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I. Introduction

The product is an Autonomous Paddock Mucking Robot for the Longhopes Donkey Shelter. The sanctuary is
located in Bennett, Colorado, and was founded in August 1999. They rescue unwanted donkeys that would otherwise be
slaughtered and rehabilitate and rehome them. The shelter may care for some of the donkeys for the rest of their lives as
they have health issues or are blind, making them more difficult to adopt out. The staff and volunteers care for a large
amount of animals, and part of that care involves cleaning their paddocks daily. To make the shelter’s operations more
efficient and less labor intensive, the client has requested an autonomous paddock mucking robot that can take over
some of the responsibility for cleaning the donkey paddocks. This robot will be used to reduce the amount of manual
labor and the cost it takes to keep the paddocks clean. Offloading some of the work to the autonomous mucking robot
will allow the employees and volunteers to devote their time to other tasks, improving the efficiency and impact of the
sanctuary.

Figure 1: Staff and Volunteers at Longhopes Donkey Shelter

The robot must be able to navigate through donkey paddocks, avoiding obstacles such as food and water
troughs, toys, donkeys, and fences. Its task is to scan the paddock for manure, find and traverse a path to the manure,
pick up the manure, and deposit it at a predetermined drop location inside the paddock. This project will be continued in
future field sessions, split between another CSCI 370 team and an EDNS 490 team. Our goal is to create the software
framework for the robot so that it can be expanded upon and physically implemented at a later time.

The clients of this project pertain not only to the staff of the Longhopes Donkey Sanctuary but also to more
potential clients around the country who may employ future versions of the robotic unit’s services to cut labor costs and
ensure animal safety. It also extends to the animals themselves, many of whom are older and need medical care and rely
on the staff’s tireless efforts to give them a happy and comfortable life. Overall, we must ensure that the software we
produce throughout this project is sufficient to improve the efficiency of this center and others like it for the sake of all of
these stakeholders.

II. Functional Requirements

1. The robot unit must be able to navigate the paddock independently without a pre-established map
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2. The robot unit must be able to scan the paddock for manure and the drop location.
3. The robot must be able to traverse a sufficient 95% of the paddock and pick up all manure therein
4. The robot unit must be able to recognize manure in different settings and surroundings, including dirt and sand

paddocks, grassy pastures, and concrete barn structures with rubber matting.
5. The robot unit must avoid collisions with both stationary and non-stationary obstacles.
6. The robot unit must be able to uniquely identify individual paddocks.

III. Non-Functional Requirements

1. This robotic unit’s hardware will need to be of reasonable capacity to handle these requirements
a. It must possess enough memory capacity to store a map of its environment and potentially certain

statistical observations
b. It must be able to cool itself, as it will operate outdoors
c. It must have enough data ports to support six (6) individual motors for the physical design

2. This software will need to employ a camera system to identify manure
3. The software will need the ability to identify manure from camera intake
4. It will also need a Light Detection and Ranging (LiDAR) system to give a more detailed map of the robot’s

surroundings to avoid collision with fences, farm equipment, and the donkeys themselves.
5. The software will need strong data transferring ability to ensure these systems can work in tandem to allow the

robot to navigate accurately around its surroundings.
6. A unique identifier will be necessary to identify the manure dropoff location and orient the robot’s position

within the paddock.

IV. Risks

The main risks associated with this product are related to its deployment inside animal enclosures. There is the
possibility that the donkeys will be afraid of or hostile towards the robot, which could result in an inability to perform its
tasks, damage to the robot, or harm to the donkeys. On the other hand, the donkeys may want to interact with the robot
without hostility or fear, but still prevent it from completing its tasks or causing damage to themselves or the robot.
Regardless of the donkeys’ behavior towards the robot, it must still be properly programmed to avoid obstacles. This is
also critical to avoid harming the robot.

If the software crashes, the robot must remain stationary in the field and will likely need to be physically
maintained by staff at Longhopes, another reason why thorough documentation is an important part of this project. If
the robot were to shut down in the middle of cleaning a paddock, the sanctuary employees may need to manually search
for the robot in the paddock or the pasture to repair or restart it.

