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I. Introduction 
Our product is a prototype of an Autonomous Paddock Mucking Robot, which is being developed for Longhopes 
Donkey Shelter. Three previous teams have contributed to this project; one for vision; one for pathfinding; and one for 
hardware. Our team is responsible for implementing the previous projects’ software and integrating it into the hardware 
for the prototype given to bring it closer to a functional product. The client, Longhopes Donkey Shelter, aims to rescue 
donkeys and rehabilitate them until suitable homes are found, and this robot would reduce their operational costs, 
allowing them to function more effectively as a non-profit. 

 
Figure 1: Team at Longhopes Donkey Shelter 

Two previous CSCI 370 projects and a previous Capstone Design project each tackled various tasks. The two previous 
software projects worked on a pathfinding algorithm for the prototype and a machine learning algorithm trained on 
identifying manure. 
 
The current hardware is a Capstone Project. It has the ability to drive around the paddocks and uses a rake on an arm, 
driven by a CAM, in order to pick up the manure. A LiDAR sensor is included for spatial awareness to avoid obstacles, a 
GPS sensor is included to define paddock boundaries, while a camera is used for the detection of manure. 
 
Longhopes Donkey Shelter initially sought to reduce the manual labor involved with cleaning their paddocks, but the 
long-term goal shifted to the prospect of eventually commercializing the paddock cleaner as a product to fund the 
shelter's operations. This means we must consider the possibility of future clients for this product as well. Additionally, 
the animals that will be near and interacting with this machine should be considered primary stakeholders, as they will 
spend the most time with it. 
 
We may have future groups coming in after us to inherit the project, so we should build our software with 
maintainability in mind, allowing future teams to adjust and adapt it for future prototypes as needed. 

II. Functional Requirements 
We were given lots of previous materials for our final product. As a result, we need to fulfill the previous functional 
requirements. 

1. Ease of Use: The robot interface must be simple enough for a non-technologically inclined individual to use. 
2. Navigation: It must be able to navigate the paddock autonomously. 
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3. Obstacle Avoidance: It must have a method to avoid collisions with both stationary obstacles (such as toys and 
trees) and non-stationary obstacles (volunteers and donkeys). 

4. Paddock Profiling: The unit must be able to save unique paddock boundaries and identify which paddock it is in 
based on GPS location. 

5. Manure Detection: The unit must be able to identify manure. 
6. Integration: We need to test the previous software on the physical model and implement it successfully. 
7. Effectiveness: The robot must be able to traverse a sufficient 95% of the paddock and pick up 80% of the 

manure therein. 

III. Non-Functional Requirements 
The funds spent by the capstone team were $6583.41 with the original project budget being $5000, we worked to keep 
any additional costs low.  

1.  Hardware Upgrades: Dustproofing, waterproofing to IP-67, and other environmental protection requirements: 
a. Waterproofing through using cable bladders 
b. Covering all non-waterproof or fragile components 

2.  Documentation: Code must be easily readable and maintainable by future teams: 
a. Comments 
b. Documentation on various languages and frameworks used 
c. Well-organized code 

3. Vision Node Tolerances: Coded tolerances for the robot: 
a. Tolerances for identifying obstacles 
b. Tolerance for what is identified as manure 
c. Tolerance for components of the robot that are in the field of vision 

4.  Location Constraints: No reliance on Wi-Fi or internet connectivity or service connectivity 
5. Compatibility: Software and hardware should be compatible with each other 

IV. Risks 
Key risks for the project include: 

1. Safety when operating near animals. 
2. Software and hardware operate harmoniously with minimal human intervention. 
3. Virtual environments accurately reflect the real world. 
4. Non-technologically inclined individuals must be able to operate the machine. 
5. We inherited this project from previous individuals which means we carry the flaws of their implementations 

and had to fix them as much as we could during our project. 
6. This project already has required significant funding and time investment from previous teams, so there is a 

larger punishment for failing. 

V. Definition of Done 
The project will be considered complete after this five-week session if the prototype can be placed in a paddock, started, 
and autonomously collect manure with minimal human intervention. To do this, the pathfinding, vision, GPS, and 
controls pipelines must all be functional and communicating. 

Tests we want the client to run include: 

1. The robot successfully cleans a paddock without manual intervention. 
2. The robot demonstrates the ability to avoid basic obstacles and the donkeys. 
3. Clients are able to operate the robot. 
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VI. System Architecture  
The system architecture for the prototype robot is composed of two primary controllers: an Arduino and an NVIDIA 
Jetson Orin (the Orin). Arduino is responsible for hardware control, sending PWM signals in response to I2C movement 
commands. The NVIDIA Jetson Orin runs ROS2 and handles high-level decision making and planning; it implements 
pathfinding, vision, and obstacle detection/avoidance algorithms. 

 

Figure 1: Robot system architecture diagram 

Software Framework 
As demonstrated by the chart above, the project utilizes ROS2 (Robot Operating System 2) to facilitate communication 
between software modules, sensors, and hardware. ROS2 is an open-source framework designed for robotics, which 
allows the creation of packages, nodes, and topics to connect each module of software together. ROS2 has a large 
community and a lot of resources for learning and building out packages. 

The robot makes use of three sensors (GPS, camera, and LiDAR) to implement three main algorithms (pathfinding, 
vision, obstacle avoidance) and these are all integrated inside of the ROS environment. 

Arduino and I2C  
Arduino is an open-source electronics platform that aims to integrate hardware and software. It is widely used for 
building digital devices and embedded systems.  The interface between the Arduino and the NVIDIA Jetson Orin uses the 
I2C protocol, which is often used within Arduino projects to enable communication between the microcontroller and 
other digital devices. 

Movement and Manipulation 
Arm: The purpose of this mechanism is to lower and raise a rake which is attached on one end of the arm. It is operated 
by a CAM to prevent back drive of the motor. 
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Wrist: This is a motor within the arm which rotates the rake 180 degrees. The function of this motor is to dump any 
manure that may currently be held within the rake. 

