

CSCI 370 Final Report

Sat Solvers (Davidson 1)

Jack Hall

Rygar Schyberg

Mallory Shaloy

Leif Wegener

Revised June 12, 2025

CSCI 370 Summer 2025

Mr. Scott Jensen

1 | P a g e

Table 1: Revision history

Revision Date Comments

New 5/12 Initial document created

Rev - 2 5/13 Minor Update to change team and member names

Rev - 3 5/14 Add barebones definition of done

Rev - 4 5/15 Write initial introduction, functional requirements, and definition of done

Rev - 5 5/17 Update risks

Rev - 6 5/18 Finished Initial Draft of Report for sections I-V

Rev - 7 5/21 Create system architecture and minor update to team profile

Rev - 8 5/22 Minor update to definition of done

Rev - 9 5/30 Start software test and quality, and ethical considerations

Rev - 10 6/1 Update software test and quality, and ethical considerations

Rev - 11 6/4 Expanded System Architecture section

Rev - 12 6/7 Minor Section title update

Rev - 13 6/8 Write future work, project results, and lessons learned sections

Rev - 14 6/9 Polish all sections, and update results and add graphs

Rev – 15 6/10 Polish all sections and update definitions

Rev – 16 6/12 Update throughput simulation test, and ethical considerations.

2 | P a g e

Table of Contents
Figure Table.. 3

I. Introduction .. 4

I.I High Level Scope .. 4

I.II Client ... 4

I.III Definitions .. 4

I.IV Stakeholders .. 4

I.V Maintenance ... 4

II. Functional Requirements ... 4

II.I Simulation ... 4

II.II Network representation .. 5

II.III Algorithm .. 5

II.IV Performance Benchmarks .. 5

III. Non-Functional Requirements .. 5

III.I Speed ... 5

III.II Scalability .. 5

III.III Adaptability .. 5

III.IV Research .. 5

IV. Risks .. 5

IV.I Technological Risks .. 5

IV.II Developmental Risks .. 5

V. Definition of Done ... 6

V.I Prototype Algorithm(s) ... 6

V.II Software Prototype ... 6

V.III Benchmark Comparison Data ... 6

V.IV Client Approval ... 6

VI. System Architecture ... 6

VII. Algorithm Design ... 8

VII.I Greedy Search ... 8

VII.II Ad-Hoc and Ad-Hoc with depth ... 9

VII.III Centralized Point .. 9

VII.IV Dijkstra’s Algorithm .. 9

VII.V Grid Path .. 10

VIII. Software Test and Quality .. 10

VIII.I Software Quality Policies ... 10

3 | P a g e

VIII.II Software Testing Model ... 10

VIII.III Software Test Cases ... 11

VIII.V Final Report Quality Test .. 12

IX. Project Ethical Considerations .. 12

IX.I Design Ethical Considerations .. 12

IX.II Final Product Ethical Impact ... 13

X. Project Results ... 13

X.I Results ... 13

 X.II Best Overall Algorithm .. 17

XI. Future Work .. 17

XII. Lessons Learned ... 18

XIII. Acknowledgments .. 18

XIV. Team Profile .. 19

References ... 20

 Appendix A - Key Terms .. 1

Figure Table
Figure 1: Project Architecture .. 7
Figure 2: Finite State Automata for Satellite Model .. 8
Figure 3: Results of 600s Simulated Throughput Test On 3 Small-Medium Satellite Constellations 15
Figure 4: Results of Throughput Test on 7608 Satellite Constellation .. 16
Figure 5: Graph of All Algorithms Comparing Packets Sent to Operation Time.. 16

4 | P a g e

I. Introduction

I.I High Level Scope
With the rapid expansion of satellite communications networks and low Earth orbit constellations, the

importance of innovative solutions in the space domain software application realm is more important than ever.

The purpose of this study is to tackle the challenge of optimally routing data through a dynamic network of

satellites in real-time, with a focus on minimizing latency while also maximizing data throughput and

maintaining reliability. The goal of this application is to contribute to more efficient inter-satellite

communication, leading to more robust and performant global connectivity [1].

I.II Client
The client for this project is Davidson Technologies, Inc. (Davidson). They are a 29-year-old small business

leading in digital engineering, cybersecurity, missile defense, and mission-enabling algorithms. They deliver

solutions to the Department of Defense, with a focus on aerospace operations and contested environments.

I.III Definitions
LEO - Low Earth Orbit. Refers to satellites orbiting at less than 2,000 km above the surface of the Earth.

MEO - Medium (mid) Earth Orbit. Refers to satellites orbiting between 2,000 and 35,780 km.

Geosynchronous - A type of satellite orbit that follows the rotation of the Earth. A satellite in this orbit will

appear to always have the same longitude from the ground. About 35,786 km above the surface of the

Earth.

Geostationary - A type of Geosynchronous orbit above the equator. A satellite in this orbit will appear

 stationary from the ground.

TLE - Two/Three Line Element Set. Data format encoding information about a satellite.

SGP4 - Mathematical model for predicting the position and velocity of satellites based on a TLE

Satellite Constellation - A group of satellites with one shared purpose or control.

H3 - Discrete global grid system developed by Uber.

ISL - Intersatellite Links. Technology that enables communication between satellites in a constellation.