A developmental risk involves the creation of a virtual environment to test the robot’s software. The
environment will not be able to exactly mimic the conditions of the donkey shelter and could therefore skew testing
results to be more accurate than the physical unit may be in the real environment. We will need to take this into account
while creating the environment and attempt to make it as accurate as possible while recognizing its limitations. The
initial iteration of the physical robot will need to undergo more testing in the real environment to validate the results
from the virtual environment and make sure it is consistent.
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V. Definition of Done

For this five-week session, in order for the project to be considered complete, the robot must be able to scan the
paddock for obstacles, identify manure with the camera, plot and travel a path to get to the manure, pick it up, and
deposit it at the manure’s drop location. The functionality requires that the robot can recognize donkey manure, find a
path from the robot’s current position to the manure, move the robot so it is positioned appropriately to pick up the
manure, then locate and navigate to the manure drop location. It must also be able to identify when there is an obstacle,
such as the donkeys, donkeys’ toys, or fencing, while in operation to avoid collisions and have the capability to navigate
through the space safely. The obstacle identification, path navigation, and locating the drop spot will be tested in the
virtual environment in several different artificial worlds. The manure recognition will be tested using a collection of
different videos and photos that were not used in training the recognition software, which will be quantitatively
measured using percent accuracy.

VI. System Architecture

Algorithm

The algorithm for this system is fairly straightforward. The robot must first scan the paddock to locate nearby
manure piles as well as the manure drop location. The drop location will be identified using an AprilTag that may also
contain information about the paddock such as a paddock number. If the robot has not yet located the manure drop site
it will ignore manure until the drop site is found. It can then find a path to the closest manure pile, pick it up, find a path
to the manure drop location, and deposit the manure. The robot will then check if it has enough battery charge to
continue cleaning and if it has traversed at least 95% of the paddock. The robot will only make one pass of the paddock
before shutting down; the 95% traversal ensures that the majority of the manure will be found and collected but also
ensures that the robot will not run continuously after all the manure has been picked up. See Figure 2 for the detailed
flowchart of the algorithm.

Figure 2: Algorithm Flowchart
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Third Party Software

The software for the robot will be run using a Robot Operating System (ROS), specifically ROS2 Humble
Hawksbill, an open-source software suite commonly used for robotics, and will be built in ROS Development Studio to be
able to use several built-in features. There will also be several existing open-source software utilities incorporated into it.
The software will use three core technologies: ROS, Gazebo, and YOLO, each of which works in tandem to form the
foundation of the Robot control system. The overall architecture that the system will follow is outlined below in Figure 3.
Different functionalities will be separated into Nodes, which will communicate and interact by publishing data to
different Topics or Services. Topics have publishers and subscribers while Services have service providers and clients.
With Topics, the publisher decides when data is sent out and all subscribers see the data as soon as it is sent out. With
Services, the client must send a request to the Service to be able to get data.

For sensor data, the publisher/subscriber schema was more appropriate as it allows the subscriber nodes
(Computer Vision and Pathfinding) to receive data at the rate it is produced, rather than having to ask for it as in a
service/client schema. This philosophy also transfers to the Object Recognition topic, which should ideally be driven by
the node which produces the data, Computer Vision.

For Movement Commands, the Service/Client model was more sensible as the Pathfinding and Navigation node
should only have to send instructions when necessary. With the Service/Client model, communication is also two-way as
each service request comes with a response, thus the Motor Control node can send back a signal if the desired
movement command is impossible/overridden by LiDAR data. It was determined that the LiDAR sensor may potentially
need direct access to the movement commands topic in case collision with a moving object is imminent.

Figure 3: ROS Architecture and Data Flow

ROS: Our system is designed within a Robot Operating System framework. This open-source software is a collection of
packages and utilities that are typically built on top of a Linux system to facilitate data transfer and exchange between
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different modules of the robot system. ROS standardizes data transfer between Python and C++ programs, allowing them
to communicate seamlessly with each other. ROS is the standard across the robotics industry, meaning it will be easier to
modify and understand for other maintainers and future field session teams.

Gazebo: To facilitate testing without a physical model, we are employing Gazebo, a software utility that works with ROS
to simulate a virtual environment in which our software can control a digital robot. Gazebo comes equipped with a
physics engine and emulators for Camera and LIDAR systems, meaning that success within Gazebo can reliably certify our
software for use in a real-world environment.

YOLOv5: YOLO (You Only Look Once) is software designed to deliver object recognition in high-speed, high-accuracy
results in real-time, that is built on pytorch. This software will be used to recognize donkey manure, with the assistance
of Roboflow.

Roboflow: Roboflow is a software designed to allow users to upload images and train machine learning models for
object detection. Roboflow will be used to train a model to recognize donkey manure from images and videos. That
model will then be used by YOLO, which will be integrated into the rest of the robot’s software.

The Construct: The construct is an online application which serves a cloud-based desktop preloaded with Ubuntu Linux
and standard ROS2 packages. This software allows our team to use a standard development environment and ensure
that our shared repository works at the same capacity across all of our computers. The software is free to use and does
not require setting up a local Linux desktop.

