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I. Introduction 

I.I High Level Scope 
With the rapid expansion of satellite communications networks and low Earth orbit constellations, the 

importance of innovative solutions in the space domain software application realm is more important than ever. 

The purpose of this study is to tackle the challenge of optimally routing data through a dynamic network of 

satellites in real-time, with a focus on minimizing latency while also maximizing data throughput and 

maintaining reliability. The goal of this application is to contribute to more efficient inter-satellite 

communication, leading to more robust and performant global connectivity [1]. 

I.II Client 
The client for this project is Davidson Technologies, Inc. (Davidson). They are a 29-year-old small business 

leading in digital engineering, cybersecurity, missile defense, and mission-enabling algorithms. They deliver 

solutions to the Department of Defense, with a focus on aerospace operations and contested environments. 

I.III Definitions 
LEO - Low Earth Orbit. Refers to satellites orbiting at less than 2,000 km above the surface of the Earth. 

MEO - Medium (mid) Earth Orbit. Refers to satellites orbiting between 2,000 and 35,780 km. 

Geosynchronous - A type of satellite orbit that follows the rotation of the Earth. A satellite in this orbit  will 

appear to always have the same longitude from the ground. About 35,786 km above the  surface of the 

Earth. 

Geostationary - A type of Geosynchronous orbit above the equator. A satellite in this orbit will appear 

 stationary from the ground. 

TLE - Two/Three Line Element Set. Data format encoding information about a satellite. 

SGP4 - Mathematical model for predicting the position and velocity of satellites based on a TLE 

Satellite Constellation - A group of satellites with one shared purpose or control. 

H3 - Discrete global grid system developed by Uber. 

ISL - Intersatellite Links. Technology that enables communication between satellites in a constellation. 

I.IV Stakeholders 
The primary stakeholders for this project are Davidson and their clients. Davidson is looking to eventually launch 

satellites and expand into the space domain, and both Davidson and the DoD have an interest in the project. 

Furthermore, the U.S. government and its allies stand to benefit from a more robust and performant global 

communication network. 

I.V Maintenance 
Davidson is responsible for maintaining any software generated by this project. Davidson is considering using 

the results of the project in a future partnership with Mines Advanced Software Engineering students. In such a 

case, the responsibility of maintaining software may temporarily be transferred to the student-led team 

II. Functional Requirements 
The main components of this project are a simulation of a constellation of satellites, a routing algorithm for 

efficient satellite communications, and performance benchmarks. 

II.I Simulation 
A simulated constellation of satellites in low earth orbit in order to test our communications routing 

algorithm and compare it to existing ones. The simulation replicates orbital trajectories, inter-satellite 

communication variability, and communication channel characteristics. It is also designed to simulate 

satellite failure to test our algorithms' adaptability. 
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II.II Network representation 
As part of our algorithm development, we create a dynamic graph with each vertex as a satellite. This graph 

simulates latency between satellites as well as accounting for bandwidth and error rates. 

II.III Algorithm 
The algorithms are intended to provide a way for satellites to communicate optimally. The algorithms are 

designed with the intention to minimize latency while maximizing throughput, while also adapting to dynamic 

networks. Additionally, they are designed to continue to operate efficiently when unexpected events occur, such 

as multiple satellite failures. 

II.IV Performance Benchmarks 
We evaluate our algorithm against traditional routing strategies using multiple test scenarios to highlight 

improvements in latency and throughput. We also simulate scenarios such as high network loads, satellite 

outages, and performance over time. 

III. Non-Functional Requirements 

III.I Speed 
Both the algorithm and the simulation should run quickly, taking at most a second to fully simulate 

communications.  

III.II Scalability 
Both the algorithm and the simulation should be able to handle larger constellations of satellites with relative 

ease. The algorithm should still be performant with constellations of 500 satellites. 

III.III Adaptability 
Both the algorithm and the simulation should be able to adapt to any changes in the satellite constellation and 

react accordingly. This includes the addition or removal of nodes and edges as well as changes in the distances 

between satellites.  

III.IV Research 
All members of the team must have done prior research on the subject to fully understand the challenges of the 

problem. Additionally, team members must ensure that the approaches taken in this paper offer some form of 

novel approach which can be further researched. 

IV. Risks 

IV.I Technological Risks 
The primary risk for the project is critical failure of the software. We need to ensure that the software is robust 

and does not crash, so satellites are not taken out of commission. We also need to ensure that there is nothing 

wrong with the algorithm that does not cause any network errors such as broadcast storms or infinitely looping 

routes. There is also the risk of insecure satellites or communications being intercepted. Additionally, there is 

the risk of issues with our simulation model leading to a suboptimal algorithm being chosen and us misinforming 

our client. 