I.IV Stakeholders
The primary stakeholders for this project are Davidson and their clients. Davidson is looking to eventually launch

satellites and expand into the space domain, and both Davidson and the DoD have an interest in the project.

Furthermore, the U.S. government and its allies stand to benefit from a more robust and performant global

communication network.

I.V Maintenance
Davidson is responsible for maintaining any software generated by this project. Davidson is considering using

the results of the project in a future partnership with Mines Advanced Software Engineering students. In such a

case, the responsibility of maintaining software may temporarily be transferred to the student-led team

II. Functional Requirements
The main components of this project are a simulation of a constellation of satellites, a routing algorithm for

efficient satellite communications, and performance benchmarks.

II.I Simulation
A simulated constellation of satellites in low earth orbit in order to test our communications routing

algorithm and compare it to existing ones. The simulation replicates orbital trajectories, inter-satellite

communication variability, and communication channel characteristics. It is also designed to simulate

satellite failure to test our algorithms' adaptability.

5 | P a g e

II.II Network representation
As part of our algorithm development, we create a dynamic graph with each vertex as a satellite. This graph

simulates latency between satellites as well as accounting for bandwidth and error rates.

II.III Algorithm
The algorithms are intended to provide a way for satellites to communicate optimally. The algorithms are

designed with the intention to minimize latency while maximizing throughput, while also adapting to dynamic

networks. Additionally, they are designed to continue to operate efficiently when unexpected events occur, such

as multiple satellite failures.

II.IV Performance Benchmarks
We evaluate our algorithm against traditional routing strategies using multiple test scenarios to highlight

improvements in latency and throughput. We also simulate scenarios such as high network loads, satellite

outages, and performance over time.

III. Non-Functional Requirements

III.I Speed
Both the algorithm and the simulation should run quickly, taking at most a second to fully simulate

communications.

III.II Scalability
Both the algorithm and the simulation should be able to handle larger constellations of satellites with relative

ease. The algorithm should still be performant with constellations of 500 satellites.

III.III Adaptability
Both the algorithm and the simulation should be able to adapt to any changes in the satellite constellation and

react accordingly. This includes the addition or removal of nodes and edges as well as changes in the distances

between satellites.

III.IV Research
All members of the team must have done prior research on the subject to fully understand the challenges of the

problem. Additionally, team members must ensure that the approaches taken in this paper offer some form of

novel approach which can be further researched.

IV. Risks

IV.I Technological Risks
The primary risk for the project is critical failure of the software. We need to ensure that the software is robust

and does not crash, so satellites are not taken out of commission. We also need to ensure that there is nothing

wrong with the algorithm that does not cause any network errors such as broadcast storms or infinitely looping

routes. There is also the risk of insecure satellites or communications being intercepted. Additionally, there is

the risk of issues with our simulation model leading to a suboptimal algorithm being chosen and us misinforming

our client.

IV.II Developmental Risks
The primary developmental risks of this project are related to the specialized nature of the project. Team

members need to be informed on both standard networking practices and the intricacies of satellite

communication. Additionally, due to the program being written in rust, development may take longer than

expected because the team is unfamiliar with the language.

6 | P a g e

V. Definition of Done

V.I Prototype Algorithm(s)
Produce a novel routing algorithm or a novel implementation of an existing routing algorithm. This algorithm is

intended to be used on inter satellite communication and should maximize throughput and reliability while also

minimizing latency to whatever extent possible.

V.II Software Prototype
Produce a software implementation of our designed algorithm which is capable of being run on a simplistic

satellite constellation model. It additionally can be compared to other algorithms which predated the project

and are results of the project.

V.III Benchmark Comparison Data
1. Create a viable satellite model

2. Test the proposed algorithms

3. Compare proposed algorithms to existing solutions and other proposed algorithms

V.IV Client Approval
1. Deliver technical white paper to the client which contains the results of the project and research which

informed the project

2. Update repository with final version of satellite model

3. Update repository with final version of algorithm software

4. The client accepts the work

VI. System Architecture
The core of our system architecture is based on SGP4, a model for predicting the positions and velocities of

satellites based on TLEs. With this we are able to calculate which satellites have a direct line of sight with each

other at any given time, and how far apart they are from one another. We use this information to build our

graphical network, with satellites as our nodes, line of sight for our edges, and latency for our edge weights. Our

network model also simulates sending message packets, accounting for the load of each satellite. We utilize this

representation to create and evaluate multiple algorithms for routing messages through satellite networks.

7 | P a g e

Figure 1: Project Architecture

The model starts by reading TLE (two-line element set) data, which contains information about the satellites

being used for the simulation. These TLE files are then processed into a specific satellite structure which contains

all relevant information about the satellite, such as their unique ID, TLE, load, etc. There are two separate

versions of the model that are chosen depending on which algorithm is being tested: a centralized model and a

distributed model. A centralized model uses a centralized routing algorithm, which has full knowledge of the

entire network it is attempting to route through. Meanwhile, a distributed model uses a distributed routing

algorithm which only has localized knowledge of the network, such as the current node’s neighbors.