Design Challenges

Through the course of development, there have been several design obstacles. The main obstacles have involved
the technology and software required for the robot to be able to function in the environment of the donkey shelter.
Specifically, the computer vision software and the pathfinding algorithms are the most affected by the challenges of the
environment. Another challenge is making the virtual environment similar to the physical environment.

Pathfinding Algorithm: The donkey paddocks are not uniform in shape or terrain, which makes it difficult for the robot to
scan the environment, avoid obstacles, and detect manure. There is also a wide variety of obstacles in each paddock,
including feeding troughs, toys, rocks, urine spots, and even a golden retriever which the sanctuary employs to greet
visitors. Many of the obstacles are moving and the robot will need to constantly avoid them. This will make the
pathfinding algorithm and data transfer between sensors more difficult and complex.

Computer Vision Complications: The variation in terrain in the donkey paddocks is especially challenging for computer
vision implementations, as object identification has to work consistently in many different environments. Recognizing
manure on flat sand and concrete is far easier than recognizing it in tall grass. Moving obstacles in the paddocks will also
make image recognition difficult. This movement can be distracting to a computer vision implementation necessitating
stricter identification criteria.

Gazebo Implementation: Gazebo is a very complex software that can be difficult to learn. There are also not many
pre-made models available, meaning most models for simulating the environment at the donkey shelter needed to be
custom built. Simplistic virtual environments can be created without many custom models, but need not simulate the
realistic environment. Detailed environments needed to take a lot of time and customization, potentially making complex
virtual environments an unrealistic goal.

VII. Software Test and Quality

7 | Page



The majority of our testing has been conducted in the virtual Gazebo environment that we have built. Figure 4 is
an overhead view of the most advanced and realistic Gazebo world, which contains realistic fencing (FIgure 5), a model
of manure (Figure 6), and a model of an AprilTag (Figure 7). A more basic world with less complex models and four solid
walls was also created. The testing for the image recognition software can be done both on-site and with test images on
Roboflow. For each functional and non-functional requirement, we have prepared plans to ensure they are tested before
being passed to the next team working on the project.

Figure 4: Realistic Gazebo World

Figure 5: Gazebo Fence Model
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Figure 6: Gazebo Manure Model

Figure 7: Gazebo AprilTag Model

Functional Requirements

Requirement 1: The robot unit must be able to navigate the paddock independently with minimal guidance.

To test this requirement, we will have the robot set up in the virtual Gazebo environment, but its only impression
of this environment will come from its LiDar and camera sensors, rather than a pre-programmed digital map. The robot
must be able to use the LiDAR map and camera data to find and traverse a path through the paddock from a start point
to an end point without hitting any obstacles. The edge cases will involve moving obstacles and different styles of fencing
that may not create a cohesive border. To successfully pass the test, the robot must only be given an endpoint to travel to
and be able to navigate any path through the virtual environment without assistance and without hitting a single
obstacle.

Robot Independent Navigation Results:

The robot was able to independently navigate through both the basic and the advanced Gazebo virtual
simulations when given a destination. It successfully avoided all stationary obstacles. The robot mapped its surroundings
using SLAM and navigated using Nav2 only using the map that it generated from LiDAR data. Figure 8 is a screenshot of
one of the maps created by the robot as it navigated through one of the basic Gazebo worlds. The red object is the robot,
the white lines are empty space where the LiDAR did not hit any obstacles, and the green dots are the edges of obstacles
that the LiDAR has detected. The map also updates as obstacles move, also updating the Nav2 navigation instructions so
that the robot can attempt to avoid moving obstacles. The robot was not always fast enough to avoid collisions entirely,
but would at least stop before a collision.
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Figure 8: Map Created Using LiDAR Data and SLAM

Requirement 2: The robot unit must be able to scan the paddock for manure piles.

Images of manure were collected in all paddock environments and from several angles to thoroughly train the
model. We will also collect images of donkey manure that was not used in the training of the model and use the Gazebo
robot’s virtual camera feature to test that this feature works properly. This represents a fairly accurate demonstration of
the model’s abilities, without having to create 3D models of manure. Future testing can be conducted using a simplistic
Gazebo model with an image of manure on a cube. The results will be recorded using screenshots and written records.
To successfully pass the test, the robot must be able to scan the immediate area using the camera emulator and manure
detection and identify the general direction of the closest manure piles.

Manure Scanning Results:

While we were unable to integrate our YOLO model onto the robot with the time constraints, we were able to
construct the manure object in Gazebo which can be used in testing by future teams.

Requirement 3: The robot must be able to traverse around 95% of the paddock and pick up all manure therein.