IV.II Developmental Risks 
The primary developmental risks of this project are related to the specialized nature of the project. Team 

members need to be informed on both standard networking practices and the intricacies of satellite 

communication. Additionally, due to the program being written in rust, development may take longer than 

expected because the team is unfamiliar with the language. 
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V. Definition of Done 

V.I Prototype Algorithm(s) 
Produce a novel routing algorithm or a novel implementation of an existing routing algorithm. This algorithm is 

intended to be used on inter satellite communication and should maximize throughput and reliability while also 

minimizing latency to whatever extent possible. 

V.II Software Prototype 
Produce a software implementation of our designed algorithm which is capable of being run on a simplistic 

satellite constellation model. It additionally can be compared to other algorithms which predated the project 

and are results of the project. 

V.III Benchmark Comparison Data 
1. Create a viable satellite model 

2. Test the proposed algorithms 

3. Compare proposed algorithms to existing solutions and other proposed algorithms 

V.IV Client Approval 
1. Deliver technical white paper to the client which contains the results of the project and research which 

informed the project 

2. Update repository with final version of satellite model 

3. Update repository with final version of algorithm software 

4. The client accepts the work 

VI. System Architecture  
The core of our system architecture is based on SGP4, a model for predicting the positions and velocities of 

satellites based on TLEs. With this we are able to calculate which satellites have a direct line of sight with each 

other at any given time, and how far apart they are from one another. We use this information to build our 

graphical network, with satellites as our nodes, line of sight for our edges, and latency for our edge weights. Our 

network model also simulates sending message packets, accounting for the load of each satellite. We utilize this 

representation to create and evaluate multiple algorithms for routing messages through satellite networks. 
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Figure 1: Project Architecture 

The model starts by reading TLE (two-line element set) data, which contains information about the satellites 

being used for the simulation. These TLE files are then processed into a specific satellite structure which contains 

all relevant information about the satellite, such as their unique ID, TLE, load, etc. There are two separate 

versions of the model that are chosen depending on which algorithm is being tested: a centralized model and a 

distributed model. A centralized model uses a centralized routing algorithm, which has full knowledge of the 

entire network it is attempting to route through. Meanwhile, a distributed model uses a distributed routing 

algorithm which only has localized knowledge of the network, such as the current node’s neighbors. 

If the algorithm being tested is a centralized routing algorithm, then it will call upon the centralized model and 

take in more situational data, such as the data load capacity of satellites, and create the data packet. The model 

will run the routing algorithm starting with the initial satellite and find the path which it deems most efficient 

based on the design of the algorithm. Once this is complete, it will run the packet through the satellite path, 

leaving the possibility of packet loss/corruption or a satellite not being able to send said packet due to moving 

out of range or failing. Once the simulation is complete, the time it takes to run the model will be returned to 

the user and then the centralized model will reset and wait for the next simulated situation. 

If the algorithm is based on a distributed algorithm, it will first prepare the satellites and packets in the same 

manner as the centralized algorithm. Once this is completed, it runs the simulation starting at the first node and 

will call upon the distributed algorithm. The algorithm will then calculate the next destination which the packet 

should be sent to, given the data available at the time it is called upon. This information will change as the 

simulation runs to reflect the dynamically changing locations of the satellites as they orbit. Once the best next 

satellite has been calculated, the packet will be sent to the next destination satellite and will then repeat that 

process until it reaches its overall destination satellite. Once this happens, it will return the time it took for the 

algorithm to run in that scenario and return to a non-simulated state, awaiting the inputs for the next simulated 

scenario much in the same way as the centralized model.  

This information is summarized in the finite state automata in Figure 2. 
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Figure 2: Finite State Automata for Satellite Model 

VII. Algorithm Design 
Given the problem, our primary design focus was the algorithms which we ran on the simulation model. The 

following algorithms are the ones which we designed or used as a benchmark comparison for the algorithms we 

designed. All algorithms were used or designed with the overall goal of finding the algorithm which would work 

best for a communications satellite system. 