If the algorithm being tested is a centralized routing algorithm, then it will call upon the centralized model and

take in more situational data, such as the data load capacity of satellites, and create the data packet. The model

will run the routing algorithm starting with the initial satellite and find the path which it deems most efficient

based on the design of the algorithm. Once this is complete, it will run the packet through the satellite path,

leaving the possibility of packet loss/corruption or a satellite not being able to send said packet due to moving

out of range or failing. Once the simulation is complete, the time it takes to run the model will be returned to

the user and then the centralized model will reset and wait for the next simulated situation.

If the algorithm is based on a distributed algorithm, it will first prepare the satellites and packets in the same

manner as the centralized algorithm. Once this is completed, it runs the simulation starting at the first node and

will call upon the distributed algorithm. The algorithm will then calculate the next destination which the packet

should be sent to, given the data available at the time it is called upon. This information will change as the

simulation runs to reflect the dynamically changing locations of the satellites as they orbit. Once the best next

satellite has been calculated, the packet will be sent to the next destination satellite and will then repeat that

process until it reaches its overall destination satellite. Once this happens, it will return the time it took for the

algorithm to run in that scenario and return to a non-simulated state, awaiting the inputs for the next simulated

scenario much in the same way as the centralized model.

This information is summarized in the finite state automata in Figure 2.

8 | P a g e

Figure 2: Finite State Automata for Satellite Model

VII. Algorithm Design
Given the problem, our primary design focus was the algorithms which we ran on the simulation model. The

following algorithms are the ones which we designed or used as a benchmark comparison for the algorithms we

designed. All algorithms were used or designed with the overall goal of finding the algorithm which would work

best for a communications satellite system.

VII.I Greedy Search
A simple, best-effort distributed routing algorithm. The inspiration behind this algorithm was to implement a

“distributed Dijkstra’s Algorithm,” where each satellite will determine the lowest cost path to its neighbors and

send the packet to the most optimal neighbor. This process repeats with each node selecting the current best

neighbor until the packet reaches its destination. To prevent looping, the packet contains information about

which satellites have been visited, and which satellite sent the packet to which satellite (parents), allowing the

algorithm to backtrack. This means that if the packet reaches a dead end, it can send it backwards down the

route and explore other, less optimal paths in an attempt to stumble across the destination satellite.

This Greedy Search Algorithm determines edge weights by considering if the next satellite is closer to the

destination than the source satellite (in other words, it will not try to send the packet away from the

destination). After this, it will then consider the latency (immediate distance between the source satellite and its

neighbor) and the load of the neighbor (how many other packets the neighbor is managing).

9 | P a g e

VII.II Ad-Hoc and Ad-Hoc with depth
The first version of this algorithm is a relatively basic ad-hoc algorithm implementation. When designing this

algorithm, we made the assumption that a satellite would be able to obtain the location of both its neighbors

and the destination point. This algorithm makes decisions based on which of the calculating satellite’s neighbors

is closest to the destination location. A packet may not be sent back to the satellite that transmitted to the

current satellite. These choices were made because continually moving a packet towards the destination and

removing transmission satellite ensured looping did not occur. It sends the data to the neighbor closest to the

destination and repeats the process. This method also frequently results in fewer hops than other methods.

The second version of this algorithm takes the basic ad-hoc algorithm and adds logic for checking the neighbors

of neighbors up to a specified depth with 1 being only immediate neighbors, 2 being immediate neighbors and

those satellites immediate neighbors as well, etc. The investigation theorized that there might be a point at

which the cost of pre-calculating neighbors would be a net benefit over time vs calculating at every node.

Decisions on where to route a packet are still made on the distance to destination basis. Both versions of the

algorithm also take satellite load into account, which can provide dynamic load balancing as well.

VII.III Centralized Point
The Centralized Point algorithm takes advantage of a specialized satellite network. This network has a set

amount of MEOs that each manage a subnet of LEOs and act as a centralized node for routing in the subnet,

using whatever centralized algorithm is most efficient. This algorithm has 4 scenarios, a LEO transmitting to its

MEO, a MEO transmitting to another MEO, a MEO transmitting to the gateway LEO, and a LEO transmitting to

another LEO in its subnet.

LEO to MEO: In this scenario, the LEO sends the packet directly to the MEO that manages its subnet.

MEO to MEO: Because the MEO network is small, we can use any distributed algorithm we want, such as greedy

search or ad-hoc. In practice, the MEOs would have static routing tables as their orbits should be in such a way

that their neighbors are consistent.

MEO to LEO: The algorithm would know the gateway LEO and use it as the packet source in a centralized

algorithm like Dijkstra’s. Once the route is calculated, it would directly send it to the gateway LEO. In our

simulation, it dynamically chooses the closest MEO in the subnet to act as the gateway.

LEO to LEO: The simplest case where each LEO follows the route outlined by its managing MEO.

The Centralized Point algorithm allows us to distribute the intense computation load needed in centralized

networking to many different satellites, each managing a small set of the entire network. This lowers the

hardware requirements for routing while maintaining a centralized routing scheme.

VII.IV Dijkstra’s Algorithm
Dijkstra’s Algorithm is one of the most commonly used shortest path algorithms. It is currently the primary

algorithm used in terrestrial networking. Because our network representation is an undirected weighted graph

between satellites with edge weights determined by latency and network load, Dijkstra’s algorithm is ideal. The

main disadvantages of Dijkstra’s algorithm are that it requires knowledge of the entire network and can be

disoriented by the changing satellite system for longer transmission times. This algorithm assumes that our

network has a high computational satellite that is able to manage the entire network and perform Dijkstra’s

Algorithm to route the entire network.