Drive Train: This encompasses the tires, steering, suspension, and motors. This allows the robot to move forward, 
backwards, left, and right, giving it the ability to maneuver around the paddock. 

Hardware Implementation: All hardware components are assembled onto a metal chassis that is built into an RC Car 
Base. The wheels of the RC car were previously upgraded to larger wheels to improve traction in muddy environments. 
All of the manipulators are controlled by Arduino and limit switches connected to the Orin set the movement 
boundaries for each axis.  

Software Updates 
Our challenge is to integrate several components of code into one usable program. We have decided to perform this 
integration using an Object-Oriented Programming method. This divides the code into individual hardware and software 
components, combining them in one central class. Each major subsystem (GPS, Vision, etc.) is encapsulated into a 
separate class or node for us to work in. We will then implement a control class to manage behavior later. 

Pathfinding 

 

Figure 3: Pathfinding system architecture 

Our robot has to find a path through all the obstacles that may be in the paddock. This has to be dynamic to some 
degree since the environment will likely change in real time. Navigating mobile objects like donkeys inside of the 
paddock would require the use of a real-time obstacle sensor like LiDAR. Our program, visualized above, defines 
pathfinding behavior to determine the optimal path to explore 95% of the paddock. These paths will be determined by 
various factors such as the boundaries and stationary obstacles defined by the GPS, manure detected by the camera, 
and dynamic obstacles such as staff or animals.  
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Manure Detection 
Our robot must be able to identify manure in various conditions and locales. We used a machine learning trained 
computer vision model to detect manure using the onboard camera. The previous software team developed an offline 
model that has stubs for being incorporated into the ROS environment. As of now, the previous code base was only 
available when feeding in pictures since the camera isn’t available as of now.  This previous model was trained on 
YOLOv5 from a Roboflow library of a previously obtained dataset. 

Since our robot would need to take in some sort of camera feed, we decided to implement live camera feed processing 
in order to identify the manure in real time. Figure 4 shows our current approach to how the model should be applied. 

 

Figure 4: Manure Detection Flowchart 

NMS is important for making sure only one pile of manure is detected at a time since without it, multiple bounding 
boxes could be applied to the same piece of manure. This means our mAP (mean Average Precision) score should be 
lower since that metric penalizes multiple boxes on the same object. Since we only have one box per object detected 
now, it should prevent the same pile of manure being detected multiple times in the same frame as well. The downside 
of this is computational cost, though. 

Moving forward, we decided to implement video processing by applying the model per frame to first get a gauge for 
how live vision would operate. Along with this, we planned to record some videos to test our model as well.  

GPS Software & Hardware 
The portion of the code that our team is tasked to develop on our own is the GPS software. To define boundaries for our 
robot's movement, it has been determined GPS is necessary due to the various types of boundaries that a paddock can 
have. This ranges from things like chicken wire (which LiDAR has complications with) to normal types of wooden fencing. 
GPS also allows us to define various obstacles as well and associate them with the paddock. 
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Figure 5: GPS Flowchart 

This framework, shown in Figure 5, was developed in ROS and will later be incorporated into the previous software 
team’s pathfinding algorithm. 

Design Challenges: 
Since our project inherits key components from previous projects, lots of the main design obstacles we encountered 
were centered around adapting to the software work of previous teams. Along with this, we also had to adapt aspects of 
the physical prototype to be more in line with our functional and nonfunctional requirements. 

1. Robot Architecture: Our physical prototype came to us with some minor issues that weren’t finished and since 
the previous hardware team didn’t have software experience, we had to develop some software to make the 
prototype’s capabilities closer to a final product. 

1.1. Camera is not connected: The camera module attached to the arm tower uses a 15 to 22pin FPC cable, 
but the cable that came with the camera is not long enough to reach the Orin. We needed to find a 
solution for the correct length of cable to reach the NVIDIA Jetson Orin. 

1.2. Camera was never integrated in ROS environment 
1.2.1. We need to apply the visual pipeline for this since there isn’t node integration yet. 

1.3. Electrical wiring was poorly labelled 
1.4. Electrical was built in a way that the wires easily detached during operation of the robot 
1.5. With the current suspension, the frame collides with the back tires 

2. Previous Software: Some aspects of the previous software made it hard for our team to inherit, and the 
unfamiliar code base of previous groups exasperated this to some degree. 

2.1. ROS environment:  
2.1.1. Complicated to access 
2.1.2. Not calibrated to our real-world environment, only the simulated one 

2.2. Gazebo environment is difficult to access 
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2.3. There are multiple programming languages to integrate 
3. GPS Software: We had to develop GPS software on our own. This GPS software is required to successfully 

implement pathfinding since the GPS coordinates will be needed for the boundaries of the paddocks.  
3.1. Integrated from ROS making it difficult to pull information from 
3.2.  Developing a new environment and starting over 

 or  
3.3. Using previously developed environments which were difficult to navigate and had little documentation 

VII. Testing and Quality 
Our tests are a mix of advancing the previous team’s virtual environment testing whilst implementing their virtual tests 
into realistic testing with the developed prototype. We verified the previous teams' tests while implementing the 
software and plan to test the hardware on-site. 