VII.I Greedy Search 
A simple, best-effort distributed routing algorithm. The inspiration behind this algorithm was to implement a 

“distributed Dijkstra’s Algorithm,” where each satellite will determine the lowest cost path to its neighbors and 

send the packet to the most optimal neighbor. This process repeats with each node selecting the current best 

neighbor until the packet reaches its destination. To prevent looping, the packet contains information about 

which satellites have been visited, and which satellite sent the packet to which satellite (parents), allowing the 

algorithm to backtrack. This means that if the packet reaches a dead end, it can send it backwards down the 

route and explore other, less optimal paths in an attempt to stumble across the destination satellite.  

This Greedy Search Algorithm determines edge weights by considering if the next satellite is closer to the 

destination than the source satellite (in other words, it will not try to send the packet away from the 

destination). After this, it will then consider the latency (immediate distance between the source satellite and its 

neighbor) and the load of the neighbor (how many other packets the neighbor is managing). 
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VII.II Ad-Hoc and Ad-Hoc with depth 
The first version of this algorithm is a relatively basic ad-hoc algorithm implementation. When designing this 

algorithm, we made the assumption that a satellite would be able to obtain the location of both its neighbors 

and the destination point. This algorithm makes decisions based on which of the calculating satellite’s neighbors 

is closest to the destination location. A packet may not be sent back to the satellite that transmitted to the 

current satellite. These choices were made because continually moving a packet towards the destination and 

removing transmission satellite ensured looping did not occur. It sends the data to the neighbor closest to the 

destination and repeats the process. This method also frequently results in fewer hops than other methods.  

The second version of this algorithm takes the basic ad-hoc algorithm and adds logic for checking the neighbors 

of neighbors up to a specified depth with 1 being only immediate neighbors, 2 being immediate neighbors and 

those satellites immediate neighbors as well, etc. The investigation theorized that there might be a point at 

which the cost of pre-calculating neighbors would be a net benefit over time vs calculating at every node. 

Decisions on where to route a packet are still made on the distance to destination basis. Both versions of the 

algorithm also take satellite load into account, which can provide dynamic load balancing as well. 

VII.III Centralized Point 
The Centralized Point algorithm takes advantage of a specialized satellite network. This network has a set 

amount of MEOs that each manage a subnet of LEOs and act as a centralized node for routing in the subnet, 

using whatever centralized algorithm is most efficient. This algorithm has 4 scenarios, a LEO transmitting to its 

MEO, a MEO transmitting to another MEO, a MEO transmitting to the gateway LEO, and a LEO transmitting to 

another LEO in its subnet. 

LEO to MEO: In this scenario, the LEO sends the packet directly to the MEO that manages its subnet. 

MEO to MEO: Because the MEO network is small, we can use any distributed algorithm we want, such as greedy 

search or ad-hoc. In practice, the MEOs would have static routing tables as their orbits should be in such a way 

that their neighbors are consistent. 

MEO to LEO: The algorithm would know the gateway LEO and use it as the packet source in a centralized 

algorithm like Dijkstra’s. Once the route is calculated, it would directly send it to the gateway LEO. In our 

simulation, it dynamically chooses the closest MEO in the subnet to act as the gateway. 

LEO to LEO: The simplest case where each LEO follows the route outlined by its managing MEO. 

The Centralized Point algorithm allows us to distribute the intense computation load needed in centralized 

networking to many different satellites, each managing a small set of the entire network. This lowers the 

hardware requirements for routing while maintaining a centralized routing scheme. 

VII.IV Dijkstra’s Algorithm 
Dijkstra’s Algorithm is one of the most commonly used shortest path algorithms. It is currently the primary 

algorithm used in terrestrial networking. Because our network representation is an undirected weighted graph 

between satellites with edge weights determined by latency and network load, Dijkstra’s algorithm is ideal. The 

main disadvantages of Dijkstra’s algorithm are that it requires knowledge of the entire network and can be 

disoriented by the changing satellite system for longer transmission times. This algorithm assumes that our 

network has a high computational satellite that is able to manage the entire network and perform Dijkstra’s 

Algorithm to route the entire network. 
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Our implementation of Dijkstra’s algorithm first goes through each satellite in the network and checks each of its 

edges, keeping track of their most optimal neighbors. To reduce recompilations, it also keeps track of which 

satellites have been visited by the algorithm. Once complete, it will backtrack from the destination satellite back 

to its most optimal neighbor until it reaches the source, thus creating the route. This has a worst-case time 

complexity of O(n^2), n being the number of satellites. It also has a space complexity of O(n^2 + 3n), n^2 being 

the network representation and the 3n being the visited, parent, and delay vectors. 