To test this, we can verify after the robot is done scanning how much surface area it covers and how close this
value is to the actual surface area of our virtual paddock environment. This will be a nearly complete full run through of
the expected behavior of the robot, except to isolate this functionality we will pre-program the manure locations. Edge
cases involve obstacles moving while the robot traverses the paddock, checking if the robot will go back to previously
blocked locations if needed. The results will be recorded using screenshots and written records. To successfully pass the
test, the robot must be able to track how much of the virtual environment it has traversed and reach a minimum of 95%
traversal before the end of the test
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Paddock Traversal Tracking Results:

Nav2 and SLAM are able to track where in the environment the robot has been and can be used to calculate how
much of the paddock has not been traversed. To be sufficiently tested, more software needs to be implemented to
monitor the paddock traversal and autonomously control the robot.

Requirement 4: The robot unit must be able to recognize manure in different settings and surroundings including dirt
and sand paddocks, grassy pastures, and concrete barn structures with rubber matting.

To test this feature, we first have RoboFlow’s built in testing environment which measures how accurately the
machine learning model identifies manure in several pre-annotated photos. In the virtual Gazebo environment, we have
also replaced the standard gray baseplate with a hay-and-dirt texture to ensure the virtual robot is working in an
imperfect natural environment, as it will be in real deployment. We will also conduct another site visit where we can
connect our phones to RoboFlow and scan the surrounding area to see the number of correctly identified manure piles
and if any were missed or incorrectly identified. Edge cases include manure in grass and poor lighting conditions. The
results will be recorded using screenshots and written records. To successfully pass the test, the robot must at least be
able to consistently recognize manure on dirt and sand with very little misclassification or failure to identify clear manure
piles.

Manure Identification Results:

Virtual tests of the manure image detection using Roboflow on a test set of images went very well. The model
identifies manure consistently and with a high level of confidence. Some identifications have a confidence level of 93%.
See Figure 9 for one of the test image identifications. Tests were also conducted on-site using phone cameras connected
to Roboflow. Manure in different environments and lighting conditions was correctly identified and often identified more
than five feet away. It identified manure on both dirt, sand, grass, and hay. See Figure 10 for an example of real time
identification. Some weaker areas were discovered: the model struggled with identifying manure in shadows and in the
darker corners of the indoor areas. More training photos were taken at any points during the testing where the model
struggled to identify manure and were used to strengthen the model in those areas.

Figure 9: Roboflow Test Image Identification
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Figure 10: On-site Manure Identification

Requirement 5: The robot unit must avoid collisions with both stationary and non-stationary obstacles.

The ability of the robot to avoid collision will be accurately tested in Gazebo which has an active physics
simulation suite. Through visual observation, we can see if the robot is readily avoiding collisions and potentially add
scripts to detect and report when collisions with other objects occur. This data will help us sharpen the LiDAR system to
avoid future collisions. Edge cases involve several moving objects moving in and out of the robot’s initial path plan. The
results will be recorded using screenshots and written records. To successfully pass the test, the robot must avoid
collision with 95% of obstacles when tested with both stationary and moving obstacles.

Collision Avoidance Results:

The robot was able to successfully navigate around stationary obstacles using SLAM to create a map of the
environment and Nav2 to navigate around the known obstacles. For a moving object, the LIDAR system was capable of
detecting a fast moving object with an update rate of 20Hz.

Requirement 6: The robot unit must be able to uniquely identify individual paddocks.

Since this feature is mostly a groundwork for future planned statistical analysis systems, testing should only
involve the robot’s ability to observe an AprilTag and read data on which paddock number is contained within. This will
be done in the Gazebo environment, both during other tests and potentially on its own in an isolated testing
environment. Edge cases may involve a partially obscured AprilTag such that the robot must move around to get a better
view of the tag. The results will be recorded using screenshots and written records. To successfully pass the test, the
robot must be able to take in data from an AprilTag that includes a test paddock name or number.

AprilTag Data Intake Results:

Within the AprilTag detection node, the software can also take in a detected AprilTag’s ID. This is how
information is stored within the AprilTag, but there is currently no defined convention for what kind of information will
be stored in the AprilTag. Once the convention is determined, the AprilTag ID can be used to store that data.
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Non-Functional Requirements

Requirement 1: This robotic unit’s hardware will need to be of reasonable capacity.

The online environment we are using to build this software, The Construct, has features which will allow us to
see CPU usage during robot operation. While this is not an entirely accurate reading of how many resources will be
consumed by the software in the field, it can help us diagnose spikes and/or potential memory leaks before deployment.
We may also run isolated parts of the program or compare the data from The Construct to a Raspberry Pi emulator to
validate our choice of hardware. The results will be recorded using screenshots and written records. To successfully pass
the test, the software requirements must be compatible with the specifications of an available Raspberry Pi.