Off-Site Testing 
1. Establish Connections: 

1.1. With GPS base station through U-Center 
1.2. With GPS rover station through U-Center 
1.3. With Orin through ssh 
1.4. With webcam 

2. Camera Manure Detection: 
2.1. Allow robot to detect manure 

2.1.1. We can test this by using preexisting manure photos 
2.1.2. We can test this by using false manure 

2.2. Test different lighting and environment conditions for camera 
2.3. Test different methods of visual feeding for the camera 

2.3.1. Test for pictures 
2.3.2. Test for video 
2.3.3. Test for live camera feed 

3. Test Shape for Pathfinding: 
3.1. Manually define GPS boundaries 
3.2. Allow robot to create path in virtual environment 
3.3. Place fake manure somewhere along path 
3.4. Allow robot to run path finding and discover objects 
3.5. Document how all components interact 

On-Site Testing 
1. Empty Paddock (containing manure, but no donkeys): 

1.1. Manually gather GPS boundaries and stationary obstacles 
1.1.1. Define these coordinates in pathfinding algorithm 
1.1.2. Allow robot to create path in virtual environment 
1.1.3. Allow robot to traverse path in virtual environment 

1.2. Manually traverse paddock:  
1.2.1. Test various terrain 
1.2.2. Test various ground conditions 
1.2.3. Test turning radius 
1.2.4. Test path completion capabilities 

1.3. Find parameters for scooping algorithm 
2. Full Paddock (containing manure and donkeys): 

2.1. Observe how the donkeys and the robot interact while device is stationary 
2.2. Observe how the donkeys and the robot interact while device is in motion 

3. Full Computer Vision Manure Detection Testing: 
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3.1. Obtaining more pictures and videos for off-site testing 
3.1.1. Record manure in a variety of locations 
3.1.2. Take videos with changing conditions and different locales 

3.2.  Live testing camera feed on real instances of manure. 
3.2.1. Test in paddock  
3.2.2. Test in barn/indoor areas 

3.3. Testing confidence thresholds for computer vision to find the best range for identification 

Functional Requirements Testing 
Requirement 1: Ease of Use 

When testing on-site, we have the benefit of allowing non-technologically minded individuals to test and operate the 
robot. By allowing these users to operate the robot, we are able to observe how they expect to interact with it, what 
aspects of operation are difficult, and any issues they encounter. We’ll be able to discuss the user experience with them, 
taking note of anything that was awkward or difficult for them, and plan to address these problems.  

Requirement 2: Navigation 

A core requirement for our project is that it should be able to navigate a paddock by itself. We have implemented a 
previous projects pathfinding algorithm, and our prototype has the ability to detect obstacles and pick a path on its own 
without human input. We plan to simply start the pathfinding algorithm and compare it to how it would behave in our 
virtual Gazebo environment and oversee the differences. 

Requirement 3: Obstacle Avoidance 

By testing within our Gazebo environment, we can approximate how the robot will interact when traversing through 
various obstacles. Transitioning this into onsite testing, since our environment had a larger number of obstacles and 
positions it had to navigate through, our hope is that when we traverse through the paddock, there will be less issues 
that arise. 

Requirement 4: Obstacle Additions  

Our Gazebo environment easily supports the addition of new obstacles, so we have been able to test obstacles that 
were in the midst of our paddocks and how they would interact together. When storing this with our paddock profiling, 
we were planning to store the coordinates of the obstacles and the size of them with whichever relevant paddock profile 
manually needed these obstacles. 

Requirement 5: Paddock Profiling 

We were simply planning the ability for each mapped paddock to be saved by recording all of the GPS coordinates 
involved and simply registering that as a paddock. We will test the prototype’s ability to cycle between each paddock 
and see if it is capable of distinguishing the differences in how it should behave in each paddock. 

Requirement 6: Manure Detection 

The prototype must be able to recognize manure in various settings and using its own peripherals instead of testing it on 
our virtual environment. Along with this, it should be initiated to scoop up manure whenever it detects manure. To test 
this feature, we will use false manure in order to trigger the mechanism and see if it actually will be able to scoop up the 
manure as spotted.  

Requirement 7: Integration 

As the robot was developed, we continuously tested our code additions on the hardware, ensuring the changes made 
didn’t impact the operation. When an issue arose, it was quickly addressed to ensure bugs and hardware integration 
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issues weren’t buried over time. The hardware was regularly inspected and tested to ensure issues aren’t misattributed 
to software bugs. 

Requirement 8: Effectiveness 

As brought up by previous teams before us, the robot needs to be effective to a certain degree. This was determined to 
be a 95% threshold of effectiveness where it should be able to traverse 95% of the paddock and pick up all the manure it 
observes. This 95% threshold will be determined by if the hardware prototype can clean up 95% of the paddock. 

Non-Functional Requirements Testing 
Requirement 1 Dustproofing, Waterproofing, and other environmental protection: 

To solve this issue, we have revised certain aspects of the prototype hardware. This includes getting a new container and 
making sure we apply accurate waterproofing techniques to certain parts of the prototype.  

Due to the prototype’s need to be durable and traverse various different terrains we have revised the wheel design as 
well. We improved the previous hardware team's wheel design (which previously involved glueing the wheels as a 
temporary measure to get them attached) by 3D-printing a new design, shown in Figure 6, mounting the wheel to the 
base instead of gluing the wheel to the axel. The wheels had larger holes for the axles and accepted a larger hex shaft 
collar compared to the original wheels, so an adapter was created to accept the smaller hex shaft collar and axle with 
the new, larger wheels. 

 

Figure 6:  New 3D-Printed Mounting Design 

Along with this, we have asked for a new container. The purpose of this container is not only to better waterproof the 
main electrical components, but to also improve the protection of the components involved. 

Requirement 2: Code must be easily readable and maintainable by future teams. 

We have developed documentation for all the environments we have worked on and are planning to develop 
documentation for how ROS will incorporate pathfinding and manure detection as nodes for ROS. This will improve the 
code base and future teams' ability to interact with the project 

Requirement 3: Coded tolerances for the robot 

We have tested all the tolerances inside of the Gazebo container and have adjusted them to fit our living environment. 
We plan to test these tolerances in person to make sure the robot can accurately traverse its locales as needed. These 
tolerances are the acceptable ranges for the robot's perception and navigation, ensuring that its reliability traverses its 
environment. We will further test this on-site with real world conditions.  
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 Along with this, we can test the tolerances for our vision. We need to develop a tolerance for what should be 
considered manure and what components of the robot itself are seen within the field of view of the LiDAR. This means 
we have to develop some amount of self-occlusion. 

