
CSCI 370 Final Report
TerraCity

Nick Cregan
Shaun Kannady
Jonah Fallon
Xavier Adams

Client: Josh Rands

Revised June 13, 2024

CSCI 370 Summer 2024

Prof. Kelly

Revision Date Comments
New 05/{13-17}/2024 Completed Sections:

I. Introduction
II. Functional Requirements
III. Non-functional Requirements
IV. Risks
V. Definition of Done
XI. Team Profile

Rev – 2 05/{20-24}/2024 Completed Sections:

VI. System Architecture

Rev – 3 05/{27-31}/2024 Completed Sections:

VII. Software Test and Quality
VIII. Project Ethical Considerations

Rev - 4 06/{3-7}/2024 Updated Sections:

VI. System Architecture
VII. Software Test and Quality

a. created more tests
b. added test results

Completed Sections:

IX. Project Completion Status
X. Future Work
XI. Lessons Learned

Rev - 5 06/{10-14}/2024 Updated All Sections
Table 1: Revision History

1 | Page

Table of Contents
I. Introduction...3
II. Functional Requirements...3
III. Non-Functional Requirements... 3
IV. Risks... 4
V. Definition of Done...4
VI. System Architecture...4
VII. Software Test and Quality.. 7
VIII. Project Ethical Considerations.. 16
IX. Project Completion Status... 17
X. Future Work...17
XI. Lessons Learned.. 19
XII. Acknowledgments.. 19
XIII. Team Profile.. 19
Appendix A – Key Terms...20

2 | Page

I. Introduction

The following document details a software application designed to analyze the amount of parking available
within a designated geographic area. It outlines the product's purpose, functionalities, architecture, and quality.

The software's core functionality is to calculate the percentage of land dedicated to parking within a defined
geographical area. This area is represented by either some arbitrary amount of coordinates that represents a
polygon or one pair of coordinates that represents the center of a circle and a radius (in meters) to go along with
the circle. The application analyzes the designated area and determines the percentage of land used for on and
off street parking.

This project is proposed by Josh Rands, founder and CEO of TerraCity. The application is designed to benefit a
variety of stakeholders. Public transportation planners need insight on the amount of parking in an area in order
to make informed decisions regarding public transportation implementation and development plans.
Additionally, this product may aid the average consumer in making transportation decisions based on available
parking near their desired destination.

Data sources are identified during the development process. Following model training, ongoing maintenance is
not anticipated. Any modifications following the finished product that requires additional development or
maintenance is out of this project's scope.

II. Functional Requirements

A. Input: Take in a JSON in GeoJSON (geojson.org) format.
B. Process the input into a bounding box that captures all of the area within the circle/polygon

a. Should reject input if something is off (see section VII, part I for more detail)
C. Generate some image using altered input coordinates (includes images being sharpened and dividing an

image into multiple subimages to ensure that the images are zoomed in enough for the model to be able
to extract features from)

D. Run the image(s) through the semantic segmentation model that specializes in image classification and
run the image(s) through the OSM database

a. Model is trained on thousands of images
E. Output: A percentage of land use dedicated to parking lots. Use a DICE score to measure/test the model.

The output is two separate images, including the OSM database output and the model output.

III. Non-Functional Requirements

The only non-functional requirement we face is that our model must run offline in a relatively efficient manner.
Our model must not experience significant slowdown on an average computer system while offline. Code
quality, scalability, and readability are also important factors that have been considered. These factors allow our
client to integrate our product quickly and make needed changes in the future as necessary.

3 | Page

IV. Risks

None of us have any familiarity with computer vision models. The risk also applies to all libraries that may
come up during development, like OSMnx or satellite image APIs, for example. This could be a major risk if
we do not handle this correctly, but there are plenty of resources for the team to utilize in order to get a solid
understanding of all of these technologies, so the appropriate amount of research will mitigate this risk.

The machine learning model may utilize a large portion of our processing power. The idea of sending thousands
of images through a model while keeping enough pixels for the model to extract features from may require
hardware better than what the team has access to. This has a significantly large impact on our group, so we need
to inform the client that our model is limited in its capability to identify parking lots due to limited processing
power.