10 | P a g e

Our implementation of Dijkstra’s algorithm first goes through each satellite in the network and checks each of its

edges, keeping track of their most optimal neighbors. To reduce recompilations, it also keeps track of which

satellites have been visited by the algorithm. Once complete, it will backtrack from the destination satellite back

to its most optimal neighbor until it reaches the source, thus creating the route. This has a worst-case time

complexity of O(n^2), n being the number of satellites. It also has a space complexity of O(n^2 + 3n), n^2 being

the network representation and the 3n being the visited, parent, and delay vectors.

VII.V Grid Path
This algorithm was created as the result of attempting to create a method by which we could utilize a heuristic

algorithm on a dynamic network. The team considered several different ways to convert the satellite network

into a series of discrete, static networks. Both creating so-called network snapshots which would treat the

satellite constellation as a static network for a set period and a grid-based system mapped to the surface of the

Earth were considered for this purpose. Time did not permit exploration of every possible option, so we decided

on the grid which is utilized in this algorithm. The Earth is subdivided into a set of hexagonal and pentagonal

cells which are then used to calculate a gross path. From there, another algorithm is run to select the optimal

path between satellites along the gross path. The current fine path algorithm employed is our implementation

of Dijkstra’s algorithm. Alternatively, the algorithm can weigh each satellite in each cell in the cell path, choosing

the lowest weighted satellite in each cell to be the satellite used in the route. Our implementation used load as

our weight.

This algorithm is built on the Rust implementation of Uber’s open source H3. H3 is a discrete global grid system

for indexing geographies into a hexagonal grid which allows latitude and longitude coordinates to be indexed to

IDs that represent unique cells [2]. H3 offers a number of resolutions with increasing numbers of hexagonal

cells. Our algorithm utilizes resolution 0 by default, which has 110 hexagonal cells and 12 pentagonal cells. To

begin the calculation, the source satellite and the destination satellite are mapped to latitude and longitudes,

then to H3 cells. From there, every satellite in the network is mapped into a cell and every cell that contains a

satellite is considered to be valid. Valid cells then have their valid neighbors calculated. Once these calculations

are complete, the heuristic algorithm a-star is applied to calculate the optimal path of valid cells between the

beginning and ending cells. This generates a route of cells. A list of valid satellites along the cell route is

generated and run through Dijkstra’s algorithm, producing a final route. Our implementation is currently not

well optimized, which could be an area of exploration for future work.

VIII. Software Test and Quality

VIII.I Software Quality Policies
During our software development for the network model, we have taken extra precautions to avoid any

miscellaneous errors which might cause additional errors in the future. Our most basic quality assurance

method is code reviews to make sure at least two members are aware of changes made to the main repository.

Additionally, our code base is written in Rust, which holds a lot of restrictions on how memory can be used,

allowing us to avoid all memory-related issues. Lastly, in regard to the algorithm implementations, all algorithms

are predesigned/reviewed and put into a pseudocode format which is reviewed by the team before any

implementation is attempted.

VIII.II Software Testing Model
The software testing model begins with creating a satellite constellation by selecting specific TLEs to input into

our satellite model. This allows us to experiment with various orbits, such as polar orbits used in the Iridium

constellation, the iridium constellation being a preexisting satellite network used as an example for research and

testing.

11 | P a g e

The model also allows for selection of the routing algorithm to test as well as which model to test (distributed

or centralized). Once the parameters are selected, the model runs a network simulation, recording relevant data

such as the time it took for the message to reach the end satellite, the route which it traveled along, and the

number of jumps required to reach the end destination.

We additionally have various scenarios to test the robustness of our algorithms and see how it redacts to various

edge cases or extremes. Some of these scenarios were requested by our client, such as removing a critical node

in the network, having an outage of random satellites, and experimenting with orbits. We have also produced

our own test cases that were discussed in the previous section.

VIII.III Software Test Cases
We designed a number of test cases and test scenarios to analyze the performance of our algorithms and

constellation arrangements. Test cases are problems we know the answers to, in order to test the correctness of

our code. The test scenarios are designed to stress test our algorithms and may not have one correct answer.

This is how we compare the performance of our algorithms.

Some examples of the test scenarios we designed were peak network load, where all satellites start near their

max transmitting capacity. This test ensures that our algorithms account for load and allows us to compare how

algorithms that use multicasting perform in high load conditions. We also have multiple scenarios to test

satellite outages. One such test involves our algorithm needing to send packets away from the destination

satellite initially due to breaks in the satellite network. Another involves a satellite along the optimal route going

down after the first message is sent. These scenarios allow us to compare the performance of our algorithms

and identify which satellites may perform well under some conditions, but falter under others.

VIII.IV Test Scenarios

VIII.IV.I Critical Node Removal

This test determines a critical node within our satellite network and removes it. This simulates the situation

where a satellite becomes unavailable. Additionally, the test is used to track and show how well each

algorithm routes around the removed satellite and how the new route and travel time changes.