Hardware Capacity Results:

With rviz, a joint state publisher, a LiDAR sensor at 60 Hz, and a camera sensor at 60 Hz all running at the same
time, the CPU usage, seen using the Linux “top -i” command, in The Construct development studio was 25%. The
Construct uses four cores, very similar to many versions of Raspberry Pis. Even while continuing to build more onto the
software, Raspberry Pi hardware will be more than sufficient for the software at this time.

Requirement 2: This software will need to employ a camera system.

Gazebo and ROS2 provide plugins for simulating camera input and transferring image data between nodes,
allowing us to work camera input realistically into our software and testing before having a physical camera device. The
camera system will be tested in a variety of different virtual environments with different lighting conditions. Edge cases
would involve very poor lighting conditions and lower quality camera images. The results will be recorded using
screenshots and written records. To successfully pass the test, the robot must be able to have a camera emulator in a
virtual environment and successfully publish the camera data for other elements to subscribe to.

Camera Visualization Results:

A camera emulator was loaded in Gazebo, connected to a virtual model of the robot, and tested in different
conditions. The camera data was sent out correctly as the RGB values of individual pixels and could then be visualized
using rviz. The camera received clear images and handled several different lighting conditions.

Requirement 3: The software will need the ability to identify manure from camera intake.

RoboFlow provides a testing suite which automatically judges computer vision models on their ability to match
human-provided image annotations. So far, we have reached an identification accuracy of approximately 80.5%, and as
we add more data provided by Longhopes we can continue to monitor this number to test how accurate our resulting
model will be. RoboFlow will be combined with the virtual camera emulator and environment to test that the accuracy
remains the same while using the robot. The results will be recorded using screenshots and written records. To
successfully pass the test, the robot must be able to use the image recognition model in conjunction with the camera
emulator to identify manure in a virtual environment with an accuracy that is similar to the model when used alone.

Manure Identification in Gazebo Results:

While we were not able to get YOLO integrated onto ROS at this time, this should be the only component needed
to achieve our desired test results. The camera’s ability to recognize april tags is very promising for this requirement
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Requirement 4: It will also need a Light Detection and Ranging (LiDAR) system to give a more detailed map of the
robot’s surroundings to avoid collision with fences, farm equipment, and the donkeys themselves.

Similar to the camera system, Gazebo and ROS2 include plugins that simulate LiDar input from a virtual robot
which will make the job of simulating the real operation of the robot much easier. The accuracy of this LiDar simulation
will give us a reasonable outlook on the LiDar system’s real-life performance while testing it in the virtual environment.
Edge cases involve moving obstacles and different sizes and types of obstacles, as well as different styles of fences while
creating the boundary of the paddock. The results will be recorded using screenshots and written records. To successfully
pass the test, the robot must be able to run a LiDAR emulator in a virtual environment and successfully publish the LiDAR
data for other elements to subscribe to.

LiDAR Visualization Results:

A LiDAR emulator was loaded in Gazebo, as shown in Figure 11, connected to a virtual model of the robot, and
tested in different virtual environments. The LiDAR data was sent out correctly as the distance between the sensor and
where each individual laser beam hit an obstacle and could then be visualized using rviz. The LiDAR identified the edges
of several different objects and had an adjustable range. A visualization from one of the tests is shown in Figure 12.

Figure 11: LiDAR Simulation in Gazebo
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Figure 12: LiDAR Object Detection Visualization

Requirement 5: The software will need strong data transferring ability to ensure these systems can work in tandem to
allow the robot to navigate accurately around its surroundings.

To test the system’s ability to transfer data quickly and efficiently, we will set the camera in our virtual simulation
to have a higher framerate than the planned deployment’s camera. This will be a fitting test for ROS2’s ability to handle
rapid image data transfer, especially since the online interface we use to run this software has strict limitations on CPU
usage during runtime. Edge cases would involve all of the systems running at once, even if they wouldn’t realistically. The
results will be recorded using screenshots and written records. To successfully pass the test, the software functionality
must not suffer when multiple nodes and processes are running simultaneously. Software functionality will be measured
using run time required to complete tasks and if the tasks are successfully completed.

Data Transference Results:

Tests were done with Gazebo, rviz, a joint state publisher, a LiDAR sensor at 60 Hz, and a camera sensor at 60 Hz
all running at the same time. The data transfer between each element was not affected by the amount of processes
running and was still efficient and functional.

Requirement 6: A unique identifier will be necessary to identify the manure dropoff location and orient the robot’s
position within the paddock.