Data sourced from the internet can often become outdated, or even stripped of privileges required to operate our
product. This risk is somewhat likely, but would have a moderate-major impact on our product. In the effort to
deliver a scalable and maintainable product, we need to ensure that our data gathering is not only replaceable if
need be, but also our product is modular to ensure compatibility with data sources with other possible methods.

V. Definition of Done

A. List of minimal useful feature set
a. The program can take in a JSON in GeoJSON format and get image(s) of the specified area.
b. The program can identify parking lots “as accurately as possible”.

B. Describe any tests that client will run before accepting software
a. We apply a comprehensive test set manually engineered by our team. This, along with the

results, is supplied to the client along with the final product. The client has no plans to run any
tests.

b. A DICE score will be used to evaluate the accuracy of the model.
C. Specify how/when product will be delivered

a. We have decided that a simple Git repository will be used in order to send the deliverables. This
will occur after presentations on 6/14.

VI. System Architecture

Overall Architecture

The product utilizes four main streams to generate an output for the user: a user interface, an API interface, a
computer vision model, and OSMnx.

Figure 1 demonstrates the high level system architecture that the user will experience when using the product.
They will provide a valid input to our API interface (a polygon or a circle formatted as a GeoJSON file). For
example, the terminal input python .\main.py .\example_jsons\example-eval.json will process the polygon or
circle described by the input json .\example_jsons\example-eval.json into a bounding box and then run the rest
of the program.

4 | Page

Figure 1: Overall System Architecture

Figures 2 and 3 show an example of what an input JSON may look like.

5 | Page

Figure 2: Input JSON (circle case)

Figure 3: Input JSON (polygon case)

After the polygon/circle is processed into a bounding box, where a satellite image is then obtained based on the
bounding box, the corresponding satellite image(s) will then be sharpened and fed to the computer vision
model. NOTE: satellite images may need to be split up into multiple subimages in order to ensure that images
are zoomed in so that the model and OSMnx will be able to process them effectively. The model will generate
an output of designated parking in that area as an image with binary pixel values (white : parking, black : no

6 | Page

parking), which will be given to the user, along with a percentage, where the percentage will be calculated as
white pixel count divided by total pixel count.

User Interface

The user interface allows for the user to submit different types of requests using GeoJSON files. It also conducts
input error checks and denies invalid inputs before running an image/images through the machine learning
model/OSM.

Satellite Image API Interface

The API interface operates on two modes, allowing the user to generate outputs in different ways.

The interface can run in bulk data mode, providing large amounts of satellite images in the size, area, and
quantity specified by the user. This allows for training data for the model to be generated in bulk, and can also
be used to determine designated parking in sets of areas.

The single image mode of the interface takes an input of two sets of latitude and longitude coordinates which
functions as a bounding box for an area. It returns the satellite image to the user.

Model

The computer vision model is trained on hand-labeled data gathered in bulk from our API interface. It takes an
input of an image and outputs a binary mask which indicates designated parking contained within the input
image. It also outputs the percentage of the image that contains parking. Figure 4 shows an example architecture
of what the computer vision model looks like.

Figure 4: Computer Vision Model

OSMnx

Users provide a valid input to the OSMnx interface (which will be processed into a bounding box). After the
program reads in the input, the program will query the OSM database for parking amenities within the bounding

7 | Page

box and return an image of binary black and white pixels (white : parking, black : no parking) as another metric
for TerraCity or clients of TerraCity to use to understand the full picture of parking availability in an area.

Post-Processing

The direct results from the model are noisy and often have protrusions. These factors cause our parking
predictions to be overstated, and disrupt any visuals made from the outputs. Through some post processing,
these images can be cleaned of noise, and rounded to mitigate the protrusions aforementioned. Figure 5
demonstrates this post processing on an example output from the machine learning model.

Figure 5: Post Processing Model Output Mask

Additionally, to make the outputs easier to visualize, the post processing can include geometric polygon
prediction, where an output mask from our model can be regularized to shapes more commonly seen in parking
lots. This allows for easy recognition of identified parking lots to be seen in larger input areas.

Figure 6 demonstrates a mask fully post processed and overlaid on the input image. The three stages of post
processing are shown from left to right in the figure, ending with geometric shape regularization (in this case a
rectangle).