VIII.IV.II Anti-Satellite Interceptor
This test is similar to the critical node removal test, where a satellite is removed from the network, except

this test additionally removes some of the neighbors of the critical node. This simulates a scenario where an

anti-satellite interceptor destroys a satellite, and the debris takes down neighboring satellites. The test

analyses how our algorithms perform when a large number of satellites are out of commission.

VIII.IV.III Different Start Times
This test is used to determine how each algorithm reacts to our given sample satellite constellations given

different start times. In other words, it tests how well our algorithms react to a variable network. This test

tracks how the routes change and how much travel times change.

VIII.IV.IV Throughput/ Load Balancing
This test determines how well our algorithms avoid high-load satellites. It tracks how many packets an

algorithm routes from a consistent start and end point before the algorithm attempts to route the packet to

a satellite with a maximum load. It tracks the routes and travel times of each packet and how many packets

it sent before sending to a maximum load satellite.

12 | P a g e

VIII.IV.V Ad-Hoc Depth Test
This test is only used on the ad-hoc algorithm. Because ad-hoc pre-calculates a path looking up to a specified

number of neighbors away (depth), this test is used to determine the efficiency of different depths. It

compares the packet’s travel time, number of satellites it visited, and the routes the packets travel through,

looking for any differences between different depths.

VIII.IV.VI Throughput Over Time Simulation Test
This test runs through a simulated network test for a specified duration. It tracks the number of packets

attempted to be passed through the network and the number of packets that were successfully passed. In

addition, it tracks the amount of time it takes for each packet to pass from start to finish, updating the

network every 30 (simulated) seconds. This test runs through all currently implemented and functioning

algorithms, using the grid route with Dijkstra. The data generated by this test can be considered an analog

for raw algorithm-network throughput, with no load considerations.

VIII.IV.VII General Time Comparison
This is our most simplistic test yet one of the most important. We will allow each algorithm to run on a

similar network with similar start and end satellites and find how much time it will take to transmit a specific

number of packets. With this data, we then graph a plot of each algorithm based on the time and number of

packets sent. We can use this data to confirm which algorithm runs the fastest in what scenarios.

VIII.V Final Report Quality Test
As a part of the requirements and our Definition of Done, we are expected to return a technical white paper

to the client at the end of the project cycle. To ensure client approval and experience, this paper will be

heavily reviewed before handing it over to the client. All members of the team will do a final review, and the

paper will be compared with professional technical papers which will be procured through the Mines

Library. Additionally, the team will attempt to have the paper reviewed by a third-party expert, the team’s

Colorado School of Mines advisor, who will be able to give an unbiased opinion while avoiding any conflict of

interest on the part of Davidson Technologies.

IX. Project Ethical Considerations

IX.I Design Ethical Considerations
Since our project deals with potentially sensitive information, we inherently must consider how information is

stored and sent in order to minimize the risk of leaking data. Especially in a project for a defense contractor,

knowing that in the future this project could be used to send mission critical data, it was important for us to

design with data safety in mind. While our project itself does not, we designed with the principle that data in a

production environment would be encrypted. This is still a long way away from production, but our aim was to

comply with sections 1.2 and 1.6 of the ACM Code of Ethics – to avoid harm and protect privacy [3]. When we

simulate sending messages between satellites, we make sure to only send them when necessary. Data in a

production environment should be encrypted, only sent when necessary, and not stored for longer than

necessary.

13 | P a g e

IX.II Final Product Ethical Impact
Given that our client is a defense contractor, it is important to consider what the satellite program and the

presumed future satellite network might be used for. While it could be useful for matters of national security,

it’s also worth noting that technology such as this has been used for more offensive purposes and can impact

the lives of many people globally. Additionally, it is worth considering that through this project we are taking

work from open-source projects — such as SGP4 and H3 — and using their work in a way which might be against

the original intent of the developers. With our project we respect ACM 1.5 - to respect the work required to

produce new ideas, inventions, creative works, and computing artifacts. We acknowledge and appreciate the

work put into the open-source projects that enabled us to perform our work throughout the course of this field

session. Finally, we believe our data analysis portion of this project complies with ACM 2.5 - to give

comprehensive and thorough evaluations of computer systems and their impacts, including analysis of possible

risks. To the best of our ability, we tried to give thorough evaluations of our developed algorithms and

constellations, and to make the risks known.

X. Project Results

X.I Results

X.I.I Critical Node Removal
The primary indicator of performance is the least time loss from a satellite's removal. As expected, ad-hoc
performed the best regarding consistency as the algorithm is designed to easily adapt to unknown situations
with a time loss of 0.00001 to 0.0001 seconds. More interestingly however, is the performance of
centralized point and Dijkstra’s based grid algorithm. The centralized point algorithm had extremely minimal
time loss within 0.00007 and 0.02 seconds depending on the size of the network. Similar numbers were
shown by Dijkstra’s grid-based algorithm. Both of which well out preform the adjustments made by other
algorithms such as plain grid, greedy, and Dijkstra's.

X.I.II Anti-Satellite Interceptor

This test is similar to the critical node removal test, but analyses how our algorithms perform when a large

number of satellites are taken out of commission, instead of just one. The performance of all our algorithms

on this test from best to worst were Dijkstra's, grid with Dijkstra's, centralized point, grid choosing best, ad-

hoc, and greedy. Dijkstra’s was still able to find a good path even after the satellite interceptor. Both grid

algorithms saw significant performance losses after the interceptor. Centralized point and greedy both saw

similar runtimes, or even improvements after the interceptor, suggesting that they were not taking the

optimal path initially. Ad-hoc saw very similar performance both before and after the satellites were taken

out.