After encoding a unique identifier into the AprilTag used in the Gazebo simulation, we will have to test and
ensure that the identifier’s paddock ID is consistent across all scans and can be securely stored in the ROS2 system for
future use. Edge cases would involve a partially obscured AprilTag and moving the AprilTag to different locations in the
same virtual paddock before each test. The results will be recorded using screenshots and written records. To
successfully pass the test, the robot must be able to search a virtual environment for an AprilTag and be able to identify
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the AprilTag. There is no time limit at this stage, but future testing could require the robot to be able to locate the
AprilTag within a certain time frame.

AprilTag Identification Results:

The robot was able to identify an AprilTag in the virtual environment, but only when it was well lit, as shown in
Figure 13. The detection system is able to locate the corners of the AprilTag and draw a green box around it as well as
locate the center, marked with a red dot. It is unfortunately unable to identify an AprilTag if it is partially obscured, so
software will have to be built such that the robot moves around the paddock until the AprilTag for the drop off location is
fully visible and able to be detected. The robot is not yet able to search the paddock specifically for an AprilTag, but an
AprilTag can be detected directly from the camera system in good lighting conditions.

Figure 13: AprilTag Identification

VIII. Project Ethical Considerations

Our project has several ethical considerations involving both the development and deployment of the product.
The following are the most pertinent or most likely to violate ACM and IEEE principles:

ACM

1.2 Avoid harm.

The robot must be able to recognize objects that are not manure to avoid collisions. This principle is in danger of
being violated because of the complex environment that the robot will be deployed in that includes working around live
animals that may be harmed if the robot does not function properly. If this principle is violated, it will mean that the
robot is not safe to deploy around animals or potentially even people and would need additional work done before being
re-deployed.

1.5 Respect the work required to produce new ideas, inventions, and creative works, and computing artifacts.

This principle is very important during development. Appropriate time must be allotted to be able to do tasks
properly and not cut corners, to avoid complications in future work. This principle is important to ensure the best ideas,
inventions, creative works, and computing artifacts get heard. If this principle is not followed the end product will likely
be of low quality.
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2.4 Accept and provide appropriate professional review.

This is another principle that is important during the development process. The group must provide constructive
criticism must be able to be given appropriately and respectfully while work is being reviewed. This principle must be
followed to ensure that all work done can be appropriately reviewed. If this principle is violated the end product may not
be of high quality and would fail to take into account different perspectives and opinions.

2.6 Perform work only in areas of competence.

This principle is the most in danger of being violated as none of the members of the team have previous
experience using most of the technology required for this project. The team must be honest with themselves and others
and will not attempt to implement any work without gaining knowledge of all the edge cases. If this principle is violated
it is likely that the project’s software will not be high quality or effective.

IEEE

1.01. Accept full responsibility for their own work.

The principle is important to the project and must be followed during the entire development process so as to
avoid issues within the team and make sure that appropriate contributions are being made. Team members are not
allowed to blame or give praise to others who haven't had an impact on the work. If this principle is violated it could lead
to degradation within the team and a lower quality product.

1.02. Moderate the interests of the software engineer, the employer, the client and the users with the public good.

This principle is very important for the development process. All interests of each teammate and the client will
be taken into account before making any further decisions. If this principle is violated, the product will not adhere to the
client’s requirements.

1.04. Disclose to appropriate persons or authorities any actual or potential danger to the user, the public, or the
environment, that they reasonably believe to be associated with software or related documents.

This principle is important for both the development and deployment as well. If any person, animal, or object
could be harmed, it is imperative that the appropriate people and organizations are informed of the danger. If this
principle is violated, accidental harm could be caused to people, animals, or property.

3.07. Strive to fully understand the specifications for the software on which they work.

This principle is important for the development process. The team must make sure that any software used in the
projects works correctly, and ensure that the software is understood fully. If this principle is not followed the end product
will be lower quality and difficult to be expanded upon or inherited by future developers.

Micheal Davis’ Tests

Michael Davis is a philosopher who focused on ethics in professional environments. During his career, he
developed a set of seven analytical tests to determine whether or not an ethical decision was made correctly. Among
these, two tests stand out as relevant to our project and the decisions we have had to make during its completion.

1: Reversibility Test. Davis’ reversibility test involves considering those affected adversely by an ethical decision and
considering if they would make the same decision regardless. In our case, the robot we are creating stands to take jobs
away from those who may otherwise be employed. However, the employees of the sanctuary have other tasks that they
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can complete and will likely not be out of a job entirely. If members of our team were employees at the donkey shelter,
the autonomous paddock mucking robot would still be a good option and ultimately be beneficial to the shelter.

