of the remaining four weeks. Had
we enforced per-ticket deadlines, and kept ourselves to a stricter timeline, we would have had
higher velocity for longer and been able to reach for client stretch goals.

15

XI. Acknowledgements
We would like to thank the following parties:

e Our advisor, Tree Lindemann-Michael, for guiding us through the whole process and assisting
our team dynamic

* Our client liaison, Sloane Smith, for her work in maintaining healthy communications

e Evan Lim, another SwimTech employee who provided us with credentials to SwimTech’s AWS
account

* The course coordinators, advisors, and guest speakers, especially Kathleen Kelly, for making
the whole experience possible

16

XII. Team Profile

Nathan George

Major: Computer Science

Class: Junior

Hometown: Colorado Springs, CO

Experience: Programming lead for FRC Robotics, Camp Counselor at Camp
Como

Clubs: ACM, Competitive Programming

Grant Lemons

Major: Computer Science

Class: Junior

Hometown: Dallas, TX

Experience: 2x Software Engineering Intern at Headstorm, 2x Blasterhacks
Silver Medalist, TA for CSCI220 & CSCI410

Certifications: AWS Solutions Architect — Associate

Clubs: ACM

Hobbies: Cooking

Byron Sharman

Major: Computer Science

Class: Junior

Hometown: Colorado Springs, CO

Experience: TA for CSCI220 (Data Structures and Algorithms), 2x Blaster-
hacks Silver Medalist

Clubs: ACM

17

References

[1] IEEE-CS/ACM Joint Task Force on Software Engineering Ethics and Professional Practices,
“Code of Ethics for Software Engineers.” [Online]. Available: https://www.computer.org/
education/code-of-ethics

18

https://www.computer.org/education/code-of-ethics
https://www.computer.org/education/code-of-ethics

Appendix 1: Key Terms

API: Application Programming Interface

Cloud Provider: A platform like AWS, GCB or Azure that provides cloud services

UI: User Interface

AWS S3: Simple Storage Service, a cloud file-system

JSON: JavaScript Object Notation, a serialization format

CDN: Content Delivery Network

AWS: Amazon Web Services

GCP: Google Cloud Platform

ACM: Association for Computing Machinery, a national organization with a branch at the Colorado
School of Mines

IaC: Infrastructure as Code, a programmatic expression of infrastructure resources

CDN: Content Delivery Network

CI/CD Pipeline: Continuous Integration / Continuous Deployment pipeline

19

Appendix 2: AWS-DigitalOcean Comparison Report

Intro

To develop the voice categorization service for Swim Tech’s field session project, we decided to use
Amazon Web Services (AWS) to host the cloud infrastructure which we would need to provision to
build this service. We understand that Swim Tech’s development team currently uses DigitalOcean
to provision their cloud infrastructure, so we would like to explain our reasoning for choosing AWS
over DigitalOcean for this project.

Infrastructure Requirements

Voice transcription is the most expensive component of the infrastructure on both DigitalOcean
and AWS. Conventionally, voice transcription is done by running audio through a language model
which has been trained to transcribe text for a specific language. Similar to large language models,
these models run more efficiently on dedicated hardware like GPUs but can run slower and with
less precision on a CPU.

AWS provides a fully managed transcription service called AWS Transcribe. For our use case,
AWS Transcribe is expected to cost $0.02400 per minute of audio.

DigitalOcean does not provide a transcription service like AWS, so transcription must run on one
of their other services. To select the right service on DigitalOcean, we must look at the specific
hardware requirements of a standard transcription model. Here we look at OpenAl Whisper. The
smallest model of Whisper, tiny, requires 1 GB of RAM, which prevents it from being run on
the smallest Droplet (DigitalOcean’s serverless function — see Serverless Architecture), which has
only 512 MB of RAM. A Droplet with 1 GB of RAM costs $6.00 per month. A more reasonable
estimate of running the small model requiring roughly 2 GB of memory would cost $24.00 per
month. Even with the small model, transcription on DigitalOcean will likely be slower and less
accurate than AWS Transcribe because the DigitalOcean hardware is not specifically tuned for
audio transcription.

Price Comparison

We estimate with 4 hours of lessons per week that roughly 30 minutes of transcription would
be needed. Over a month, this would be 120 minutes. With these estimates, the cost of voice
transcription for each platform is given below.