Figure 6: Geometric Shape Regularization

VII. Software Test and Quality
**NOTE: All tests are run in Python 3.12.4 on VS Code. **

Part I: JSON Input Tests

8 | Page

Test Name Category Setup Action Expected Result Actual Result

Invalid
JSON file

JSON
Parser

Input invalid
JSON file

Run python .\main.py
.\main.py

Error: Please
provide a JSON
file (Usage:

python3 main.py
filename.json)

Error: Please
provide a JSON
file (Usage:

python3 main.py
filename.json)

No Input JSON
Parser

Input doesn’t
include file

python .\main.py ValueError: Only
provide one

argument (Usage:
python3 main.py
filename.json)

ValueError: Only
provide one

argument (Usage:
python3 main.py
filename.json)

Multiple
Inputs

JSON
Parser

Input includes
multiple files

python .\main.py
.\example_jsons\exam
ple-eval-circle.json

.\example_jsons\exam
ple-eval-circle-too-big

.json

ValueError: Only
provide one

argument (Usage:
python3 main.py
filename.json)

ValueError: Only
provide one

argument (Usage:
python3 main.py
filename.json)

Invalid
JSON topic

JSON
Parser

Make a JSON
file where the
topic is not
equal to
“parking”

python .\main.py
.\example_jsons\exam
ple-eval-invalid-topic.

json

Error: Invalid
topic. Expected
'parking', got
{topic}.

Error: Invalid
topic. Expected
'parking', got
{topic}.

No message
field

JSON
Parser

Make a JSON
file with no
message

python .\main.py
.\example_jsons\exam
ple-eval-no-message.j

son

Error: Invalid
message type.

Expected 'train' or
'evaluate', got ''.

Error: Invalid
message type.

Expected 'train' or
'evaluate', got ''.

Invalid
message type

JSON
Parser

Make a JSON
file with

message type
not of

‘evaluate’ or
‘train’

python .\main.py
.\example_jsons\exam
ple-eval-invalid-messa

ge-type.json

Error: Invalid
message type.

Expected 'train' or
'evaluate', got

‘{message_type}’.

Error: Invalid
message type.

Expected 'train' or
'evaluate', got

‘{message_type}'.

No Analysis
Region Field

JSON
Parser

MAke a
JSON file
with no
analysis
region

python .\main.py
.\example_jsons\exam
ple-eval-no-analysis-r

egion.json

Error: Invalid
analysis region
type. Expected
'Circle' or

'Polygon', got ''.

Error: Invalid
analysis region
type. Expected
'Circle' or

'Polygon', got ''.

Invalid
Analysis

Region Type

JSON
Parser

Make a JSON
file with an
invalid
analysis

region type.

python .\main.py
.\example_jsons\exam
ple-eval-invalid-analy
sis-region-type.json

Error: Invalid
analysis region
type. Expected
'Circle' or

'Polygon', got

Error: Invalid
analysis region
type. Expected
'Circle' or

'Polygon', got

9 | Page

'{analysis_region_t
ype'.

'{analysis_region_
type'.

Circle: two
pairs of

coordinates

JSON
Parser

Make a JSON
file with the
circle center
being two
pairs of

coordinates.

python .\main.py
.\example_jsons\exam
ple-eval-circle-two-co

ordinates.json

Error: Invalid
center coordinate.
Please try again.

Error: Invalid
center coordinate.
Please try again.

Circle: >2
pairs of

coordinates

JSON
Parser

Make a JSON
file with
polygon

coordinates as
the center.

python .\main.py
.\example_jsons\exam
ple-eval-circle-polygo
n-coordinates.json

Error: Invalid
center coordinate.
Please try again.

Error: Invalid
center coordinate.
Please try again.

Circle: radius
small

JSON
Parser

Make a JSON
file with a
small radius.

python .\main.py
.\example_jsons\exam
ple-eval-circle-too-sm

all.json

Error: Area of the
given coordinates
from the JSON is
too small ({area}
sq. km). The
current lower

bound is 0.05 sq.
km. Revise and try

again.

Error: Area of the
given coordinates
from the JSON is
too small ({area}
sq. km). The
current lower

bound is 0.05 sq.
km. Revise and

try again.

