
CSCI 370 Final Report

Matthews and Company

Matthew Bowar

Matthew Lucero

Drew Ruana

Ryan Sundberg

Revised June 16, 2024

CSCI 370 Summer 2024

Daniel Greenberg

Table 1: Revision history

Revision Date Comments

New 5/13/24 Created the document and added some basic info such as team members

Rev – 2 5/15/24 Added team logo to front of document

Rev – 3 5/16/24 Transferred document from Microsoft Word to Google Docs

Rev - 4 5/17/24 Finished Definition of Done, Introduction, and Functional Requirements. Began

work on Risks

Rev - 5 5/18/24 Small edits to Definition of Done, wrapped up Risks section.

Rev - 6 5/21/24 Added diagrams

Rev - 7 5/26/24 Added details to technical difficulties

Rev - 8 5/30/24 Wrote out Software Quality Plan and Ethics sections

Rev - 9 5/30/24 Revised previous sections based on feedback

Rev - 10 6/4/24 Wrote Results, Future Work, and Lessons Learned sections

Rev - 11 6/9/24 Added to Results and Ethical Considerations sections

Rev - 12 6/11/24 Added the acknowledgements, team profile, documentation, and appendix

Rev - 13 6/16/24 Added the Technical Design section and implemented peer feedback

1 | Page

Table of Contents

Table of Contents...2
I. Introduction...3

II. Functional Requirements.. 3

III. Non-Functional Requirements..4

V. Definition of Done...5

VI. System Architecture...7

VII. Technical Design... 9

VII. Software Test and Quality... 11

VIII. Project Ethical Considerations.. 12

IX. Results... 13

X. Future Work..14

XI. Lessons Learned...15

XII. Acknowledgments.. 16

XIII. Team Profile...17

References.. 18

Appendix A – Key Terms..18

2 | Page

I. Introduction
The goal of our team’s project is to add functionality onto an existing teacher workload calculator for the

Colorado Education Association. Years ago, the project started as a combination of a Google Form and

Google Sheets. Teachers would answer several questions about how they spent their work week, how

many students they served, and other similar information. Then, the spreadsheet would perform some

calculations and provide visualizations of the data. The idea was that teachers could keep track of this

data over the course of a few weeks/months to show if they were being overworked and in what

capacity. In Fall 2023, the CEA worked with a different Mines field session group to migrate a bunch of

the functionality to a website.

When we came to the project, the website was fully functional. Our job was to allow non-technical

admins to edit parts of the website without having to delve into the code itself. The two main aspects we

were tasked with implementing are the ability to edit/add/delete survey questions and the ability to do

the same with formulas that perform calculations with the results of said survey questions.

The three main stakeholders are teachers, district admins, and super admins. Teachers use the site to fill

out surveys and see a visualization of how they spend their working hours and how that changes over

time. District admins use the site to look at data from all teachers in their district. Also, super admins

have the ability to modify surveys and formulas used behind the scenes, which is the functionality we

are working to implement. Finally, teachers will be able to answer newly created survey questions and

see updated values from created formulas. Software will be maintained by the team following our

efforts.

II. Functional Requirements
The main functional components are to allow for options for editing the existing website details more

freely through an administrator user interface. Specifically, our two primary goals were the ability to edit

the equations for calculated values in the data visualization section, and the ability to add or modify

questions in the survey portion of the website.

Equation Editor:

● Only accessible by Superadmin

● Edits the equation without the need for our client to directly edit the code

● Ability to type all commonly used expressions within the website (i.e ability type a

summation which does not have a symbol on the common keyboard)

● Ability to select which section added equations are applied to

● Ability to edit details of existing equations

● Way to reliably select variables from the database of answers

Question Editor:

● Only accessible by Superadmin

● Edits the question without the need for our client to directly modify the database

3 | Page

● Ability to reorder sections (organized collections of questions)

● Ability to reorder questions within their sections

● Ability to edit existing questions to ask new information

● Ability to delete existing questions

● Ability to add entirely new sections

● Ability to lock certain questions behind the answers of others (existing functionality we

need to maintain)