VII.V Grid Path 
This algorithm was created as the result of attempting to create a method by which we could utilize a heuristic 

algorithm on a dynamic network. The team considered several different ways to convert the satellite network 

into a series of discrete, static networks. Both creating so-called network snapshots which would treat the 

satellite constellation as a static network for a set period and a grid-based system mapped to the surface of the 

Earth were considered for this purpose. Time did not permit exploration of every possible option, so we decided 

on the grid which is utilized in this algorithm. The Earth is subdivided into a set of hexagonal and pentagonal 

cells which are then used to calculate a gross path. From there, another algorithm is run to select the optimal 

path between satellites along the gross path. The current fine path algorithm employed is our implementation 

of Dijkstra’s algorithm. Alternatively, the algorithm can weigh each satellite in each cell in the cell path, choosing 

the lowest weighted satellite in each cell to be the satellite used in the route. Our implementation used load as 

our weight. 

This algorithm is built on the Rust implementation of Uber’s open source H3. H3 is a discrete global grid system 

for indexing geographies into a hexagonal grid which allows latitude and longitude coordinates to be indexed to 

IDs that represent unique cells [2]. H3 offers a number of resolutions with increasing numbers of hexagonal 

cells. Our algorithm utilizes resolution 0 by default, which has 110 hexagonal cells and 12 pentagonal cells. To 

begin the calculation, the source satellite and the destination satellite are mapped to latitude and longitudes, 

then to H3 cells. From there, every satellite in the network is mapped into a cell and every cell that contains a 

satellite is considered to be valid. Valid cells then have their valid neighbors calculated. Once these calculations 

are complete, the heuristic algorithm a-star is applied to calculate the optimal path of valid cells between the 

beginning and ending cells. This generates a route of cells. A list of valid satellites along the cell route is 

generated and run through Dijkstra’s algorithm, producing a final route. Our implementation is currently not 

well optimized, which could be an area of exploration for future work. 

VIII. Software Test and Quality 

VIII.I Software Quality Policies 
During our software development for the network model, we have taken extra precautions to avoid any 

miscellaneous errors which might cause additional errors in the future. Our most basic quality assurance 

method is code reviews to make sure at least two members are aware of changes made to the main repository. 

Additionally, our code base is written in Rust, which holds a lot of restrictions on how memory can be used, 

allowing us to avoid all memory-related issues. Lastly, in regard to the algorithm implementations, all algorithms 

are predesigned/reviewed and put into a pseudocode format which is reviewed by the team before any 

implementation is attempted.  

VIII.II Software Testing Model 
The software testing model begins with creating a satellite constellation by selecting specific TLEs to input into 

our satellite model. This allows us to experiment with various orbits, such as polar orbits used in the Iridium 

constellation, the iridium constellation being a preexisting satellite network used as an example for research and 

testing. 
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The model also allows for selection of the routing algorithm to test as well as which model to test (distributed 

or centralized). Once the parameters are selected, the model runs a network simulation, recording relevant data 

such as the time it took for the message to reach the end satellite, the route which it traveled along, and the 

number of jumps required to reach the end destination. 

We additionally have various scenarios to test the robustness of our algorithms and see how it redacts to various 

edge cases or extremes. Some of these scenarios were requested by our client, such as removing a critical node 

in the network, having an outage of random satellites, and experimenting with orbits. We have also produced 

our own test cases that were discussed in the previous section. 

VIII.III Software Test Cases 
We designed a number of test cases and test scenarios to analyze the performance of our algorithms and 

constellation arrangements. Test cases are problems we know the answers to, in order to test the correctness of 

our code. The test scenarios are designed to stress test our algorithms and may not have one correct answer. 

This is how we compare the performance of our algorithms. 

Some examples of the test scenarios we designed were peak network load, where all satellites start near their 

max transmitting capacity. This test ensures that our algorithms account for load and allows us to compare how 

algorithms that use multicasting perform in high load conditions. We also have multiple scenarios to test 

satellite outages. One such test involves our algorithm needing to send packets away from the destination 

satellite initially due to breaks in the satellite network. Another involves a satellite along the optimal route going 

down after the first message is sent. These scenarios allow us to compare the performance of our algorithms 

and identify which satellites may perform well under some conditions, but falter under others. 

VIII.IV Test Scenarios 

VIII.IV.I Critical Node Removal 

This test determines a critical node within our satellite network and removes it. This simulates the situation 

where a satellite becomes unavailable. Additionally, the test is used to track and show how well each 

algorithm routes around the removed satellite and how the new route and travel time changes. 