Circle: radius
large

JSON
Parser

Make a JSON
file with a
large radius.

python .\main.py
.\example_jsons\exam
ple-eval-circle-too-big

.json

Error: Area of the
given coordinates
from the JSON is
too big ({area} sq.
km). The current
upper bound is 250
sq. km. Revise and

try again.

Error: Area of the
given coordinates
from the JSON is
too big ({area} sq.
km). The current
upper bound is
250 sq. km.
Revise and try

again.

Circle:
invalid
longitude

JSON
Parser

Make a JSON
file with an
invalid

longitude.

python .\main.py
.\example_jsons\exam
ple-eval-circle-invalid

-latitude.json

Error: Asking for
an invalid

longitude. Please
try again.

Error: Asking for
an invalid

longitude. Please
try again.

Circle:
invalid
latitude

JSON
Parser

Make a JSON
with an
invalid
latitude.

python .\main.py
.\example_jsons\exam
ple-eval-circle-invalid

-longitude.json

Error: Asking for
an invalid latitude.
Please try again.

Error: Asking for
an invalid latitude.
Please try again.

Circle Edge
Case:

180W/180E
crossed

JSON
Parser

Make a JSON
file with a
low/high

longitude that

python .\main.py
.\example_jsons\exam
ple-eval-circle-180W

E-crossed.json

Error: Distance
value is too large.
Please try again.

Error: Distance
value is too large.
Please try again.

10 | Page

crosses the
180W/E line.

Circle Edge
Case: North

Pole

JSON
Parser

Make a JSON
file with a
radius above
85.06N.

python .\main.py
.\example_jsons\exam
ple-eval-circle-north-p

ole.json

Error: Coordinate
value

{coordinate_value
} is out of range
(max latitude is
85.06). Please try

again.

Error: Coordinate
value

{coordinate_value
} is out of range
(max latitude is
85.06). Please try

again.

Circle Edge
Case: South

Pole

JSON
Parser

Make a JSON
file with

radius below
85.06S.

python .\main.py
.\example_jsons\exam
ple-eval-circle-south-p

ole.json

Error: Coordinate
value

{coordinate_value
} is out of range
(min latitude is

-85.06). Please try
again.

Error: Coordinate
value

{coordinate_value
} is out of range
(min latitude is

-85.06). Please try
again.

Training
Case

JSON
Parser

Make a JSON
file with

message type
‘train’.

python
.\user_interface\split.p

y
.\example_jsons\exam

ple-train.json

TODO: Implement
training

functionality

TODO:
Implement
training

functionality

Polygon: <3
Coordinate

Pairs

JSON
Parser

Make a JSON
file with less
than three
coordinate
pairs making

up the
polygon.

python .\main.py
.\example_jsons\exam
ple-eval-polygon-lt3-c
oordinate-pairs.json

Error: Got
{vertices} vertices,

which cannot
make a polygon.
Fix the JSON and

try again.

Error: Got
{vertices}

vertices, which
cannot make a
polygon. Fix the
JSON and try

again.

Polygon:
area small

JSON
Parser

Make a JSON
file with a
polygon

representing a
small area.

python .\main.py
.\example_jsons\exam
ple-eval-polygon-too-

small.json

Error: Area of the
given coordinates
from the JSON is
too small ({area}
sq. km). The
current lower

bound is 0.05 sq.
km. Revise and try

again.

Error: Area of the
given coordinates
from the JSON is
too small ({area}
sq. km). The
current lower

bound is 0.05 sq.
km. Revise and

try again.

Polygon:
area large

JSON
Parser

Make a JSON
File with a
polygon

representing a
large area.

python .\main.py
.\example_jsons\exam
ple-eval-polygon-too-

big.json

Error: Area of the
given coordinates
from the JSON is
too big ({area} sq.
km). The current
upper bound is 250
sq. km. Revise and

Error: Area of the
given coordinates
from the JSON is
too big ({area} sq.
km). The current
upper bound is
250 sq. km.

11 | Page

try again. Revise and try
again.