● Need to limit the answer format to int, double, bool, or string (required for interfacing

with database)

III. Non-Functional Requirements
Development:

● Program must be written using the React framework for javascript

● Program changes must be uploaded to the Git repository

● Access to database requires signing of a non-disclosure agreement

Question editor:

● Must connect to the questions table in the database

● Changes to equation table are reflected for all users

● Super Admin should not have direct access to the database and instead use website to make

changes to the database

● Able to delete questions from the database

● Able to add questions to the database

● When question is added, a new row is added to the core_questionmodel table

● Able to change questions in the database without deleting question and relevant dependencies

Formula Editor

● Creation of a new table in database necessary to hold equations

● New table must be able to store an unknown number of formulas

● Able to delete formula from the database

● Able to add formula to the database

● Able to change formula in the database without deleting formula

4 | Page

IV. Risks

Technical Risks

Risk Likelihood Impact Mitigation Plan

Pushing Unfinished Changes
Live

Likely Results in unpolished and
untested changes that could
break functionality or purpose
of website

Make sure merges are
not done to main and
instead to develop or
other branches

Overwriting database with
wrong information

Likely Loss of currently used
questions or formulas

When editing a
database, a parallel
local database is used
instead of the primary
database.

Non-’Super Admin’ users
are able to make changes
that affect all users

Likely Any user can edit the database
resulting in loss of information
and can depreciate of
relevance

Guarantee admin
access is working
properly

Skill Risks

Risk Mitigation Plan

Only two people have experience with
SQL

Other team members will need to learn basics of SQL

Entire team has little to no experience
using React

Team members will need to research and become familiar
with React basics

Not understanding existing code as there
are little to no comments

Team members will need to be able to comprehend
current React and Javascript code to be able understand
functionality.

V. Definition of Done
For our definition of done we must implement the following features:

● Editable formulas

○ Formulas can be added, removed, or modified

5 | Page

○ On the Data Visual page, newly created formulas can be seen

● Survey

○ Questions can be added/modified/removed

○ Sections can be removed and added

○ The ordering of questions and sections can be modified

With both required features, only ‘Super Admin’ users will be able to make changes and changes will

propagate for all users. Any changes made will need to update the database to reflect changes and push

them live. To test the software, the client will use our features on a local webpage to test functionality

without pushing those changes live. Our product will be delivered by merging our features with the main

branch once we receive the go ahead from the client, which automatically publishes the changes to the

live website.

To add these features to the website, we decided to expand upon the ‘Admin Home’ page that is only

available to admins. We created two new pages: ‘Edit Survey’ and ‘Edit Formulas’. These web pages

contain the functionality the client wants while also being separate from what normal users are able to

access.

6 | Page

Figure 1: Expanding Website Diagram

VI. System Architecture
Website Technical Setup:

● Website Host: Heroku

● Database Host: PostgreSQL

● Heroku Postgres Response Time: 287ms average

● Javascript React Framework for front end development

List of Technical Issues:

● Creating new tables in the database.

● Getting the front end to properly communicate with the backend.

● REACT syntaxing.

● Converting a String into a mathematical equation which can return a value.

As our task was to expand on the functionality of a pre-existing website, we needed to make

modifications to the initial database that we were given. The database we were given had 2 main tables

for the survey: core_questionmodel and core_survey. We gave our website the ability to edit the values

in these tables and add more columns such as visibility to give the client what they require. Table 1

below shows many of the tables in the database and their purposes.