Service Monthly Usage | Price Per Minute | Monthly Bill
Digital Ocean 120 minutes N/A $24.00
AWS 120 minutes $0.02400 $2.88

Additionally, both platforms require additional infrastructure beyond just transcription to serve
the website, perform additional processing, and store processed feedback. These costs are much
smaller than the transcription costs for both cloud providers, and we would expect them both to
be less than $1.00 per month.

20

https://aws.amazon.com/transcribe/pricing/
https://github.com/openai/whisper

Pivot Cost and Project Completion Risk

The second reason we used AWS for this project is that we have experience with it. When we
learned that DigitalOcean was preferred over AWS, we had already finished a prototype and had
designed our architecture on AWS. Since then, we have invested several hours in exploring how
to make DigitalOcean as cost-effective as AWS.

We believe that we made the right decision with going with what we know to provide a better
product for Swim Tech, and have made strides to document how our system in AWS works so that
other developers can effectively use this tool. At this time, switching to a new cloud provider would
be a significant change in direction requiring us to redo work started in the first week of the project
and jeopardizing our ability to finish on schedule.

Serverless Architecture

For services with limited or irregular demand, provisioning a server 24/7 doesn’t make sense from
a cost perspective. Instead, quickly spooling up a new process on a managed machine allows us to
only pay for the compute time we use.

For services that may need to scale, using a serverless architecture is also most effective (to a
point) because it load-balances by default. This reduces the need for additional load-balancing
infrastructure that would also need to be running nonstop.

This pay-for-what-you-use model is the main benefit of using AWS in our project. Our architecture
requires several services, such as a database, API server, authentication service, and transcription
service. Some of these could run on the same compute instance 24/7, but it wouldn’t be scalable,
and not all could run on the same instance—so it would be required to pay for multiple services to
run 24/7. Although some compute solutions on DigitalOcean are cheap, the transcription service
would require a high tier of compute, which is expensive.

By using AWS instead, we would only be billed for usage, which is much cheaper. AWS API Gateway;,
for instance, charges $3.50 per million requests, which the application is unlikely to reach over
its entire lifetime. The cheapest DigitalOcean droplet, by comparison, is $4 per month. Similarly,
AWS Transcribe costs $0.02400 per minute of audio processed, or about $1.44 per hour of audio.
We’re not sure which level of DigitalOcean droplet would be required to run it, but assuming
it works without using a GPU instance (which is absurdly costly for a long-running instance), a
conservative estimate using the cheapest general-purpose droplet costs $63.00 per month to run.

Note: Long-running Processes

Provisioning compute instances, as we would have to on DigitalOcean, comes with additional
complexity inherent with long-running processes. Running a program for months or years on end
without error is unrealistic, risking service downtime and sometimes requiring manual interven-
tion, which is very costly.

Note: Resilience

Serverless architectures on AWS are inherently resilient, as processes can be spawned in any of
many Availability Zones. This greatly reduces the likelihood of a provider outage impacting the
service. In contrast, for the same level of resilience on DigitalOcean, we would need to provision
three times the baseline infrastructure needed to run the application.

21

Authentication & Authorization

One of the most critically important components of a secure system is the authentication and
authorization (jointly, “auth”) service. Simultaneously, it can be one of the most complex portions
to create from scratch. For this reason, on AWS we will use AWS Cognito, which offers seamless
SSO integration (logging in w/ Google, Microsoft, &c.) and JSON Web Token technology, in order
to secure student feedback from outsiders, and selectively provide access as appropriate for users,
both students and instructors.

Were we to use DigitalOcean, we’d need to construct this ourselves, which is yet another server to
pay for, and likely a database to store user login information as well.

22

	Introduction
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Definition of Done
	Risks
	System Architecture
	AWS Lambda
	AWS Transcribe
	Key-Value DB
	API Gateway

	Authentication & Authorization
	Appropriateness
	IaC and CI/CD

	Technical Design
	Match Ambiguity
	Phonetic Matching
	Part of Speech Detection

	Software Test and Quality
	Testing
	Software Quality

	Ethical Considerations
	Results
	Project Completion Status
	Future Work
	Lessons Learned

	Acknowledgements
	Team Profile
	References
	Appendix 1: Key Terms
	Appendix 2: AWS–DigitalOcean Comparison Report