Polygon:
>=1 invalid
latitude

JSON
Parser

Make a JSON
file with a

polygon with
at least one
invalid

latitude value.
NOTE: we
choose +-
85.06 to

ensure area
calculations
are accurate
later on.

python .\main.py
.\example_jsons\exam
ple-eval-polygon-inva

lid-latitude.json

Error: Coordinate
value

{coordinate_value
} is out of range
(max||min latitude
is +/- 85.06).

Please try again.

Error: Coordinate
value

{coordinate_value
} is out of range
(max||min latitude
is +/- 85.06).

Please try again.

Polygon:
>=1 invalid
longitude

JSON
Parser

Make a JSON
file with a

polygon with
at least one
invalid
longitude
value.

python .\main.py
.\example_jsons\exam
ple-eval-polygon-inva
lid-longitude.json

Error: Coordinate
value

{coordinate_value
} is out of range

(min||max
longitude is +/-
180). Please try

again.

Error: Coordinate
value

{coordinate_value
} is out of range

(min||max
longitude is +/-
180). Please try

again.

Polygon
Edge Case:
Crossing

Antimeridian
(180W/E)

JSON
Parser

Make a JSON
file with a

polygon with
an area

crossing the
180W/E line.

python .\main.py
.\example_jsons\exam
ple-eval-polygon-180
WE-crossed.json

Error: Area of the
given coordinates
from the JSON is
too big ({area} sq.
km). The current
upper bound is 250
sq. km. Revise and

try again.

Error: Area of the
given coordinates
from the JSON is
too big ({area} sq.
km). The current
upper bound is
250 sq. km.
Revise and try

again.
NOTE: this case
tends to have
unpredictable

output. Avoid this
case at all costs
during product

use.

Polygon
Edge Case:
North Pole

JSON
Parser

Make a JSON
file with a

polygon with
at least one
latitude value
in the north

python .\main.py
.\example_jsons\exam
ple-eval-polygon-nort

h-pole.json

Error: Coordinate
value

{coordinate_value
} is out of range
(max latitude is
85.06). Please try

Error: Coordinate
value

{coordinate_value
} is out of range
(max latitude is
85.06). Please try

12 | Page

pole. again. again.

Polygon
Edge Case:
South Pole

JSON
Parser

Make a JSON
file with a

polygon with
at least one
latitude value
in the south

pole.

python .\main.py
.\example_jsons\exam
ple-eval-polygon-sout

h-pole.json

Error: Coordinate
value

{coordinate_value
} is out of range
(min latitude is

-85.06). Please try
again.

Error: Coordinate
value

{coordinate_value
} is out of range
(min latitude is

-85.06). Please try
again.

Table 2: Product Testing (JSON Parser)

Part II: Satellite Image API Tests

Test Name Category Setup Action Expected Result Actual Result

Single Invalid
Coordinate

Satellite
Image API -
Single Image

Query

Hardcode
invalid

coordinate

Run Standalone
API request

Error #: “Coordinate
lat#, lon# outside of

bounds”

Error #: “Coordinate
lat#, lon# outside of

bounds”

Multiple
Invalid

Coordinates

Satellite
Image API -
Single Image

Query

Hardcode
invalid

coordinates

Run Standalone
API request

Error #:
“Coordinates lat#,
lon# etc.. outside of

bounds”

Error #:
“Coordinates lat#,
lon# etc.. outside of

bounds”

Logfile
Correctness

Satellite
Image API -
Bulk Data
Downloader

Set up a
standard
image size,
2x2 grid.
manually

create logfile

Run Bulk Data
Downloader

and compare to
correct output

Accurate Lat/Lon
logging

Accurate Lat/Lon
logging

Grid Precision Satellite
Image API -
Bulk Data
Downloader

Set grid size:
3, 4, 5

Run
downloader,

compare image
output count to

9, 16, 25

GridSize^2 images
generated

GridSize^2 images
generated

Table 3: Product Testing (Satellite Image API)

Part III: Object Detection Tests

Test Name Category Setup Action Ground Truth (top), Model Output
(bottom)

NOTE: model outputs are before post
processing!