Table Name Purpose

core_numericalanswermodel Stores the numerical answer of survey responses related by
question ID and survey ID

core_textanswermodel Stores the string answer of survey responses related by question
ID and survey ID

core_questionmodel Stores the information of each question such as section, order,
answer_type, etc.

core_sectionmodel Stores the description, order, and initial question of each model

core_surveymodel Stores information about each survey such as user and relates to
numericalanswermodel and textanswermodel

core_usermodel Stores login and information about each user

core_usermodel_user_permissions Stores the levels of user accounts (regular, admin, super-admin)

core_districts Stores all Colorado school districts that users can choose from
when making their account

core_disciplines Stores all professions that users can choose from when making

7 | Page

their account

Table 1: Tables in the Database

The tables in the database are interconnected by having similar fields for each value. So, to better

understand the database we were given, we looked into how the database was connected so as to not

disrupt current functionality. For example, when we implemented the feature allowing questions to

move between sections, we needed to make sure the question in core_questionmodel correctly updates

the section_id from core_sectionmodel. Figure 2 below shows how many of the tables reference each

other.

8 | Page

Figure 2: Database Table Dependencies

VII. Technical Design
Our first interesting aspect was converting a string equation to a value that could then be displayed. This

was useful for the building of our data visual because we needed to be able to evaluate the equations.

However, in order to have it pull the answers from the database we needed to store the equations in the

database as strings. Thus, the need for an ability to translate from the string to a value.

Firstly, we need to convert from ‘query_id’s to the actual values and equations. As each value/equation

variable was put in the equation as {query_id}, we start by searching through all questions in the

database to replace all question query_ids with their value in the survey the user took. Next we go

through and replace every equation query_id with the value of that equation. We call the conversion

recursively to evaluate that equation into a value. Furthermore, we have a list of equation IDs that

detects any loops such as an equation referring to itself or nested equations recursively calling each

other.

Then, once we have an equation with only numbers, parenthesis, and operators, we call a function we

call the tokenizer. The tokenizer splits the equation by its aspects. So parentheses are kept together and

then there are the operators and numbers. Then we go and evaluate parenthesis into numbers by

recursively calling the equation parser. Then we go and search for multiplication and division and set that

grouping to be the number gained by the operation of left and right. Then we mirrored that process for

addition and subtraction to gain the full value.

Figure 3: Flowchart of String to Value conversion.

9 | Page

The second interesting aspect of our project was building up a whole table for the equation editor. This

addition to the database was required as the website needed to abstractly generate the data visual page

of the website. This necessary functionality mirrored how the survey was built for the questions, where

each value in the table represented an individual question and the columns needed to hold the

information for each equation. We called this table core_equationmodel.

To begin with, each equation required 6 fields: id, section_id, query_id, name, equation, and visibility.

The id was a necessary field for the database that made it so that each equation had a unique identifier

and would make it easier to deal with on the backend. Similar to the structure of each question, each

equation needed a section_id which would be used to put each equation in a specific section on the data

visual page. Next, query_id and name are labels used to reference each equation where query_id is used

for the equation editor and name is what gets displayed to the user on the data visual page. Equation

will store the string value that will be converted later for the user. Finally, visibility will denote if the

equation will be shown to the user on the data visual page.

However, through development of the string conversing into an equation, we ran into an issue of how to

easily reference each survey value in the database to be put into the formula. To counteract this issue,

we created a table called core_equationquestion_xref. This table would have 3 fields: id, question_id,

and equation_id. The latter two fields would be cross-referenced with each equation and question to

query the answer tables for its relevant value. However, the Django server that was being used for the

database required the entries in every table to have a unique identifier. A single equation could have

multiple entries in the table.

Figure 4: Added Equation Tables to Database.

10 | Page

Although we were able to make the new table for our local databases and test functionality of the string

to value converter, we also had to find a way to copy over these changes into the deployed server and

any copies for future developers. This resulted in us spending time diving into fully understanding how

the python script to run the backend was set up. In total, four files needed to be modified: models.py for

setup of the column values/types, seralizer.py that allows table values (or classes for front-end) to be

deemed valid/invalid, and updating the migrations folder to allow for a csv to be uploaded into the

database to have all initial formulas.