Requirement 4: No reliance on Wi-Fi or internet connectivity or service connectivity 

Previous teams have implemented most of their code in methods that don’t outright rely on internet connectivity. There 
was a large concern with previously developed computer vision at first relying on internet connectivity, but a 
workaround was found allowing us to utilize the previous code without internet. 

Requirement 5: Software and hardware should be compatible with each other 

We have taken steps to integrate the previous team's software environments and adapt them to the hardware. Previous 
teamwork should be developed as needed. Code developed in the virtual environment will be switched into the physical 
one. 

VIII. Ethical Considerations 
There are a lot of ethical considerations when it comes to this Autonomous Paddock Mucking Robot. To achieve full 
implementation of this product for commercial use, one must make sure that it doesn’t violate any IEEE or ACM 
principles. 

IEEE Ethical Considerations 

1.03. Approve software only if they have a well-founded belief that it is safe, meets specifications, passes appropriate 
tests, and does not diminish quality of life, diminish privacy or harm the environment. The ultimate effect of the work 
should be on the public good. 

It is imperative to make sure our software works correctly with the prototype to make sure that stakeholders don’t get 
affected by any problems that could arise from our software. Human stakeholders want the product to be efficient to 
reduce human labor while animal stakeholders don’t want to be harmed by the machine whilst they go about their day. 
Our product is supposed to improve the quality of life for all involved, so our team has to make sure that our product is 
at least safe to use.  

1.04. Disclose to appropriate persons or authorities any actual or potential danger to the user, the public, or the 
environment, that they reasonably believe to be associated with software or related documents.  

Regardless of the perceived safety of our product, we must make sure that for the deployment of our robot, we must 
disclose to potential customers the chance of danger when working with our machine. If any person or animal could be 
harmed during development, we also must inform the appropriate parties involved otherwise accidental harm could be 
caused as well. 

2.01. Provide service in their areas of competence, being honest and forthright about any limitations of their 
experience and education. 

Since the team is a student team, we have to be honest and realistic about what we can provide to our employer while 
trying to strive for professional-level work. Since we also inherit this from previous student teams, we also have to be 
understanding of any limitations that could arise from working with the residuals of previous teams as well. 

3.08. Ensure that specifications for software on which they work have been well documented, satisfy the users' 
requirements, and have the appropriate approvals. 

Our final product should have good documentation since it will be commercialized in the future, which means a 
professional team will further develop our prototype. To adequately pass on our project, our team needs to provide 
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good documentation and needs to provide adequate information on how to implement and improve things we missed. 
This will also assist our colleagues during this project as well.  

ACM Ethical Considerations 

1.1 Contribute to society and to human well-being, acknowledging that all people are stakeholders in computing. 

Our final product should serve to solve the outlined problem of mucking paddocks in a way that makes it easier for the 
user to run their facility. This would contribute to human well-being by simplifying an undesirable task and allowing for 
human labor resources to be redirected elsewhere. If we violated this principle and created something that detracts 
from overall human wellbeing, we would have failed at our main objective. 

1.2 Avoid harm. 

The final product must avoid harming both the user and the animals around it. We do this by identifying obstacles 
around the robot. These principles could be violated since the robot is autonomous with little supervision and requires 
the handling of untrained individuals who could hurt themselves when using the robot. If these principles are violated, 
this means that the Autonomous Paddock Mucking Robot is not safe to be deployed around both workers and animals, 
and revisions will be required. 

1.5 Respect the work required to produce new ideas, inventions, creative works, and computing artifacts. 

As we have worked on development, we have been working with both software and hardware from previous teams. It is 
important that we keep this principle in mind, especially as we navigate challenges with these previous 
implementations. Failure to respect the work that goes into production of new computing artifacts could lead us to 
struggle with implementing these previous works. If we violate this principle in our own work, we could underestimate 
the time and energy required to meet the deliverables set out for us and could end up not reaching our goals. 

2.1 Strive to achieve high quality in both the processes and products of professional work. 

Our final product should be high quality, as should our work on that product. Creating a low-quality product and 
violating this principle could lead to frustration and added costs for future consumers. Not performing high-quality work 
on the development of this product could lead to struggles to troubleshoot and solve issues that may come up on a large 
scale. On the small scale of these five weeks, failure to perform quality work could affect the development of groups 
coming after us. 

3.6 Use care when modifying or retiring systems. 

Our final product must be easy to maintain and retire by an untrained individual. It must be easy to detect when the 
robot is in need of maintenance or retirement. If this principle is not followed, the robot could malfunction or run at 
suboptimal levels without the user even knowing. This could lead to frustration in the best case and potential harm to 
the user and the animals in the worst case.  

3.7 Recognize and take special care of systems that become integrated into the infrastructure of society. 

Our final product could become integrated into the infrastructure of society, as farming is a large industry in the US. It is 
important that we respect this principle and take special care when developing and testing this system.  

Michael Davis Tests 
Reversibility Test:   

The Autonomous Paddock Mucking Robot stands to take away jobs from low skill labor on many livestock farms. For 
Longhopes Sanctuary in particular, their volunteer employees would simply have more time to take care of other 
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positions in the shelter, but this is not always the case. If this product were commercialized, individuals in charge of 
mucking could lose their jobs. On the other hand, having to scoop up manure could be seen as such an undesirable job, 
that it would be an overall benefit to every worker if the pool of these jobs was smaller.  

Product Test:  

The Autonomous Paddock Mucking Robot may be developed as a commercial product in the future, which means that 
we should have high-quality development and adequate documentation for teams after us to pick up where we left off.  

IX. Project Completion Status 
The team predominately focused on implementation of previous groups' materials and establishing a foundation for 
future teams to work on. Our improvements spanned both software and hardware, including both documentation and 
improvement on previous work done. There is still further work to be done, both on the hardware and software sides of 
the project.  

Off-Site Test Results 
1. Establish connections: 

1.1. The team established a connection between the base station and a local machine by using U-Center 
software to interpret data. This verified that the base station was configured properly and was able to 
define its location within an accuracy of approximately 4 feet. Location was verified through Google 
Maps.  