13 | Page

Typical Urban
Case (more
zoomed out)

Object
Detection

Train model,
get model
ready for
prediction

Send
corresponding
satellite image
through the
model

Typical Urban
Case II

(zoomed out)

Object
Detection

Train model,
get model
ready for
prediction

Send
corresponding
satellite image
through the
model

Typical
Parking Lot

Object
Detection

Train model,
get model
ready for
prediction

Send
corresponding
satellite image
through the
model

Typical
Parking Lot II

Object
Detection

Train model,
get model
ready for
prediction

Send
corresponding
satellite image
through the
model

14 | Page

Zoomed In
Building

Object
Detection

Train model,
get model
ready for
prediction

Send
corresponding
satellite image
through the
model

Body of Water Object
Detection

Train model,
get model
ready for
prediction

Send
corresponding
satellite image
through the
model

Mountain
Image

Object
Detection

Train model,
get model
ready for
prediction

Send
corresponding
satellite image
through the
model

Desert Image
(N: 21.80890,
S: 21.77553,
W: -0.10225,
E: 0.00090)

Object
Detection

Train model,
get model
ready for
prediction

Send
corresponding
satellite image
through the
model

15 | Page

Forest Image
(N: 0.16926,
S: -0.10702 ,
W: -70.20029,
E: -69.87885)

Object
Detection

Train model,
get model
ready for
prediction

Send
corresponding
satellite image
through the
model

Typical
Residential
Area (no

parking lots)

Object
Detection

Train model,
get model
ready for
prediction

Send
corresponding
satellite image
through the
model

Edge Case:
tennis courts

Object
Detection

Train model,
get model
ready for
prediction

Send
corresponding
satellite image
through the
model

Edge Case:
playground

with
basketball
courts/four
square

Object
Detection

Train model,
get model
ready for
prediction

Send
corresponding
satellite image
through the
model

16 | Page

Abnormally
Shaped

Parking Lot

Object
Detection

Train model,
get model
ready for
prediction

Send
corresponding
satellite image
through the
model

Grass Object
Detection

Train model,
get model
ready for
prediction

Send
corresponding
satellite image
through the
model

Table 4: Product Testing (Object Detection)

VIII. Project Ethical Considerations

In our model, we utilize satellite imagery as input data. This type of data can raise privacy concerns such as the
potential exposure of addresses.

Continuing with the ethics of satellite imagery, we as a group have little idea about how accurately satellite
images fed to the model reflect what the given area looks like in the present. The satellite images that are taken
by either the Google Maps API or the Mapbox API are certainly not live images, so these images will not
reflect any changes to the landscape done between the date when the images were taken and the analysis to be
done by TerraCity.

The same idea applies for the OSM database. There are going to be many cases where the information stored in
OSM’s database does not match up with the information seen in the satellite imagery, so the value of updated
satellite imagery cannot be overstated for this project.

Additionally, OSM’s database will not contain every parking amenity on the planet, leading to loads of false
negatives that the machine learning model is used to mitigate. It is up to municipalities to update the OSM
database, so it may be worth informing clients of TerraCity that this is the case if they want maximum accuracy
in their analyses.

There will always be ethical considerations with machine learning because a model can be biased due to how it
is trained. This bias can be shown in the results from the model while being hard for us to detect. This is
difficult because we do not understand how the model is making each of its decisions. This has an impact on
users as our model will be involved in making important travel decisions.

17 | Page

Tangentially related, the method in which data is labeled is crucial in how the eventual model performs. The
definition of a parking lot is not exactly something that is agreed upon by everyone, from us, the programmers,
to those at TerraCity, to the clients of TerraCity. The lack of uniformity in this definition across all parties will
lead to a degree of ambiguity when interpreting results and the action(s) taken based on program output may not
necessarily be appropriate.

Lastly, there are group members who have beliefs that conflict with the overall project. The belief is that
infrastructure based on private vehicle infrastructure is less than ideal given how much space in our cities is
dedicated to private vehicles. This is the urbanist, “15 Minute City” view on city planning. With this project,
there is a use case that encourages people to use their own private vehicle to get to a place assuming that the
model identifies parking there, contradicting the urbanist point of view. The fact that certain use cases of the
software may go against the personal ethics of group members will be another hurdle that needs to be overcome
for the success of the project.