2: Colleague Test: Davis’s colleague test requires consideration of colleague opinions on the project and the decisions
made therein. In our case, we have been working with several classmates and professors on this project and all seem
enthusiastic about the prospect of our robot and its ability to aid the Longhopes Donkey Shelter’s charitable mission.
They have not raised any immediate ethical concerns and support our planned solution.

IX. Results

The software is able to successfully identify manure from test photographs, detect AprilTags in photographs and
from the robot’s camera system, and create a map of the environment using a combination of SLAM and Nav2. The robot
can also be given a desired destination on the map and travel to it independently, avoiding stationary obstacles. The
robot attempts to avoid moving obstacles, but if the obstacle is moving faster than the robot, collision may not always be
avoided entirely. Several different virtual environments have been created in Gazebo to facilitate the testing of the
different features, including a more realistic world with accurate fencing, simplistic manure models, an AprilTag model,
and accurate ground terrain.

Functional Requirements

Requirement 1: The robot unit must be able to navigate the paddock independently with minimal guidance.

Using SLAM and Nav2, the robot is able to be given a destination point and independently navigate around
obstacles and travel to the given location.

Requirement 2: The robot unit must be able to scan the paddock for manure piles.

With the robot’s camera, image recognition is able to successfully identify manure in good lighting conditions. As
the robot traverses the paddock, it is able to use the camera to scan for manure.

Requirement 3: The robot must be able to traverse around 95% of the paddock and pick up all manure therein.

Using SLAM, the robot can remember where in the paddock it has already been and ensure that it is covering at
least 95% of the paddock. As the robot moves, it is also constantly using the camera to look for manure piles, so any piles
in its path will be detected and picked up.

Requirement 4: The robot unit must be able to recognize manure in different settings and surroundings including dirt
and sand paddocks, grassy pastures, and concrete barn structures with rubber matting.

The image recognition system works on a variety of terrains and has been successful during testing on dirt, sand,
short grass, and well lit areas of the barn on rubber mats.

Requirement 5: The robot unit must avoid collisions with both stationary and non-stationary obstacles.

The robot successfully avoids collisions with stationary objects. With moving objects, if the robot is moving
slower than the moving object, they may collide, but the robot will detect the obstacle and stop moving and attempt to
change directions. This functionality may be improved by increasing the robot’s speed, but at this stage in development
simply stopping to avoid collisions is sufficient.

Requirement 6: The robot unit must be able to uniquely identify individual paddocks.

18 | Page



The software for detecting AprilTags can also read the AprilTag’s ID. The ID can encode information about the
paddock as desired, including a paddock number, so the robot will be able to uniquely identify paddocks.

Non-Functional Requirements

Requirement 1: This robotic unit’s hardware will need to be of reasonable capacity.

The software is still lightweight enough that it would be able to be hosted on a Raspberry Pi. A Raspberry Pi is
the ideal hardware for this robot as it is inexpensive and has enough ports for the robot’s motors without being
excessive.

Requirement 2: This software will need to employ a camera system.

The camera system has been created using ROS and emulated by Gazebo and rviz. It should be fairly simple to
connect a real camera to the software and retain all the functionality.

Requirement 3: The software will need the ability to identify manure from camera intake.

The image recognition software is able to successfully identify manure in several different environments and
software to take in the data from the camera system and transform it into a jpeg image is completed. Roboflow is
currently not implemented in ROS..

Requirement 4: It will also need a Light Detection and Ranging (LiDAR) system to give a more detailed map of the
robot’s surroundings to avoid collision with fences, farm equipment, and the donkeys themselves.

The LiDAR system has been created using ROS and emulated by Gazebo and rviz. It should be fairly simple to
connect a real LiDAR system to the software and retain all functionality. Using SLAM in conjunction with the LiDAR data,
the robot is able to create maps of its surroundings.

Requirement 5: The software will need strong data transferring ability to ensure these systems can work in tandem to
allow the robot to navigate accurately around its surroundings.

ROS is designed to allow for easily transferable data and having multiple nodes running and communicating at
once has not affected the run time or performance of the system.

Requirement 6: A unique identifier will be necessary to identify the manure dropoff location and orient the robot’s
position within the paddock.

Using the camera system, the robot is able to detect AprilTags which can then be used to mark the drop off
location. The robot will find where the drop location is and mark it on the map it creates using SLAM to be able to return
to the drop location with manure.

X. Future Work

The future Fall Field Session team will be able to continue to refine the software and build on more features and
control of the robot. Some features of the robot that work independently still need to be connected in order to create
the desired functionality as well. The Fall Capstone Design team must design and construct the physical robot and work
with the Fall Field Session team to integrate the physical robot with the software. The following is the known future work
that needs to be done by either one of both of the Fall teams:
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● The Nav2 and SLAM mapping system needs to be expanded to be able to create a cohesive boundary around the
edge of the paddock even if the LiDAR cannot see the horizontal slats of the fence and only detects the vertical
posts.