1.2. The team was able to establish a connection between the rover station and a local machine by using HW 
Virtual Serial Port software and U-Center software to interpret data. This verified that the rover station 
was configured properly to read RTCM data from the base station. The team verified this by confirming 
that the rover’s location had an accuracy within approximately 4 inches which continuously updated as 
the robot changed locations. Location was also verified through Google Maps and U-Center software. 

1.3. The team did establish a connection between the Orin and a local machine by running the command 
‘ssh paddock-pal@192.168.131.244’ and providing the password ‘mines’. This connection was verified 
by running the program ‘./dungbot’ which launches the controller commands.  

1.4. This team was able to establish a connection between the Orin and a webcam. To prove that the 
integration worked, the Orin was connected to a monitor and peripherals. The team was then able to 
pull up the camera view on the Orin and verify that its output matched the live feed of the webcam. 

2. Camera Manure Detection 
2.1.  Our team connected a webcam to Orin in order to test the camera's compatibility with the Orin and if it 

would interact well with the system. We saw little issues outside of incompatibility issues with Cheese, 
the default Linux camera software, which we quickly adapted to by downloading Kamoso, an alternative 
piece of software. 

2.1.1. Using previous teams’ datasets along with new photos we took during data collection, 
we were able to test the model and verify its efficacy. 

2.1.2. False manure allowed us to preliminary testing on our live camera feed code for manure 
testing which allowed us to develop confidence for bringing it to on field testing. We noticed 
some false positives, but we thought this was due to the fact that we mostly tested this inside. 

2.2. We were predominantly able to test inside a carpeted room with false manure. Previous teams mostly 
did different locales in their dataset, but we wanted to take a peek at different lighting conditions as 
well. 

2.3. Test different methods of visual feeding for the camera 
2.3.1. Since we had previous data sets from previous teams, we were easily able to test the 

efficacy of our model on pictures. Since we also did data collection, we were able to recalibrate 
our confidence threshold that was being used for our model as well. When taking new data 
from our preliminary on-site visit 
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2.3.2. Our off-site testing for videos mostly was built around our preliminary on-site data 
collection for videos. Previous teams didn’t record videos and during this time, we didn’t have 
any false manure so we planned to record videos on-site so that we could do some off-site 
development.  

2.3.3. Most of our off-site testing for live camera feed was dedicated to simply getting it 
working as a whole, but we were able to get preliminary testing on our false manure to get a 
gauge of how it would interact with identifying manure. 

3. Test Shape for Pathfinding 
3.1. Manually enter the GPS boundaries 
3.2. Program creates a list of goals, 2m apart, spanning the entire paddock defined by the boundaries 
3.3. Allow robot to create a dynamic path to the first goal in virtual environment 

3.3.1. Ensure that as the robot navigates to each goal, obstacles are detected and avoided 
3.4. Allow robot to continue to navigate to nodes until 95% of the paddock is traversed 
3.5. Document how all components interact 

On-Site Test Results 
1. Empty Paddock (containing manure, but no donkeys) 

1.1. Manually gather GPS boundaries and stationary obstacles 
1.1.1. Define these coordinates in pathfinding algorithm 
1.1.2. Allow robot to create path in virtual environment 
1.1.3. Allow robot to traverse path in virtual environment 

1.2. Manually traverse paddock:  
1.2.1. Terrain Observations: The robot was powerful enough to drive through every terrain 

such as ditches. Additionally, if the ground is not flat, the rake can be caught on rough terrain, 
stopping the entire robot. 

1.2.2. Ground Condition Observations: The robot was driven on dry and slightly muddy 
ground conditions. This did not alter the performance of the robot’s operations. 

1.2.3. Turning Radius Observations: This robot has a minimum turn radius of 2.7 meters. 
1.2.4. Path Completion Observations: The team found that at maximum speed the drivetrain 

would often fail after about 2 minutes of constant driving. Excessive turning aggravated this 
observation, shortening the failure time to about 1 minute. The team was able to deduce that 
the drivetrain was pulling too much current from the ESC Motor Controller. Once not at max 
power, the drivetrain did not fail at any point in testing. 

1.3. Find parameters for scooping command 
1.3.1. Timing: If controlled manually (via time delays as opposed to limit switches), the wrist 

takes about 6.4 seconds to complete a full rotation. The arm takes about 1.5 seconds to go 
down, and about 8 seconds to go up (when weighed down) 

1.3.2. Weight: The arm struggles to lift heavy piles of manure. Smaller scoops or a stronger 
arm is necessary. 

1.3.3. Placement: The arm should be fully down (limit switch pressed) so that the rake is fully 
depressed against the ground. 

2. This team made several observations regarding donkey and robot interactions: 
2.1. Observation 1: Most donkeys feared the robot while the device was stationary. They would come near 

the device but not get close to it 
2.2. Observation 2: Most donkeys feared the robot while the device was in motion. They would actively run 

away from the device or leave the paddock entirely. 
2.3. Observation 3: The was one notable exception to Observation 1 and 2. A donkey named Gillie was 

extremely intrigued by the robot, as shown in Figure 7. Any chance he got, he would approach the 
device, sniff around, bite various components, and lick the battery. Due to the drooling condition this 
donkey suffers from, the team had to be very diligent to ensure that all electrical components remained 
dry. This reinforced the need for waterproofing. This also highlighted a requirement that should be 
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added to the final product. This team now believes that all individual components should be easily 
sourceable and replaceable in case of damage. 

 

Figure 7: Gillie vs. The Robot 

3. Full Computer Vision Manure Detection Testing 
3.1. Within bright conditions in the sandy paddocks, most instances of manure could be identified at 

relatively high thresholds.  Some smaller nuggets of manure were not detected until we allowed lower 
thresholds, but lower thresholds meant more inaccuracies which lead to false positives such as aspects 
of the donkey being detected (mostly eyes and hooves in the corner of the camera’s view). 