IX. Project Completion Status

Implemented Features

The core functionalities of our project include:
A. Reading a GeoJSON file containing latitude and longitude bounds in the shape of a polygon or a circle,

along with appropriate error checking.
B. Utilizing an API to access satellite imagery in the given area.
C. The inclusion of both the results of a trained model and the results of an OSM database query.

a. Accurately identifies parking locations and returns a percentage of land that is dedicated to
parking.

b. Can return a predicted image mask to compare to the original mask and image.

Unimplemented Features

Unfortunately, due to time constraints within our project schedule, we were unable to incorporate a significant
feature: the capability for our model to identify on-street parking or other edge cases of parking like
underground parking or parking underneath a roof. The OSM output attempts to mitigate this, but the issue will
persist nevertheless. Additionally, other functionalities that remain unaddressed include the ability to analyze
regions of non-rectangular shapes. We are currently restricted by the API to rectangular regions but there could
be ways to get very close to a circular shape using some math and transformations of the images we collect and
the API requests we make. Also, other existing algorithms developed by TerraCity could be helpful in future
improvements.

X. Future Work

Currently, our model outputs a mask image that shows the areas it identifies as parking lots along with the
percentage of land in the area that is identified as a parking lot. There may be a chance that the current method
of returning a percentage is unhelpful for many potential future projects. We believe something that would
estimate the number of available parking spaces, including the distinction between used and unused parking
spots, would provide more options and potential for future work. This would involve needing to identify what
kind of parking lot each lot is. Edge cases such as underground parking and parking garages would need to be
identified in order to accurately predict the number of parking spaces.

18 | Page

As of now, our product is hoped to be used by TerraCityAI to implement an algorithm that can suggest to a user
how to travel to an inputted destination, among other use cases. The algorithm would analyze parking
availability along with public transportation options and prices to complete this task.

Feature Implementation Notes

Street/Roof/Undergrou
nd/Other Parking
Recognition

Label Data with inclusion of
these types of parking.

This would be a difficult feature to train a model on
but would provide more accurate parking availability
in many areas. Things like on site data labeling or
leverage of OSMnx would help here, but could lead
to confusing the model (since these types of parking
look different than standard parking lots), leading to

the difficulty.

Non Rectangle Shapes
as a Feature Space
(including polygons
with holes within

them)

Add software functionality
to be able to handle atypical

shapes.

Most satellite image APIs do not have functionality
to request anything but a box so this would take

some thought.

Any Input that includes
180W/180E or the

range (85.06N, 90N) or
the range (90S,

85.06S) in the feature
space

Add software functionality
to handle continuous
surfaces across these

boundaries as opposed to
treating them like fences.

The reason we deny the 180W/180E inputs right
now is to guard against excessively large radius
inputs for the circle input case. If there is a better
way to limit the radius field of the circle input, that
would help with the implementation. Additionally,
area calculations will be inaccurate for the extreme
north/south parts of the Earth and we doubt that any
analysis of this type will be run up there, so we

ignored these cases too.

More data! To label data, we all used
some sort of photo editing
software (GIMP, MS Paint,
etc.) and drew polygons
over the original satellite
images (where the parking
lots are) and then used a fill
tool to fill in the polygons
representing parking lots
white. From there, we used

some sort of magic
select/color select/invert tool
and then filled the rest of the
image in with black pixels,
completing the labeled data

in this way.

The data that we have included in the model is
mostly sourced from Denver, Houston, and
Pasadena. We could not think of a way to

successfully randomly sample from the US or world
landscapes without being oversaturated with images
with no parking lots, but we believe that a sample of
satellite images that is more representative of the

United States or the world would vastly improve the
model. Also, there would be benefits to doing on site
labeling in order to properly confirm whether or not
a piece of land is dedicated to parking or not. The on
site labeling would especially help with the case of
street parking. See notes for more details on how we

labeled data.

It is also worth noting that most of our training data
is set to very particular zoom levels, so the lack of
variance there could also be addressed in the future.

Any input with a Optimize software to handle We have the upper bound constraint in place in order

19 | Page

bounding box with an
area above 250 sq. km
or below 0.05 sq. km.

bounding boxes of
smaller/bigger sizes.

to not put excess strain on either the API, the model,
or our hardware in general. With techniques like

parallel processing/multithreading, we feel that this
constraint could either be increased to a bigger area
or eliminated entirely. Also, with better hardware,
more pixels/more features could be extracted from
the satellite images, which would further help in the

accuracy of the model.