VIII.IV.II Anti-Satellite Interceptor 
This test is similar to the critical node removal test, where a satellite is removed from the network, except 

this test additionally removes some of the neighbors of the critical node. This simulates a scenario where an 

anti-satellite interceptor destroys a satellite, and the debris takes down neighboring satellites. The test 

analyses how our algorithms perform when a large number of satellites are out of commission. 

VIII.IV.III Different Start Times 
This test is used to determine how each algorithm reacts to our given sample satellite constellations given 

different start times. In other words, it tests how well our algorithms react to a variable network. This test 

tracks how the routes change and how much travel times change. 

VIII.IV.IV Throughput/ Load Balancing 
This test determines how well our algorithms avoid high-load satellites. It tracks how many packets an 

algorithm routes from a consistent start and end point before the algorithm attempts to route the packet to 

a satellite with a maximum load. It tracks the routes and travel times of each packet and how many packets 

it sent before sending to a maximum load satellite. 
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VIII.IV.V Ad-Hoc Depth Test 
This test is only used on the ad-hoc algorithm. Because ad-hoc pre-calculates a path looking up to a specified 

number of neighbors away (depth), this test is used to determine the efficiency of different depths. It 

compares the packet’s travel time, number of satellites it visited, and the routes the packets travel through, 

looking for any differences between different depths. 

VIII.IV.VI Throughput Over Time Simulation Test 
This test runs through a simulated network test for a specified duration. It tracks the number of packets 

attempted to be passed through the network and the number of packets that were successfully passed. In 

addition, it tracks the amount of time it takes for each packet to pass from start to finish, updating the 

network every 30 (simulated) seconds. This test runs through all currently implemented and functioning 

algorithms, using the grid route with Dijkstra. The data generated by this test can be considered an analog 

for raw algorithm-network throughput, with no load considerations. 

VIII.IV.VII General Time Comparison 
This is our most simplistic test yet one of the most important. We will allow each algorithm to run on a 

similar network with similar start and end satellites and find how much time it will take to transmit a specific 

number of packets. With this data, we then graph a plot of each algorithm based on the time and number of 

packets sent. We can use this data to confirm which algorithm runs the fastest in what scenarios. 

VIII.V Final Report Quality Test 
As a part of the requirements and our Definition of Done, we are expected to return a technical white paper 

to the client at the end of the project cycle. To ensure client approval and experience, this paper will be 

heavily reviewed before handing it over to the client. All members of the team will do a final review, and the 

paper will be compared with professional technical papers which will be procured through the Mines 

Library. Additionally, the team will attempt to have the paper reviewed by a third-party expert, the team’s 

Colorado School of Mines advisor, who will be able to give an unbiased opinion while avoiding any conflict of 

interest on the part of Davidson Technologies.  

IX. Project Ethical Considerations 

IX.I Design Ethical Considerations 
Since our project deals with potentially sensitive information, we inherently must consider how information is 

stored and sent in order to minimize the risk of leaking data. Especially in a project for a defense contractor, 

knowing that in the future this project could be used to send mission critical data, it was important for us to 

design with data safety in mind. While our project itself does not, we designed with the principle that data in a 

production environment would be encrypted. This is still a long way away from production, but our aim was to 

comply with sections 1.2 and 1.6 of the ACM Code of Ethics – to avoid harm and protect privacy [3]. When we 

simulate sending messages between satellites, we make sure to only send them when necessary. Data in a 

production environment should be encrypted, only sent when necessary, and not stored for longer than 

necessary. 
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IX.II Final Product Ethical Impact 
Given that our client is a defense contractor, it is important to consider what the satellite program and the 

presumed future satellite network might be used for. While it could be useful for matters of national security, 

it’s also worth noting that technology such as this has been used for more offensive purposes and can impact 

the lives of many people globally. Additionally, it is worth considering that through this project we are taking 

work from open-source projects — such as SGP4 and H3 — and using their work in a way which might be against 

the original intent of the developers. With our project we respect ACM 1.5 - to respect the work required to 

produce new ideas, inventions, creative works, and computing artifacts. We acknowledge and appreciate the 

work put into the open-source projects that enabled us to perform our work throughout the course of this field 

session. Finally, we believe our data analysis portion of this project complies with ACM 2.5 - to give 

comprehensive and thorough evaluations of computer systems and their impacts, including analysis of possible 

risks. To the best of our ability, we tried to give thorough evaluations of our developed algorithms and 

constellations, and to make the risks known. 