3.2. Within low-light conditions like that of a barn's interior, without setting the threshold to be low, the 
number of detections massively decreased. Along with this, false positives occurred whenever dark hay 
or similar items were on the ground.’ 

3.3. When transitioning between bright conditions and low-light conditions, the camera we are currently 
using basically can’t detect anything at all since, the camera’s view is over exposed with light or darkness 
which means that we may have to adopt a better camera or develop behavior in the robot to adapt to 
this. 

3.4. An idea of false positives that should be exclusion trained by future teams was developed. 
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Hardware/ Movement 

 

Figure 8: Labeled picture of the robot 

We have had success fixing a few of the hardware issues, and our current prototype is shown above (Figure 8). The main 
issue we identified was that the wheels that were used to replace the wheels of the original RC car were slipping off the 
chassis. Upon further inspection of the connection between the wheels and the axis, we discovered a 3D printed adapter 
that had been reinforced with superglue and was not working to hold the wheel in place as it twisted and turned during 
normal operation. We 3D printed a new adapter to properly connect the wheels to the base.  

Additionally, we rewired the interface between the Arduino and the Orin, utilizing a ribbon connector and cage clamps 
to avoid single pin connectors, which are pulled out easily.  

Another issue that was immediately identified was the lack of connection between the camera and Orin. The ribbon 
connector that came with the camera was nowhere near long enough to connect the box holding the Orin at the center 
of the base and the camera, which was strategically mounted very far from the other electrical components so as not to 
obscure the view. We ordered and attached a longer ribbon cable, but we discovered that we would still require an 
adapter to attach the ribbon cable to the Orin. At this point our work on manure detection had also led us to realize we 
might want a higher quality camera anyways, and so the issue was never fully resolved. This led us to using a team 
member’s old webcam and using it was a suitable replacement for the camera. 

There were a few additional issues that we found with the hardware that caused struggles with our non-functional 
requirements. Another big issue we were made aware of during our initial hardware inspection was that the robot was 
not thoroughly waterproof. There was a waterproof box to hold the  Orin and the Arduino, and the wire connections 
between the two, but that box was missing the lid, and we were never able to locate it. We ended up purchasing a larger 
box to hold those elements, but we did not have sufficient time to install this box and will leave it to future teams. The 
other issue with waterproofing that we discovered was that cable bladders had not been used for all connections 
outside of the box, which is necessary to waterproof the robot. We did not have time to install these bladders, although 
we have a few in storage. 

One of the main issues we discovered through on-site testing was that the new wheels were too large for the 
suspension and were rubbing against both a plastic rudder and the 80/20 base of the robot itself. We were able to 
remove the rudder which helped with this issue, and in turn with the robot's mobility, but permanent hardware changes 
will have to be made to resolve these issues more thoroughly.  
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Pathfinding  
Pathfinding algorithms were developed by previous teams, but only inside of a Gazebo environment. This environment 
was difficult to access and required X11 forwarding for any GUI, which caused it to be difficult to access and run on 
many types of machines. We documented these issues and produced commands and instructions to access these 
various environments. Once accessed, we had access to an algorithm that would run from a start point to an end point 
and avoid obstacles along its way. We were able to modify this algorithm to traverse the entire paddock in a graph of 
targets, two meters apart, which allows for full visual traversal of the paddock, while also avoiding obstacles. The robot 
can run this in any virtual world. There was code present in the previous repos for a computer vision node, but it was 
implemented using textures such as April tags, which do not render in Docker environments. After discovering this we 
decided to focus on implementing GPS first and successfully read manually entered GPS coordinates. Manure detection 
has yet to be implemented in the virtual environment, and all pathfinding code still exists in this virtual environment and 
has not yet been pushed to I2C or tested on the robot. The Gazebo virtual environment and corresponding visualization 
in RViz are shown below. 

 

Figure 9: Simulated turtlebot3 house inside of Gazebo environment 
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Figure 10: LiDAR visualization of the above Gazebo environment inside of RViz 

GPS & LiDAR 
This team was able to develop code and successfully configure a GPS system to provide latitude and longitude 
coordinates within a required level of accuracy of approximately 4 inches. It is configured by two subsystems: a base 
station and a rover station. 

The base station is set up regionally (somewhere on the property) and is composed of two main components. The first 
of which is a main antenna that connects to as many satellites as possible and reads in raw locational data. This must 
connect to at last 10 satellites before the data is considered accurate, but with a clear view of the sky should connect to 
approximately 40 satellites. This raw data is then fed directly into the second component, a Sparkfun Reference Station. 
The reference station then runs a minute long survey, simply gathering as many data points as possible. After this survey 
is completed, it averages the gathered data points to formulate the antenna’s current location. The latitude and 
longitude coordinates generated in this step have an accuracy within 5 decimal places or approximately 4 feet. Then the 
reference station transmits RTCM data (correction data) across a TCP port to be received by the rover station. 

The rover station is set up on-board the robot and composed of a local antenna, a data receiver, and the Orin. The local 
antenna operates similarly to the main antenna; however it transfers its data directly to the receiver. The receiver then 
averages and interprets this data before transferring it directly to the Orin. The Orin then reads in the RTCM data 
transmitted from the reference station to increase its coordinate precision to 6 decimal places or approximately 4 inches 
of accuracy. These coordinates have been published too ROS. 

This accuracy was verified through U-Center software. This configuration is illustrated in Figure 11. 
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Figure 11: GPS Configuration 

Furthermore, a display of this architecture in action is shown above, and its real-life setup is shown below. Additionally, 
this team has created extensive documentation regarding setup for this configuration including helpful information that 
may be needed if this configuration ever needed to be updated. 

 

Figure 12: Real world application of full GPS configuration 

Base Station 

Rover Station 

Main Antenna 

Reference 
Station 

Local Machine Local Antenna 

Orin + Receiver 



22 | P a g e  
 

This team was able to configure the LiDAR for polling; however, data has not been read from the device to prove 
accuracy yet. 