VIII. Software Test and Quality
In our software quality assurance process, we used the following elements in our plan:

● User Interface Testing

● Integration Testing

● Code Reviews

Our user interface testing is rather self-explanatory; because we are developing a website, when we

make changes we can simply check our locally hosted version of the website to ensure that those

changes are doing what we expect and not breaking any other elements. This allows us to manually

perform defect detection and front-end verification. For example, to test the survey editor, we can

change the wording of a question and where it appears, then take the survey and verify that those

changes are being reflected. For the equation editor, the first step is to compare a dropdown menu’s

values with its corresponding column in the database to verify that all the dropdowns are populated with

the proper values. Then, we need to verify that selecting an equation will populate all the fields with the

correct values from that equation, which can again be verified by checking the database. The next step is

that selecting a Question or Equation Value from their dropdowns will place that variable into the

equation. Finally, after submitting the updated equation, we can go to the Data Visual page to check that

the formula is performing calculations and displaying results properly.

In the Integration Testing step, we followed the bottom-up approach where we tested the lowest level

components to guarantee functionality then moved onto the higher level components. When making

changes to the front-end, we verified that those changes are propagated to the backend and vice-versa.

For example, when testing the ‘Edit Metadata’ popup on the survey editor, we:

1. Started by checking that the fields are populating with the correct initial values.

2. Verified that when an option was selected or a value was changed the website was able to

get/recognise the new value.

3. Verified that when the save button was clicked, the changes propagated to the backend.

Once we did this for every element in the popup, we could say that the popup is functioning correctly.

Our ability to code review has been rather limited by our 5-week time frame, as we focused on

implementing all the functionality to meet the client’s needs before switching to documentation and

other code review. The majority of our code review was individual; when whatever section we were

11 | Page

individually working on got too cumbersome, we did some refactoring. Additionally, we have made sure

to thoroughly comment our code for any future field session groups who may be continuing the project.

IX. Project Ethical Considerations
Our project does not have any major ethical concerns that we have identified. However, there are a few

places where ethics came into consideration. Most prevalent is that any educators using the workload

calculator could falsify the data they put in to bend its use towards their desires. For example, a user

could lie and say they spent 5 more hours working in a week than they actually did, then try to use that

falsified data to back up a claim that they are being overworked. Another ethical consideration to keep in

mind is that a super admin could make wide-sweeping and irreversible changes to any amount of survey

questions and equations. A possible fix could be to have some sort of version control, but that is far

outside the scope of our current project and workload. Additionally, we don’t feel that this issue is very

pressing, as the few super admins on the site will presumably be the same people who have been

building the project since its inception.

ACM and IEEE Principles

Two major ACM Principles we needed to keep in mind were 1.6: Respect Privacy and 1.7: Honor

Confidentiality. Part of our project involved working with sensitive user data such as name, email, and

profession. As such, we needed to be able to protect that data and ensure that only specific people can

access it. Additionally, we needed to ensure that user data is only used when necessary and not for any

malicious purposes. In a similar vein, we needed to honor confidentiality of the client and the website as

a whole, particularly as it pertains to the NDA we signed. Another ethical principle we needed to stay

focused on is IEEE 3, which pertains to product quality. Our team of course did our best to provide the

highest quality product that meets all of the client’s requirements, but the strict 5-week time limit meant

that we were in danger of not being able to implement all of the functionality we would have liked to.

Michael Davis Tests

The first Michael Davis test we applied was the Publicity Test: “How would this choice look on the front

page of a newspaper?” As the client intends to use the finished website as a tool to help teachers receive

pay more reflective of the work they’re putting in, we believe that publicity about the project would be

received positively. In regards to the specific pieces we are working on (admin functionality), we also

don’t see how any functionality we’re working on could be viewed in a negative light unless someone is

worried about a malicious super-admin ruining the website’s functionality for all other users. To

counteract the possibility of an “evil admin,” we’ve opted to only allow admins to hide questions and

formulas from regular users rather than fully delete them. The trade-off with this approach is that ‘junk’

questions or formulas could fill up the database over time with the only way to remove them being

manually going into the database. However, this means that the average non-technical admin will be

unable to fully delete anything. There are pros and cons to each option, but the client preferred the

ability to hide instead of delete, so that is what we implemented.