X. Project Results 

X.I Results 

X.I.I Critical Node Removal 
The primary indicator of performance is the least time loss from a satellite's removal. As expected, ad-hoc 
performed the best regarding consistency as the algorithm is designed to easily adapt to unknown situations 
with a time loss of 0.00001 to 0.0001 seconds. More interestingly however, is the performance of 
centralized point and Dijkstra’s based grid algorithm. The centralized point algorithm had extremely minimal 
time loss within 0.00007 and 0.02 seconds depending on the size of the network. Similar numbers were 
shown by Dijkstra’s grid-based algorithm. Both of which well out preform the adjustments made by other 
algorithms such as plain grid, greedy, and Dijkstra's. 

X.I.II Anti-Satellite Interceptor 

This test is similar to the critical node removal test, but analyses how our algorithms perform when a large 

number of satellites are taken out of commission, instead of just one. The performance of all our algorithms 

on this test from best to worst were Dijkstra's, grid with Dijkstra's, centralized point, grid choosing best, ad-

hoc, and greedy. Dijkstra’s was still able to find a good path even after the satellite interceptor. Both grid 

algorithms saw significant performance losses after the interceptor. Centralized point and greedy both saw 

similar runtimes, or even improvements after the interceptor, suggesting that they were not taking the 

optimal path initially. Ad-hoc saw very similar performance both before and after the satellites were taken 

out. 

X.I.III Different Start Times 
This test measures the reliance of the algorithms on specific conditions in a network at specific times. The 

best indicator of an algorithm’s performance is consistency of time between the first and second run as well 

as the number of routes generated and used at each timestamp. Greedy, centralized point, and Dijkstra 

based grid all saw an increase in the number of routes from the first run time to the second run time, with 

the former seeing an increase of 11 routes and the latter two seeing an increase of 4 routes. Regarding time 

consistency, both grid-based algorithms and Dijkstra outperformed every other algorithm, primarily having 

differences in time less than 0.01 seconds. 

X.I.IV Throughput/ Load Balancing 

Load is handled in our model by allowing any given satellite to manage up to 100 packets at once. Once the 

satellite has 100 packets, it will be at maximum load and drop incoming packets. Additionally, the higher the 

load, the longer it will take the satellite to send the packet. Because of this, if a route passes packets through 

a specific satellite at any given time, then packets will get dropped as the satellite cannot handle it. This test 
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scenario tests how many packets an algorithm can route before losing a packet due to load, the minimum 

being 100 packets because of how our model was designed. 

 

Ad-hoc and Centralized-point could only route 100 packets 

• This is because, at the time of writing, these algorithms do not prioritize load, making routing 

decisions based on latency and distance only 

Greedy search routed an average of 103 packets 

• This is likely because greedy search looks at distance and immediate latency, and since the network 

is changing continuously, it can randomly send more than the minimum of 100 packets. 

• This was done on both an 80-satellite network and a 529-satellite network 

Base Grid search routed an average of 262 packets 

• Grid search uses a-star on a grid network, with each cell in the grid having several satellites. A-star 

uses the average load of all the satellites in each cell as the weight, allowing it to route around high 

load satellites 

• This was done on a 529 satellite network 

Grid search with Dijkstra’s had an average of 503 packets 

• This uses the same grid network as mentioned above, with a-star routing the cells and Dijkstra’s 

routing between the satellites in each cell 

• This was done on a 529 satellite network 

Dijkstra’s algorithm had an average of 613 packets (80 satellite network) and 3640 (on 529 satellite 

 network) 

• By far the best algorithm for throughput as it determines routes based on both latency and load 

• Dijkstra’s algorithm accounts for the changing loads and updates each route accordingly, allowing it 

to support more packets without overloading any one satellite when compared to our other 

algorithms 

X.I.V Ad-Hoc Depth Test 
After comparing a variety of different ad-hoc depths ranging from 1 to 6 we determined that the depth has 

no appreciable effect on the route the ad-hoc algorithm creates. However, the depth does have a minor 

effect on the packet travel time, with larger depths having slightly shorter travel times (around 0.0002 – 

0.0004 seconds faster). This is likely due to fewer satellites needing to calculate a route and instead simply 

sending the packet to the next hop. 
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X.I.VI Throughput Simulation Test 

For the 80-satellite constellation simulation, each algorithm performed similarly. The exception to this is the 

grid path algorithm. This algorithm does not work consistently on a smaller network due to the 

implementation and after some time, the satellites progress to a state where there is no path between them 

on the grid due to some empty grid cells along the path. Outside of these, greedy was the worst performing 

algorithm, followed by ad-hoc/ad-hoc depth, and Dijkstra. On the 529-satellite constellation, again greedy 

had the worst performance, with ad-hoc and ad-hoc depth performing similarly. Dijkstra outperformed Grid-

Dijkstra on this size network, but not significantly. The 600 second trial test on our three small to medium 

size constellations are summarized in Figure 3 below. It is likely that these results would change with a 

longer update time between calculations. 