Manure Detection:  
Much of the previous team's application of the model was dedicated to an ROS environment, which meant that 
developing a method suitable for running the model was needed, especially for demo purposes since as a team, we had 
issues interacting with previous team's environments. Since the previous team's environment required a specific 
environment, but the environment could not interact correctly with any camera, it was decided that new code should be 
written and then later adapted to the ROS nodes.  

No new models were trained since the original training was set from a Roboflow library with the offline improvements 
that have been implemented by previous teams. Many issues in the computer vision remain as it may falsely identify 
specific objects (orange objects or donkey eyes) and has issues with identifying things in certain lightings without 
adjusting the confidence threshold of the model so we may  

We have added the option to apply NMS and live camera feed detection, which makes it easier to demonstrate to our 
clients while also allowing us to incorporate it more easily into the ROS nodes. NMS removes duplicate bounding boxes 
on our model, which also reduces false positives in our object detection results. Video detection and live video detection 
were developed for demonstration purposes for our clients. Video detection is much more computationally heavy than 
the live camera feed detection that will be implemented into our final product. Live camera feed detection might be too 
computationally intensive, but the alternative is simply continually taking photos which was not preferred since the 
previous hardware team had to update the Orin due to storage constraints at a previous point. A photograph with our 
detection program running is shown below. 

 

Figure 13: Screenshot of Live Camera Manure Detection 

X. Future Work 
 Hardware/ Movement 
We have left the issue of implementing the camera hardware to a future team. If given more time, we would have 
chosen a waterproof webcam with a higher resolution than the camera currently attached to the robot. It will be up to a 
future team to find a webcam with these specs and properly connect it to the Orin. 
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We also ran out of time to rewire our Orin and Arduino connections inside of our new waterproof case and recommend 
a future team to do this work. This will require careful deconstruction of the current wiring and reconstruction of it in 
the new box as well as drilling holes and implementing cable bladders for wires that connect to other hardware 
components. Any other connections outside of the box that are not already waterproofed by cable bladders will also 
need to be carefully drilled in order to install them. 

The wheels of the robot are currently rubbing on the frame due to their size, and changes will have to be made to the 
frame, the suspension, or the wheels themselves in order to mitigate this issue. We recommend a future team purchase 
new wheels for the robot that will be tougher, filled with dense foam instead of air (to mitigate issues with contact with 
sharp objects such as burrs), but smaller so they will fit underneath the frame. These could be purchased from the RC 
car company itself. Additionally, a rebuild of the suspension is highly recommended, to improve mobility in the paddock 
and reduce rubbing. 

Pathfinding 
Pathfinding only exists inside of the virtual Gazebo environment at this point. The code will need to be converted into a 
series of instructions that the Orin will push to the Arduino. We also recommend that future teams implement manure 
detection as a factor in pathfinding by identifying all manure as goals inside the code. All this functionality should be 
tested extensively before being placed inside the paddocks, to ensure safety. 

GPS and LiDAR:  
We need to finish implementing the GPS and LiDAR’s hardware with pathfinding. The hardware works and the reference 
station and Orin are interacting with each other to obtain coordinates, but the pathfinding code needs to fully integrate 
its submodules. Future teams will also have to map over all the paddocks GPS boundaries with the documentation that 
we have developed for the GPS. Additionally, the GPS coordinates have been published to ROS, but the LiDAR data has 
not. 

Manure Detection:  
The model could be improved when it comes to visual edge cases. While it’s fairly accurate as of now, it either isn’t 
sensitive enough to detect manure in certain lighting conditions or misidentifying certain objects like that of the 
donkey’s eyes or hoofs or orange play toys at Longhopes. This also applies to objects not fully in the camera’s field of 
view as well. This means retraining a new model, making sure to supervise the model’s learning closer to making sure it 
can exclude these objects. While LiDAR and obstacle detection may make these false positives less impactful, in a 
finalized product, it would probably be good to remove these. Transitioning lighting conditions is also a major issue, as 
the model can’t identify manure when adapting to lighting conditions. Along with the issues of detection becoming 
poorer under certain lighting conditions, future teams will have to consider how they will tackle these issues in 
conjunction with the lighting shifts. Along with this, a higher resolution camera may be able to remedy these issues, 
especially issues that arise from different lighting conditions.  

As seen in the two Figures 14 and 15 below, we can see that cutoff portions of objects (such as shadows) or circular 
objects that are orange in color and circular in shape can also be identified as manure. These have similarities to manure 
that our model can see, but to human eyes, can’t be identified. This could be the model identifying the shape or seeing 
orange as a lighter shade of brown, but this is ultimately conjecture.  
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Figure 14: Misidentified shadow. 

In addition to this, the computer vision needs to be integrated into the pathfinding decision making still as we have not 
fully integrated how we will use manure identification to designate all the goals.  A robust method for turning detections 
into actional goals or states for the pathfinding logic is a major decision point for the next team. We can develop 
coordinate-based goals determined by the camera or line of sight navigation where the robot simply goes to the closest 
or more recent detection. 

Our model doesn’t distinguish between each piece of manure as of now. We could achieve this with deep sorting which 
would assign an ID to each piece of manure but ultimately, since our robot will be scanning the paddock, assigning a 
value to each value of manure would likely be a waste of computational power but it is important to consider going 
forward since future teams will have to further implement our components together. Each piece of manure is being 
detected without overlapping bounding boxes (due to NMS) which probably would make things like deep sorting easier 
to implement. 

 

Figure 15: Falsely Detected Object Next to Manure Dump Spot 

The initial ideas around this idea were either to calibrate the camera and drop a “goal pin” for the manure or to simply 
drive to the first pile of manure in line of sight. Future teams need to also decide between having manure detection be 
implemented through a live camera feed or by continually taking photos over time as well. Goal pins could be developed 
by calibrating the camera to a 3D environment and allowing it to support the ability to detect distance of some sort. 