12 | Page

The second test we applied was the Harm Test: “Does this option do less harm than any alternative? Do

the benefits outweigh the harms?” Our answer to this is yes: we believe that we have successfully made

choices throughout our project that minimize harm while still meeting requirements. The area we had to

be the most careful about not causing harm in was the Data Visual page. The client expressed that they

were very satisfied with how it looked from the previous field session’s work. However, because our job

was to make elements of the page modifiable, we had to abstractify pieces that were previously

hard-coded. In doing so, the look of the page changed, and we had to reach a compromise regarding our

ability to keep it as similar as possible to the old version while still being able to add the new

functionality we were tasked with.

X. Results
The goal of this project was to allow admins to be able to: edit user survey questions and the ability to

edit/create new formulas which then can be shown to the user. Survey editing included being able to

add new questions to the database, adding new survey sections, editing current survey

questions/sections, and the reordering of sections/questions. For formula editing, this required the

creation of a database to hold formulas, a way to convert a formula’s string into JSON logic, querying the

database to get values for formulas, and the abstraction of the data visual page to be able to use created

formulas.

Testing was done both visually and server side - the website needed to immediately reflect changes to

the survey editor without re-rendering. On the server side, immediately after a change, the appropriate

database in the backend was manually inspected to make sure the changes were propagated correctly

and information was received by the client side correctly. Changes include editing section names,

descriptions, and ordering, as well as question movement between sections, ordering, descriptions, and

metadata. Each of these changes was manually tested to make sure that the correct field is updated, as

well as immediately shown on the actual survey page.

The formula editor (shown below in Figure 5), only available to super admins, was verified to have the

correct output in our data visual page after editing. All testing was done on the browser with test inputs

to verify that the output was stored and propagated correctly. As with the survey editor, the only way to

test that the equation editor was correct was by making sure that 1) the equation editor on the front end

visually pulled up all necessary data and didn’t make errors when submitting changes, 2) the changes

were correctly stored in the database, whether by making a new entry or updating an existing one, and

3) the data visual page correctly parsed the stored equation and calculated the correct value to display.

13 | Page

Figure 5: Formula Editor Layout

Now that the large majority of our work on the project has been finished, we were able to give a live

demo to the client. Overall they were pleased with the results, but there are a few finishing touches we

need to make in our remaining time. These mostly related to the Data Visual page, where we had to

reach a compromise with the client. They wanted to keep the page looking relatively the same as it did

when we received it, while also allowing it to dynamically update with new info.

XI. Future Work
The largest area of future work relies on overall scalability. The CEA expressed interest in data

aggregation and viewing, something our group was not able to get done in time. The data aggregation

could potentially show relationships between a user taking two surveys in different time points (e.g.

2024 vs 2025) and visually seeing the differences in responses. Another option could be the ability to

show aggregate data from all users in a certain district, or a profession, or overall change vs time for a

collection of responses. Because of the potential aggregates that could be requested, a future field

14 | Page

session could spend the entire duration setting up ways of viewing any collection of data, either

compared to change over time or to any number of other groups. Our team hasn’t done too much

research into different data visualizations, but potential libraries to import include D3.js or Recharts,

which are natively used with React.js and will likely make visualization a bit easier to use. The most

challenging part of this future work will be defining which aggregates are allowed in order to define

functions for compiling all necessary data.

Another area of future work lies on the scalability of the survey- since the editing functionality is

implemented on the admin side, it’s possible for admins to have the ability to make new surveys for

educators to fill out. With possible interest from education unions in other states, the future work could

deal with expanding functionality to compare surveys between states as a whole, or compare certain

professions between states. This can even be expanded with taking in average state data like money

given to each district for education purposes to show the true relationships of workload hours spent on a

nationwide level.

One other task that likely needs to be worked on is a more robust Data Visual editor. Right now, it pulls

directly from the database to set up each section with the same framework. However, the CEA has

expressed interest in the ability to combine sections and make general UI changes to the page without

needing to rely on a software engineer to make those changes in the code every time.