 

 
Figure 3: Results of 600s Simulated Throughput Test On 3 Small-Medium Satellite Constellations 

On the 7608-satellite constellation, all the distributed network algorithms showed extremely poor 

performance. The Dijkstra’s algorithm also began to show diminished performance with a network of this 

size. The grid-based algorithms both performed very well, with the Grid-Dijkstra version outperforming the 

straight grid until the 600 second duration trial when the grids were at resolution 0. When the grid 

resolution was increased to 2, the Grid-Dijkstra algorithm outperformed all others, while the grid only 

suffered a bit of a performance decrease. The results from this test are summarized below in Figure 4. 
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Figure 4: Results of Throughput Test on 7608 Satellite Constellation 

X.I.VII General Time Comparison 

 
Figure 55: Graph of All Algorithms Comparing Packets Sent to Operation Time 
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The above graph shows the time to packet comparison for each algorithm. As expected, Dijkstra 

outperforms all other algorithms. But more interestingly, the Dijkstra based grid algorithm performed in a 

similar bracket to Dijkstra and maintained a lot of Dijkstra's stability in a relatively consistent amount of time 

needed even for larger numbers of packets. Notably, while centralized point behaved very erratically, at its 

best performance it outperformed the Dijkstra based grid algorithm. 

X.II Best Overall Algorithm 
Based on the results above, the team has determined that the best algorithm for satellite routing is the 

Dijkstra-based grid algorithm. While the current implementation of grid version does not have the same 

throughput on smaller constellations as standard Dijkstra’s, it does reroute in singular satellite loss scenarios 

extremely efficiently only being outperformed by the ad-hoc algorithms which also have the drawbacks of 

lower throughput. Additionally, the algorithm was able to successfully adapt to different network conditions 

in the time test, which allowed for consistent operational time during varied network traffic conditions. 

Additionally, while the algorithm was not as efficient as standard Dijkstra's for rerouting when a larger 

portion of the network is nullified as in the anti-satellite interceptor test, it still outperformed all other 

algorithms. While the algorithm is slightly slower than Dijkstra’s, it still outperformed all other algorithms 

and maintained the same levels of time constancy as the standard Dijkstra’s. Finally, on a very large satellite 

constellation, it outperformed all other algorithms significantly in a throughput test. For these reasons, the 

team believes that this algorithm holds the best balance between speed, throughput, and reliability. 

XI. Future Work 
Since our project was so open-ended, there were a lot of different ways we could have done this project and still 

met the client's requirements. Our final project was just one approach to algorithmic improvement, and there is 

still work that could be done to optimize any of these solutions.  

Firstly, while we created and experimented with several algorithms, our list is certainly not exhaustive. 

Potentially infinite algorithms for routing communications between satellites exist, and this is where we would 

look first for future work. More likely than not, there are algorithms better than any we tested. Furthermore, 

there is always room for more test scenarios. We implemented as many as we could within our timeline, but of 

course there are always more scenarios to be tested. Additionally, the centralized point algorithm test 

constellation was designed with a TLE combination of the global positioning system (GPS) and SpaceX’s Starlink 

satellite constellation. A properly made TLE dataset which is specifically designed to match the centralized point 

algorithm would likely show better results. Additionally, creating a grid system which implements ad-hoc might 

show a significant improvement in the flexibility of the algorithm while maintaining data throughput. Our 

algorithms could also be further refined and optimized, especially grid routing. 

Beyond algorithm development, our project could be improved in several ways. If there were a visualization of 

the satellite network, it would allow for quick visual checking of algorithm correctness and help facilitate 

demonstrations. 

Finally, our simulation model could be further refined. As it currently stands, the simulation needs to be reset for 

different algorithms to be able to run. Ideally, the simulation could be controlled directly, changing the 

algorithm that is currently running and leaving the simulation itself alone. This would ensure more consistent 

comparisons across algorithms, and especially across different types of algorithms (centralized vs distributed). 