25 | P a g e  
 

Some of the previously mentioned items would most likely be easiest to implement by training a new model. YOLOv5 
was the easiest form of YOLO to use at the time period but newer things like YOLOv8 and YOLOv11 have better support 
with the Ultralytics Python Library which is an open-source library that would help improve implementation and 
integration with our model which would ease development in the long run. 

XI. Lessons Learned 
Throughout the project we were all introduced to new systems and technologies that we had not interacted with 
before. Many people on our team were introduced to ROS or Docker for the first time and having to learn these as we 
worked presented unique challenges and opportunities to learn.  Working with new software libraries and learning how 
to work with them regardless of your native platform was generally pretty fulfilling as well. Notably GPS and LiDAR stood 
out in how interacting with them went. 

We also had to adapt to a large code base, so the team learned a lot about managing and maintaining an existing 
system, as well as integrating multiple separate systems. We realized that to maintain a project's workflow, adequate 
documentation was massively important for introducing new teams. To alleviate the team’s future struggles, we decided 
to have a larger focus on documentation as a core aspect of our project. When implementing previous ideas from the 
other team, we realized their ideas, since they didn’t have the hardware prototype at the time, were a little incongruent 
with what our protype was capable of, meaning that we had to learn to adapt based on what was available. 

Being able to work on a hardware focused project was new for some of our team members as well and working on the 
hardware given to the team was an enlightening experience. Getting all the components of the hardware to coordinate 
with the software and the complexities involved with doing so highlighted the importance of testing and taught us the 
aspects of system integration as well.  

Computational power was something we had to consider at times, especially for some of the more software focused 
aspects of the project. This was especially in our team’s minds since we heard that the Capstone Team had decided to 
purchase another Orin due to similar concerns. When it came to manure detection, we decided to apply NMS on top of 
the model previously given to us. Since we initially thought, we were going to use manure detection to drop a “pin” or 
goal for pathfinding. Reducing the overlapping detections would’ve made this much easier but since we didn’t get to 
defining goals based on the visual detections from our model and planned to consider pivot towards something else, this 
ended up being additional computational cost for little reason. 
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 Key Terms 
Term Definition 

Arduino An open-source electronics platform based on being a ”easy-to-use hardware 
and software platform”. 

Base Station A regionally hosted GPS system location somewhere stationary on site. This is 
composed on an antenna and Sparkfun Reference Station 

Bounding Box A rectangle drawn over detected objects (manure in this case) in an image or 
video. 

Cage Clamp A type of electrical terminal block connection that uses spring pressure to secure 
wires, eliminating the need for screws or crimping 

CAM A mechanical mechanism converts rotation into linear motion. It is used in the 
arm in order to control the lifting mechanism of our hardware prototype. A CAM 
was used in order to prevent back driving the motor. 

Computer Vision A field of AI that enables systems to interpret visual data to make decisions. Here 
it is used to identify manure. 

Docker A platform used to simulate environments inside containers. It ensures 
consistent environments across machines for developers. We experienced 
compatibility issues with these containers in this project. 

ESC Motor Controller A device that manages the speed, direction, and braking of an electric motor 

Gazebo An opensource simulator that integrates with ROS, providing a virtual 
environment for us to test our hardware prototype in a simulated environment. 
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GPS Global Positioning System used to determine latitude and longitude coordinates 
on Earth. 

HW Virtual Serial Port A software used to create a virtual serial port from an open TCP port connection. 
Older versions of U-Center had this capability, however modern versions do not,. 
This software performs this action for U-Center. 

I2C Inter-Integrated Circuit. A communication protocol that transfers data between 
our microcontroller (Arduino) and our main platform (the Orin). 

LiDAR Light Detection and Ranging. A method that measures technology by 
illuminating its surroundings with laser light and analyzes reflected pulses to 
determine the range. Used for obstacle detection and mapping. 

Limit Switch A sensor used to detect mechanical movements. Used here to prevent over travel 
of the robot's arm. 

Machine Learning AI that enables systems to learn from datasets and train models without 
explicitly being programmed. Used here for manure detection. 

mAP Mean Average Precision. Used to evaluate the accuracy of models for object 
detection. A combined evaluation of precision and recall. 

NMS Non-Maximum Suppression. A computer vision technique that removes duplicate 
bounding boxes around an identified object to reduce false positives and visually 
clear up visual clutter. 

Orin (NVIDIA Jetson Orin) The NVIDIA Jetson Orin is the primary onboard computing platform used in our 
system. It runs ROS2 and is meant to manage computer vision, pathfinding, and 
sensor data and communicates with the Arduino to control movement. It is 
essentially the hardware prototype’s brain. 

Pathfinding A process to determine the optimal route while avoiding obstacles. Here it is 
used for your robot's ability to take the optimal path to its manure. It is 
implemented in our Gazebo simulation. 

PWM Pulse Width Modulation signals control the amount of power delivered to a 
device. 

Roboflow A platform that hosts image data sets for training computer vision models. Our 
manure detection model was originally trained on a Roboflow dataset. 

ROS Robot Operating System. A framework for developing and managing software 
components for our hardware prototype. This project specifically uses ROS2 for 
hardware integration. 

RTCM Radio Technical Commission for Maritime Services. The standard protocol is used 
to transmit data to GPS receivers. 

Rover Station The locally hosted GPS system onboard the robot. This is composed of an ANN-
MB-00-00 antenna, a receiver, and the Orin. 

Sparkfun Reference Station A dedicated station designed for high-precision GPS/GNSS applications using 
Real-Time Kinematic (RTK) technology 

U-Center A software tool that visualizes and interacts with GPS data. We used it for 
debugging and viewing positional data. 

Ultralytics An open source team that has developed YOLOv5 and beyond which is the basis 
behind the vision here. This also could refer to the Python Library of the same 
name as well. 

YOLO YOLO stands for You Only Look Once, and it aims to recognize objects with high 
accuracy and speed in real time. 
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