● The image recognition software that detects manure must communicate with Nav2 to update the desired
destination of the robot.

● The AprilTag detection software must communicate with Nav2 and SLAM so that the robot can independently
identify the coordinates of the drop location and store that location in memory.

● A new node must be created that communicates with Nav2 to track the robot’s progress in the paddock and
ensure that the robot covers at least 95% of the paddock and tells the robot to shutdown when enough progress
has been made.

● A new node must be created that communicates with the manure detection node and the camera to
appropriately position the robot to pick up a pile of manure.

● A new node must be created that controls the robot’s arm to pick up and dump the manure.
● A new node must be created that communicates with Nav2 once a pile of manure has been picked up to tell the

robot to go to the drop location.
● A new node must be created that communicates with the AprilTag detection node in order to scan the data from

the AprilTag and store it in memory as appropriate.
● The image recognition model can be further refined with more training images, should the future teams deem

that necessary.
● The virtual model of the robot can be further refined and altered to more closely resemble the physical robot as

the future Capstone Design team plans out the specifications.
● The manure detection model from Roboflow must be integrated into the ROS system to run independently

without being connected to the internet.

XI. Lessons Learned

We have learned a lot over the course of this project. Aside from the technical knowledge that we have gained
involving ROS and similar systems, we have also learned several lessons that can be applied outside of this project. One
such lesson is that doing proper research, especially for tasks that you are unfamiliar with, can save several hours of work
and increase the end product’s quality and stability. Finding experts that are willing to give advice is also incredibly
helpful and can be a good starting point for further research. The first steps of a new project should always be to reach
out to experts and mentors to look for starting points and advice, then sitting down to do thorough research and
planning before actually starting to work on the project. This way, when the work actually begins, there will be a clear
direction and the technology will be more familiar and easier to work with. We also learned a lot about using open
source software and that it can be difficult for beginners that are not familiar with the software as the documentation
can often be fragmented or unclear. Because of this, we made sure to thoroughly document our work and created easy
to follow guides for future teams so that they can hit the ground running without needing to dig through fragmented
documentation. Relying on certain software or online applications can also sometimes lead to bottlenecks during
development due to the limitations of the software or applications. We used The Construct’s virtual desktop
development studio, but this meant that the simulations often ran quite slowly as the server is hosted overseas. We also
learned that plans can change quite quickly at the beginning of projects, especially when working with unfamiliar
software. Our initial impressions on how quickly we could accomplish tasks and how far we could get on the project
changed quite a bit once we started doing more research and began working. However, we are still very proud with the
work we were able to accomplish and how far we have taken this project.
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Appendix A – Key Terms
Include descriptions of technical terms, abbreviations, and acronyms

Term Definition

LiDAR Light Detection and Ranging - A device that casts lasers in an arc around itself to
generate data on surrounding obstacles and their distances from the unit.

Machine Learning (ML) A software subsystem that examines images and data to identify objects and
patterns in them automatically. These systems must be trained beforehand to
identify such objects

Computer Vision A subject of computing that addresses a computer’s ability to observe and draw
conclusions about the physical environment around itself.

Gazebo Gazebo is a software program that allows one to simulate a robot in a virtual
environment. Several packages allow the Gazebo ‘world’, or virtual environment,
to interface with the ROS data network allowing our software to interact with a
virtual robot exactly as it would with a potential physical model.

rviz rviz is a software program that is used to visualize robot models, camera data,
LiDAR data, and other types of data. It is commonly used in conjunction with
Gazebo to visualize data from and about the virtual robot model.

ROS ROS stands for Robot Operating System, a series of open-source packages that
facilitate data transfer and synchronization across several robot components. In
particular, our software uses ROS2 Humble for stability and modernity in our
construction.

YOLOv5 YOLOv5 stands for You Only Look Once, and it can recognize objects in
images/videos in high-speed, high-accuracy results in real-time.

Roboflow Roboflow is a software that allows the training of objects from images to be
recognized.

SLAM SLAM (simultaneous localization and mapping) is a method for robots to
construct a map of their environment while tracking the robot’s own location at
the same time. Our implementation uses slam_toolbox, a standard base for
setting up SLAM systems on any ROS2 robot.
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Nav2 Nav2 is ROS robotic navigation software that supports independent navigation
of a robot in complex environments.

AprilTag A unique identifier that is similar to a QR code but stores less data.
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