CSCI370: Field Session

APPLIED MATHEMATICS & STATISTICS PROBLEM
BANK & TEX EXAM BUILDER

submitted to
Dr Terry Bridgman
Daniel Greenberg
Colorado School of Mines

June 13, 2024

By
Brandon Ching
Landon Gehr
Brandon Lechten
Erik Luehrmann

CSCI370: AMS Tex Exam Builder Ching, Gehr, Lechten, Luehrmann

Abstract

The Problem Bank tool is a software application developed to aid the Applied Mathematics &
Statistics department in archiving exam problems along with their associated statistical performance
data. This tool allows users to efficiently store, manage, and retrieve exam problems, facilitating the
creation of new exams based on specific criteria such as problem type and difficulty level. The core
functionalities include the entry of raw LaTeX data, handling additional files like graphics, and
maintaining detailed performance statistics. The development of the Problem Bank tool followed a
rigorous Quality Assurance plan, incorporating multiple levels of testing—unit, integration, system,
and user acceptance—to ensure the tool’s robustness, reliability, and user-friendliness. Ethical
considerations, such as data confidentiality and adherence to ACM/IEEE guidelines, were integral
to the development process. Initial user feedback has been positive, highlighting the tool’s intuitive
interface and effectiveness in meeting the department’s needs. Future enhancements may include a
cloud-based version and improved user interface features, further enhancing the tool’s usability

and accessibility.

Page ii of iv

CSCI370: AMS Tex Exam Builder

Ching, Gehr, Lechten, Luehrmann

Table of Contents

[Abstract

(Iable of Contents|

[List of Figures|

2

Requirements|

2.1 Functional Requirements|. 0L

2.2 Non-functional Requirements|

B_Risksl

I Defimf rDonel

[5 System Architecture|
p.1 Technical DesignlIssues|. 0 ..
p.2 System Design|. o
.3 Database Design|. L
p.4 UserInterface Design|. L.
[6 Software Test and Quality|

(6.3 TestingPhases|
[6.3.1 Unitlesting|
[6.3.2 Integrationlesting| o o L
[6.3.3 Systemlesting| o oo o
[6.3.4 User Acceptance Testing (UAT)|.

ii

iii

iv

iv

Page iii of iv

CSCI370: AMS Tex Exam Builder

Ching, Gehr, Lechten, Luehrmann

7 Eihical Considerations

7.1 ACM/IEEE Code of Ethics|.

721 HarmTest|
(722 LegalityTest|.

8 Results|

9 Future Workl
[10 Lessons Learned|

(11 Acknowledgements|

A Glossary of Terms, Abbreviations, and Acronyms|

(B Project Prompt

[C Referencesl

List of Figures

(I~ User Flow Diagram|
2 Database UML Diagram|

List of Tables

10

.................... 10
.................... 10
.................... 10
.................... 11

11
12
12
13
15
16
17

18

Page iv of iv

CSCI370: AMS Tex Exam Builder Ching, Gehr, Lechten, Luehrmann

1 Introduction

This project aims to develop a comprehensive tool for the Applied Mathematics & Statistics
department to manage and utilize a problem bank effectively. This tool facilitates the storage,
retrieval, and analysis of exam problems, enabling instructors to construct exams tailored to specific
criteria such as problem type and difficulty level. By centralizing problem storage and performance

data, the tool enhances the efficiency and quality of exam creation and assessment processes.

1.1 Client

The client for this project is Dr Terry Bridgman, a professor in the Applied Mathematics & Statistics
department at the Colorado School of Mines. Dr Bridgman has a wealth of experience in teaching
and curriculum development and is passionate about enhancing the learning experience for
students - Dr Bridgman has been a professor for 25+ MATH courses at the Colorado School of
Mines since 2003[1]]. Dr Bridgman is looking for a tool to help streamline the process of creating
exams and analyzing student performance data. The Tex Exam Builder provides a centralized
platform for storing exam problems, statistics, and additional files, enabling Dr Bridgman to

manage and utilize his problem bank efficiently.

2 Requirements

Per the original project prompt from the client, the Problem Bank tool had two very simple

requirements:

1. Allow user to add test problems and associated (if any) graphics/files along with topic
categories and performance statistics per problem.

2. Allow user to 'build” an exam by specifying problem category and difficulty level.

Dr Bridgman also provided a list of additional "nice-to-have’ features that could be implemented

if time allowed. These features included:

1. A majority of the instructors use LaTeX for test creation. Thus, the problems would need to

be stored in their raw form, preferably LaTex.

2. Some problems have associated graphics which would also need to be stored and accessed

along with the problem.