Other additional features that could be added include using API calls to the National Center for

Education Statistics (NCES), and the National Education Association (NEA) in order to compare the CEA

data to calculated values. Having a more in depth analysis of available teacher data will likely help with

data aggregation and visualization to show working hours and compensation with more metrics, which

can naturally be extended to other states beyond Colorado.

The way the website was refactored allows for more easily integrated future changes. Overall, it’s

important for future developers to be able to easily extend the work that our group did to provide more

functionality and features for the CEA.

XII. Lessons Learned
A few lessons were learned during our team collaboration. The most pressing issue was the lack of

comments and documentation from the previous team - our first week was spent just going through

code in order to understand what each section and file corresponded to. The importance of well

documented code is necessary to streamline future progress so that either the current or future team

understands exactly what actions are being performed in each section of code and how the code flows.

Part of our time was spent ‘redocumenting’ everything in order to pass off the project to future

collaborators.

Another lesson that was valuable was higher proficiency using git. Our team gained valuable experience

working on separate branches and merging them/resolving conflicts through trial and error. Some

15 | Page

progress was lost but overall the small parts of lost work ended up being a valuable learning experience

to better understand updating just sections of working branches without messing with anything else.

Resolving merge conflicts was a bit challenging at times but after struggling with some our team has a

better grasp of using git for workflow.

The last lesson learned was using as many resources as possible to expedite learning. Since none of our

team had really used React/JS before, we had a slightly rough start in order to understand both 1) the

state of the current project and 2) how to build new functionality. Using ChatGPT strategically helped our

progress and understanding massively and will be helpful for future projects. We used ChatGPT to

understand React’s syntax for website elements such as buttons and how to initialize variables for those

elements.

XIII. Acknowledgments

Our team would like to extend a very heartfelt gratitude to our clients at the CEA, namely Ty Griffin,

Michelle Horwitz, and Sarah Siegel, alongside Mines Alum Caroline Rippey who was kind enough to help

guide us through the CEA Workload calculator from where her team left off. Despite our lack of web

development experience, Ty, Michelle, and Sarah were understanding and flexible with molding what we

could provide to what they wanted out of the project. Even though we had some slight technical

problems trying to meet their needs and expectations we were able to reach resolutions through clear

communication. We tried our best to deliver a product they were happy with and we are very thankful

for the experience they gave us.

Our advisor, Daniel Greenberg, was very helpful with bringing up considerations for the database and

backend side of things. He was very easy to work with and helped us get a running start with learning

React.js and brought up flaws with our ways of thinking about problems before we implemented them.

Our weekly recap meetings were very helpful to keep us on track and reflect on what we did well and

poorly as a team - Daniel helped us figure out how to work as a productive software team.

16 | Page

XIV. Team Profile

Contributor Project Role Bio Headshot

Drew Ruana -Backend Developing

-Survey Editor functionality

I’m a professional rock climber and full

time CS Student, graduating in

December. I enjoy spending my free

time outside and working on personal

computer projects.

Ryan Sundberg -Backend Developing

-Data Visual Functionality

I’m a CS student with a McBride minor.

I’m going into my Junior year. In my

free time, I enjoy playing video games,

going for walks, and cooking.

Matthew Lucero - Front End Development

- Data Handling (Frontend)

I’m a full time CS student going into my

Junior year. In my free time, I enjoy

reading fantasy novels, playing video

games, and Table-Top RPGs.

Matthew Bowar -Frontend Developing

-Equation Editor functionality

I’m a CS Student going into my Junior

year. In my free time, I enjoy reading,

gaming, and playing board games

with friends.

17 | Page

References

Appendix A – Key Terms
Include descriptions of technical terms, abbreviations and acronyms

Term Definition

CEA Colorado Education Association

React Framework for interactive UI web development

SQL Structured Query Language: Language used for database access and

manipulation

18 | Page