X.I.III Different Start Times
This test measures the reliance of the algorithms on specific conditions in a network at specific times. The

best indicator of an algorithm’s performance is consistency of time between the first and second run as well

as the number of routes generated and used at each timestamp. Greedy, centralized point, and Dijkstra

based grid all saw an increase in the number of routes from the first run time to the second run time, with

the former seeing an increase of 11 routes and the latter two seeing an increase of 4 routes. Regarding time

consistency, both grid-based algorithms and Dijkstra outperformed every other algorithm, primarily having

differences in time less than 0.01 seconds.

X.I.IV Throughput/ Load Balancing

Load is handled in our model by allowing any given satellite to manage up to 100 packets at once. Once the

satellite has 100 packets, it will be at maximum load and drop incoming packets. Additionally, the higher the

load, the longer it will take the satellite to send the packet. Because of this, if a route passes packets through

a specific satellite at any given time, then packets will get dropped as the satellite cannot handle it. This test

14 | P a g e

scenario tests how many packets an algorithm can route before losing a packet due to load, the minimum

being 100 packets because of how our model was designed.

Ad-hoc and Centralized-point could only route 100 packets

• This is because, at the time of writing, these algorithms do not prioritize load, making routing

decisions based on latency and distance only

Greedy search routed an average of 103 packets

• This is likely because greedy search looks at distance and immediate latency, and since the network

is changing continuously, it can randomly send more than the minimum of 100 packets.

• This was done on both an 80-satellite network and a 529-satellite network

Base Grid search routed an average of 262 packets

• Grid search uses a-star on a grid network, with each cell in the grid having several satellites. A-star

uses the average load of all the satellites in each cell as the weight, allowing it to route around high

load satellites

• This was done on a 529 satellite network

Grid search with Dijkstra’s had an average of 503 packets

• This uses the same grid network as mentioned above, with a-star routing the cells and Dijkstra’s

routing between the satellites in each cell

• This was done on a 529 satellite network

Dijkstra’s algorithm had an average of 613 packets (80 satellite network) and 3640 (on 529 satellite

 network)

• By far the best algorithm for throughput as it determines routes based on both latency and load

• Dijkstra’s algorithm accounts for the changing loads and updates each route accordingly, allowing it

to support more packets without overloading any one satellite when compared to our other

algorithms

X.I.V Ad-Hoc Depth Test
After comparing a variety of different ad-hoc depths ranging from 1 to 6 we determined that the depth has

no appreciable effect on the route the ad-hoc algorithm creates. However, the depth does have a minor

effect on the packet travel time, with larger depths having slightly shorter travel times (around 0.0002 –

0.0004 seconds faster). This is likely due to fewer satellites needing to calculate a route and instead simply

sending the packet to the next hop.

15 | P a g e

X.I.VI Throughput Simulation Test

For the 80-satellite constellation simulation, each algorithm performed similarly. The exception to this is the

grid path algorithm. This algorithm does not work consistently on a smaller network due to the

implementation and after some time, the satellites progress to a state where there is no path between them

on the grid due to some empty grid cells along the path. Outside of these, greedy was the worst performing

algorithm, followed by ad-hoc/ad-hoc depth, and Dijkstra. On the 529-satellite constellation, again greedy

had the worst performance, with ad-hoc and ad-hoc depth performing similarly. Dijkstra outperformed Grid-

Dijkstra on this size network, but not significantly. The 600 second trial test on our three small to medium

size constellations are summarized in Figure 3 below. It is likely that these results would change with a

longer update time between calculations.

Figure 3: Results of 600s Simulated Throughput Test On 3 Small-Medium Satellite Constellations

On the 7608-satellite constellation, all the distributed network algorithms showed extremely poor

performance. The Dijkstra’s algorithm also began to show diminished performance with a network of this

size. The grid-based algorithms both performed very well, with the Grid-Dijkstra version outperforming the

straight grid until the 600 second duration trial when the grids were at resolution 0. When the grid

resolution was increased to 2, the Grid-Dijkstra algorithm outperformed all others, while the grid only

suffered a bit of a performance decrease. The results from this test are summarized below in Figure 4.

16 | P a g e

Figure 4: Results of Throughput Test on 7608 Satellite Constellation

X.I.VII General Time Comparison

Figure 55: Graph of All Algorithms Comparing Packets Sent to Operation Time

17 | P a g e

The above graph shows the time to packet comparison for each algorithm. As expected, Dijkstra

outperforms all other algorithms. But more interestingly, the Dijkstra based grid algorithm performed in a

similar bracket to Dijkstra and maintained a lot of Dijkstra's stability in a relatively consistent amount of time

needed even for larger numbers of packets. Notably, while centralized point behaved very erratically, at its

best performance it outperformed the Dijkstra based grid algorithm.

X.II Best Overall Algorithm
Based on the results above, the team has determined that the best algorithm for satellite routing is the

Dijkstra-based grid algorithm. While the current implementation of grid version does not have the same

throughput on smaller constellations as standard Dijkstra’s, it does reroute in singular satellite loss scenarios

extremely efficiently only being outperformed by the ad-hoc algorithms which also have the drawbacks of

lower throughput. Additionally, the algorithm was able to successfully adapt to different network conditions

in the time test, which allowed for consistent operational time during varied network traffic conditions.