The simulation could also simulate imperfect information, and the delay that comes with updating what one 

satellite knows about satellites it doesn’t have direct line of sight with. But primarily, the major revision which 

would assist the simulation is altering the operation of algorithms to more directly reflect the proper operational 

times. As the system currently stands, certain algorithms have extra overhead which might impact their 
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operational time. For example, the grid-based algorithms must recompute their grids during each run of the 

algorithm, which is an unrealistic addition as the grid-based algorithms would ideally be able to maintain a 

persistent image of the grid. 

We are proud of the work that we put into this project, and what it is capable of currently, but nothing is 

perfect. With more time, there are many additional features that we would have implemented, and many we 

would have improved. 

XII. Lessons Learned 
In a project as broad as ours, there are plenty of opportunities to learn. Beyond the obvious lessons of how to 

work better in a team and specifically this team, there are a few major lessons we have learned from this 

project. The first is don’t be afraid to pivot if something is not working the way you wanted or expected, even if 

you are fairly far down one path. Sometimes the only way to achieve a goal is to change direction, even when 

that means undoing a lot of work you have already done.  

Another major lesson we’ve learned is that open-ended projects can be very good for learning; however, they 

can also be major sources of frustration. It can be helpful to add additional constraints onto a very open-ended 

project beyond what a client may give, at least first, so that you can quickly make some progress and determine 

if that is the direction you should pursue. To go along with this and tie into the previous lesson, be willing to 

admit when the direction chosen was incorrect, ideally sooner rather than later. 

XIII. Acknowledgments 
Firstly, we would like to thank Jameson Venema for bringing this project to the team and offering fantastic 

feedback and answers to our questions. 

We would also like to thank Dr. Terry Bridgman of the Colorado School of Mines for all his help with 

mathematical assistance regarding our project and its problems as well as his suggestions for the ad-hoc and 

grid algorithms. 

Additionally, we would like to thank our advisor Scott Jenson of the Colorado School of Mines for directional 

advice on proper development practices. 

  



19 | P a g e  

 

XIV. Team Profile 

 

Rygar Schyberg 

Computer Science - Robotics 

Background: Robotics, ARIA Lab, VEX Robotics Team 

Current Work: Programing robots 

 

Jack Hall 

Computer Science - General 

Background: Software Development, Robotics/Integrated 

Systems, Networking, Linux Environments 

Current Work: Teaching Assistant for Systems 

Programing/Computer Networks 

 

Mallory Shaloy 

Computer Science - Space 

Background: Software Development, Circuit Design, 
Systems Engineering 

Current Work: Personal Projects 

 

Leif Wegener 

Computer Science - General 

Background: Software Development, Networking, Cyber 
Defense Certificate 

Current Work: Personal Projects 

 

 

  



20 | P a g e  

 

References
 

[1]  Davidson Technologies, Inc, [Online]. Available: https://cs-

courses.mines.edu/csci370/FS2025S/Proposals/Davidson1.pdf. [Accessed 12 5 2025]. 

[2]  Uber, "H3," Uber, [Online]. Available: https://h3geo.org/. [Accessed 9 6 2025]. 

[3]  Association for Computing Machinery, "ACM Code of Ethics and Professional Conduct," [Online]. Available: 

https://www.acm.org/code-of-ethics. [Accessed 3 6 2025]. 

[4]  T.-H. Chan, "A Localized Routing Scheme for LEO Satellite Networks," in 21st International Communications Satellite 

Systems Conference and Exhibit, Yokohama, Japan, 2003.  

[5]  C. S. a. Y. Z. Tie Liu, "Load Balancing Routing Algorithm of Low-Orbit Communication Satellite Network Traffic Based 

on Machine Learning," Wireless Communications & Mobile Computing (Online), vol. 2021, 2021.  

 

 

 

  



1 | P a g e  

 

Appendix A - Key Terms 
Include descriptions of technical terms, abbreviations and acronyms 

Term Definition 

LEO Low Earth Orbit. Refers to satellites orbiting at less than 2,000 km in altitude 

MEO Medium (mid) Earth Orbit. Refers to satellites orbiting between 2,000 and 

35,780 km in altitude 

Geosynchronous A type of satellite orbit that follows the rotation of the Earth. A satellite in this 

orbit will appear to always have the same longitude from the ground. About 

35,786 km above the surface of the Earth 

Geostationary A type of Geosynchronous orbit above the equator. A satellite in this orbit will 

appear stationary from the ground 

TLE Two/Three Line Element Set. Data format encoding information about a satellite 

SGP4 Open-source mathematical model for predicting the position and velocity of 

satellites based on a TLE 

H3 Discrete global grid system developed by Uber 

ISL Intersatellite Links. Technology that enables communication between satellites in 

a constellation 
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