On the other end, a lower bound will help avoid the
case of a simple gray square or a feature space with
very little features to go on. This edge case could be
improved with further training, but is in place for
now to ensure maximum accuracy of the result.

NOTE: These constraints are arbitrary values and
can absolutely be changed accordingly!!!

Table 5: Future Product Features

XI. Lessons Learned

A. APIs provide powerful functionality for any project, yet they frequently offer functionalities that may
not align perfectly with project requirements and the possessed data. Navigating this gap and
transforming available data into a format compatible with the APIs capabilities can pose challenges.

B. Addressing the various needs of clients often demands a flexible approach. Rather than relying on a
singular solution, projects often utilize a blend of tactics to effectively tackle complex requirements. In
our situation, we used a machine learning model along with a database of parking lots to verify and add
to our results in cases that could not be handled by the model alone, such as street parking.

C. Machine learning projects in niche areas, such as parking lot identification, often creates a need to
manually label data due to the lack of data availability. This is a time-consuming process that can take
weeks or months to provide an adequate amount of data for a model to learn and succeed.

D. Heavy research in data science, an exploding field, has helped lead the way for many others to succeed
in their own projects. While our specific goal has very little research done, we can apply methods and
techniques from other image classification projects to help fine-tune our model. There are often
similarities between each of these projects that we can use to our advantage.

20 | Page

XII. Acknowledgments

A. We would like to thank our client, TerraCityAI, for their support and trust with this project. Specifically,
a big thank you to Josh Rands for helping the project go smoothly.

B. Thank you to our advisor, Kathleen Kelly, for advising us and ensuring our project requirements were
met and team dynamics/team morale were high.

XIII. Team Profile

Nick Cregan
Computer Science - Business
Senior
Colorado Springs, CO

As a graduating Senior, Nick is excited to join the
industry after the summation of this project. In his
free time, he enjoys skiing, camping, and riding
dirtbikes.

Advisor point of contact. Nick was responsible for
most of the data gathering and contributed to key
functionalities within the code base in addition to
other tasks related to CSCI370 in general.

Shaun Kannady
Computer Science - Data Science
Senior
Aurora, CO

Shaun has grown up throughout the general Denver
Metro Area for as long as he can remember. After
deciding to attend Colorado School of Mines, he
decided to major in Computer Science and specialize
in Data Science, looking forward to what the industry
has to offer. During his free time, Shaun enjoys living
with his family, bowling, and playing video games.

Shaun was responsible for everything OSM/OSMnx
related to the project. Additionally, he helped with the
GeoJSON input processing and the overall tasks for
the CSCI370 class in general.

Jonah Fallon
Computer Science - Data Science
Junior
Batavia, IL

Jonah is a rising Junior who is interested in the Data
Science field. He runs track for Mines, competing in
the 400m. He loves to spend time outside playing
spikeball, volleyball, and pickleball.

Xavier Adams
Computer Science - Data Science
Senior
Arvada, CO

Xavier is a rising senior double majoring in
Computer Science + Data Science and Engineering
Physics. In his free time he enjoys playing video
games and hanging out with friends.

21 | Page

Jonah was responsible for keeping communication
with the client, creating many key helper functions
within the model involving preprocessing and
querying, as well as contributing heavily to other
CSCI370 assignments and tasks.

Xavier was responsible for much of the construction
and training of the ML model used in this project,
and contributed to many CSCI370 class assignments
and tasks.

Appendix A – Key Terms
Include descriptions of technical terms, abbreviations and acronyms

Term Definition

API Stands for Application Programming interface. Provides a
way for various software applications to communicate.

Semantic Segmentation Deep learning model technique that classifies each pixel to a
category. ie Parking Lot or Not Parking Lot.

JSON JavaScript Object Notation. This is a text based file format
with attribute-value pairs.

OSM OpenStreetMaps. An open license database that stores
information about the world.

OSMnx A Python library that combines OSM, networkx, and
GeoPandas into one, neat library.

DICE Score A measure for defining the accuracy of an object detection
machine learning model. Defined by the below equation:

Table 6: Appendix

22 | Page