Additionally, while the algorithm was not as efficient as standard Dijkstra's for rerouting when a larger

portion of the network is nullified as in the anti-satellite interceptor test, it still outperformed all other

algorithms. While the algorithm is slightly slower than Dijkstra’s, it still outperformed all other algorithms

and maintained the same levels of time constancy as the standard Dijkstra’s. Finally, on a very large satellite

constellation, it outperformed all other algorithms significantly in a throughput test. For these reasons, the

team believes that this algorithm holds the best balance between speed, throughput, and reliability.

XI. Future Work
Since our project was so open-ended, there were a lot of different ways we could have done this project and still

met the client's requirements. Our final project was just one approach to algorithmic improvement, and there is

still work that could be done to optimize any of these solutions.

Firstly, while we created and experimented with several algorithms, our list is certainly not exhaustive.

Potentially infinite algorithms for routing communications between satellites exist, and this is where we would

look first for future work. More likely than not, there are algorithms better than any we tested. Furthermore,

there is always room for more test scenarios. We implemented as many as we could within our timeline, but of

course there are always more scenarios to be tested. Additionally, the centralized point algorithm test

constellation was designed with a TLE combination of the global positioning system (GPS) and SpaceX’s Starlink

satellite constellation. A properly made TLE dataset which is specifically designed to match the centralized point

algorithm would likely show better results. Additionally, creating a grid system which implements ad-hoc might

show a significant improvement in the flexibility of the algorithm while maintaining data throughput. Our

algorithms could also be further refined and optimized, especially grid routing.

Beyond algorithm development, our project could be improved in several ways. If there were a visualization of

the satellite network, it would allow for quick visual checking of algorithm correctness and help facilitate

demonstrations.

Finally, our simulation model could be further refined. As it currently stands, the simulation needs to be reset for

different algorithms to be able to run. Ideally, the simulation could be controlled directly, changing the

algorithm that is currently running and leaving the simulation itself alone. This would ensure more consistent

comparisons across algorithms, and especially across different types of algorithms (centralized vs distributed).

The simulation could also simulate imperfect information, and the delay that comes with updating what one

satellite knows about satellites it doesn’t have direct line of sight with. But primarily, the major revision which

would assist the simulation is altering the operation of algorithms to more directly reflect the proper operational

times. As the system currently stands, certain algorithms have extra overhead which might impact their

18 | P a g e

operational time. For example, the grid-based algorithms must recompute their grids during each run of the

algorithm, which is an unrealistic addition as the grid-based algorithms would ideally be able to maintain a

persistent image of the grid.

We are proud of the work that we put into this project, and what it is capable of currently, but nothing is

perfect. With more time, there are many additional features that we would have implemented, and many we

would have improved.

XII. Lessons Learned
In a project as broad as ours, there are plenty of opportunities to learn. Beyond the obvious lessons of how to

work better in a team and specifically this team, there are a few major lessons we have learned from this

project. The first is don’t be afraid to pivot if something is not working the way you wanted or expected, even if

you are fairly far down one path. Sometimes the only way to achieve a goal is to change direction, even when

that means undoing a lot of work you have already done.

Another major lesson we’ve learned is that open-ended projects can be very good for learning; however, they

can also be major sources of frustration. It can be helpful to add additional constraints onto a very open-ended

project beyond what a client may give, at least first, so that you can quickly make some progress and determine

if that is the direction you should pursue. To go along with this and tie into the previous lesson, be willing to

admit when the direction chosen was incorrect, ideally sooner rather than later.

XIII. Acknowledgments
Firstly, we would like to thank Jameson Venema for bringing this project to the team and offering fantastic

feedback and answers to our questions.

We would also like to thank Dr. Terry Bridgman of the Colorado School of Mines for all his help with

mathematical assistance regarding our project and its problems as well as his suggestions for the ad-hoc and

grid algorithms.

Additionally, we would like to thank our advisor Scott Jenson of the Colorado School of Mines for directional

advice on proper development practices.

19 | P a g e

XIV. Team Profile

Rygar Schyberg

Computer Science - Robotics

Background: Robotics, ARIA Lab, VEX Robotics Team

Current Work: Programing robots

Jack Hall

Computer Science - General

Background: Software Development, Robotics/Integrated

Systems, Networking, Linux Environments

Current Work: Teaching Assistant for Systems

Programing/Computer Networks

Mallory Shaloy

Computer Science - Space

Background: Software Development, Circuit Design,
Systems Engineering

Current Work: Personal Projects

Leif Wegener

Computer Science - General

Background: Software Development, Networking, Cyber
Defense Certificate

Current Work: Personal Projects

20 | P a g e

References

[1] Davidson Technologies, Inc, [Online]. Available: https://cs-

courses.mines.edu/csci370/FS2025S/Proposals/Davidson1.pdf. [Accessed 12 5 2025].

[2] Uber, "H3," Uber, [Online]. Available: https://h3geo.org/. [Accessed 9 6 2025].

[3] Association for Computing Machinery, "ACM Code of Ethics and Professional Conduct," [Online]. Available:

https://www.acm.org/code-of-ethics. [Accessed 3 6 2025].

[4] T.-H. Chan, "A Localized Routing Scheme for LEO Satellite Networks," in 21st International Communications Satellite

Systems Conference and Exhibit, Yokohama, Japan, 2003.

[5] C. S. a. Y. Z. Tie Liu, "Load Balancing Routing Algorithm of Low-Orbit Communication Satellite Network Traffic Based

on Machine Learning," Wireless Communications & Mobile Computing (Online), vol. 2021, 2021.

1 | P a g e

Appendix A - Key Terms
Include descriptions of technical terms, abbreviations and acronyms

Term Definition

LEO Low Earth Orbit. Refers to satellites orbiting at less than 2,000 km in altitude

MEO Medium (mid) Earth Orbit. Refers to satellites orbiting between 2,000 and

35,780 km in altitude

Geosynchronous A type of satellite orbit that follows the rotation of the Earth. A satellite in this

orbit will appear to always have the same longitude from the ground. About

35,786 km above the surface of the Earth

Geostationary A type of Geosynchronous orbit above the equator. A satellite in this orbit will

appear stationary from the ground

TLE Two/Three Line Element Set. Data format encoding information about a satellite

SGP4 Open-source mathematical model for predicting the position and velocity of

satellites based on a TLE

H3 Discrete global grid system developed by Uber

ISL Intersatellite Links. Technology that enables communication between satellites in

a constellation

	Figure Table
	I. Introduction
	I.I High Level Scope
	I.II Client
	I.III Definitions
	I.IV Stakeholders
	I.V Maintenance

	II. Functional Requirements
	II.I Simulation
	II.II Network representation
	II.III Algorithm
	II.IV Performance Benchmarks

	III. Non-Functional Requirements
	III.I Speed
	III.II Scalability
	III.III Adaptability
	III.IV Research

	IV. Risks
	IV.I Technological Risks
	IV.II Developmental Risks

	V. Definition of Done
	V.I Prototype Algorithm(s)
	V.II Software Prototype
	V.III Benchmark Comparison Data
	V.IV Client Approval

	VI. System Architecture
	VII. Algorithm Design
	VII.I Greedy Search
	VII.II Ad-Hoc and Ad-Hoc with depth
	VII.III Centralized Point
	VII.IV Dijkstra’s Algorithm
	VII.V Grid Path

	VIII. Software Test and Quality
	VIII.I Software Quality Policies
	VIII.II Software Testing Model
	VIII.III Software Test Cases
	VIII.IV Test Scenarios
	VIII.IV.I Critical Node Removal
	VIII.IV.II Anti-Satellite Interceptor
	VIII.IV.III Different Start Times
	VIII.IV.IV Throughput/ Load Balancing
	VIII.IV.V Ad-Hoc Depth Test
	VIII.IV.VI Throughput Over Time Simulation Test
	VIII.IV.VII General Time Comparison

	VIII.V Final Report Quality Test

	IX. Project Ethical Considerations
	IX.I Design Ethical Considerations
	IX.II Final Product Ethical Impact

	X. Project Results
	X.I Results
	X.I.I Critical Node Removal
	X.I.II Anti-Satellite Interceptor
	X.I.III Different Start Times
	X.I.IV Throughput/ Load Balancing
	Load is handled in our model by allowing any given satellite to manage up to 100 packets at once. Once the satellite has 100 packets, it will be at maximum load and drop incoming packets. Additionally, the higher the load, the longer it will take the ...
	Ad-hoc and Centralized-point could only route 100 packets
	• This is because, at the time of writing, these algorithms do not prioritize load, making routing decisions based on latency and distance only
	Greedy search routed an average of 103 packets
	• This was done on both an 80-satellite network and a 529-satellite network
	Base Grid search routed an average of 262 packets
	• Grid search uses a-star on a grid network, with each cell in the grid having several satellites. A-star uses the average load of all the satellites in each cell as the weight, allowing it to route around high load satellites
	• This was done on a 529 satellite network
	Grid search with Dijkstra’s had an average of 503 packets
	• This uses the same grid network as mentioned above, with a-star routing the cells and Dijkstra’s routing between the satellites in each cell
	• This was done on a 529 satellite network
	Dijkstra’s algorithm had an average of 613 packets (80 satellite network) and 3640 (on 529 satellite network)
	• By far the best algorithm for throughput as it determines routes based on both latency and load
	• Dijkstra’s algorithm accounts for the changing loads and updates each route accordingly, allowing it to support more packets without overloading any one satellite when compared to our other algorithms
	X.I.V Ad-Hoc Depth Test
	X.I.VI Throughput Simulation Test
	For the 80-satellite constellation simulation, each algorithm performed similarly. The exception to this is the grid path algorithm. This algorithm does not work consistently on a smaller network due to the implementation and after some time, the sate...
	On the 7608-satellite constellation, all the distributed network algorithms showed extremely poor performance. The Dijkstra’s algorithm also began to show diminished performance with a network of this size. The grid-based algorithms both performed ver...
	X.I.VII General Time Comparison

	X.II Best Overall Algorithm

	XI. Future Work
	XII. Lessons Learned
	XIII. Acknowledgments
	XIV. Team Profile
	References
	Appendix A - Key Terms