Page 1 of

CSCI370: AMS Tex Exam Builder Ching, Gehr, Lechten, Luehrmann

3. Statistics (e.g., mean/median, recommended points, etc.) needs to be stored and referenced
/reported upon request.

4. The category of problems requires flexibility as the list may grow over time.

5. More recent problems also have an associated rubric which should be reported upon problem
request.

Based on the client’s requirements and additional features, the team developed a comprehensive
set of functional and non-functional requirements for the Problem Bank tool. These requirements
were used to guide the development process and ensure the tool met the client’s needs effectively.

2.1 Functional Requirements

* Must be able to enter raw LaTeX data (code block is per question and not necessarily
compilable)

* Must be able to store multiple sets of statistics (min, max, mean, median, standard deviation)
per problem

* Must be able to store additional LaTeX including headers

* Must be able to store additional files (images, etc) per problem

* Must be able to filter by year, course, exam, question number, question type, difficulty
* Must produce an output file of selected questions into a compiled LaTeX document

* Must provide a compiled preview of each question

2.2 Non-functional Requirements
¢ Must run locally on MacOS
* Must have a GUI interface
¢ Comprehensive documentation must be provided for users and developers.

¢ The program must be easy to install and use.

Page 2 of

CSCI370: AMS Tex Exam Builder

Ching, Gehr, Lechten, Luehrmann

3 Risks

3.1 Technical Risks

3.2

Compatibility issues with different LaTeX versions or packages: Due to the large archive
of old exams, when compiling, there may be compatibility issues with different versions of
LaTeX and/or packages.

Handling large quantities of data: The system must be able to handle a large number of
problems and statistics. This could lead to performance issues if not handled properly. Data
needs to be efficiently stored and retrieved both in terms of speed and memory:.

System Scalability: The system must be able to handle a large number of problems and
statistics. By the nature of the locally run software, user scalability is not a concern.

Project Management Risks

Time: The project must be completed by the end of the 5-week term. If the project is not
completed by the deadline, the client may not accept the software.

Scope Creep: The core functionality of the project is well defined, but additional features may
be requested by the client and /or proposed by the team which could lead to delays in project
completion. Additional features may also be incomplete and/or poorly implemented due to

time constraints and too many features being added.

4 Definition of Done

The product must be able to store and add problem data to some sort of database/file structure,

and be able to retrieve that data filtered by problem type and difficulty. The client shall accept the

software if they can successfully add new problem data to the product, and can retrieve the raw

LaTeX for problems filtered in the ways that they want. A final product must be reviewed and

approved by the client to be done.

5 System Architecture

5.1 Technical Design Issues

Per a client requirement, the program must run on MacOS. This requirement limits the technology

stack to those that are compatible with MacOS. The majority of the development team is developing

Page 3 of

CSCI370: AMS Tex Exam Builder Ching, Gehr, Lechten, Luehrmann

on Windows machines, further limiting the stack to those that are cross-platform. The team has
decided to use Python for its cross-platform compatibility with MacOS and Windows. This allows
for the team to develop the software on Windows machines and then test and deploy it on MacOS.

Some of the libraries used in the project were outdated and required updating to work with the
latest version of Python. Instead of installing through pip, the team added the libraries source code
to the project and imported them directly. This allowed the team to modify the libraries to work
with the latest version of Python.

Additional, some libraries had compatiblity and performance issues, resulting in older and
more stable versions being used; this was the case with the Chlorophyll library, which was used to
syntax highlight files. The team found that the latest version (0.4.2) of the library had significant
performance issues when displaying large files, and reverted to version 0.4.1, which was more

stable and performed better.

5.2 System Design

The system is designed to be a simple GUI that allows the user to interact with the database by
adding, filtering, and previewing problems. The system is built using Python and the Tkinter
library for the GUI and SQLite for the database. Python was chosen for its ease of use and
compatibility with the client’s existing systems. SQLite was chosen for its simplicity and ease of
use for a small-scale locally stored database. Both of these technologies are cross-platform and run
on MacOS as well as other operating systems should the client choose to use them or share this tool
with other professors.

A basic user flow diagram is shown below in Figure|l} The user can add problems, statistics,
tags, and additional files. The user is also able to filter problems by tags, difficulty, and other
criteria. A preview of the compiled LaTeX is available for each problem, and the user can export a

compiled LaTeX file of selected problems.

Page 4 of

CSCI370: AMS Tex Exam Builder

Ching, Gehr, Lechten, Luehrmann

o

:App :Database

insertQuestion L ‘
add_new_entry _ :
searchQuestion ' E
P search_entries L

return data
display results (Cmmmmmmmm e T
SRREEEE S RS , :
addTag : E
. add_tag L
searchTag ' E
— search_tag L

. turn data

display results | |eo_o____ relundata ...

< """""""""""" T < :
searchAllTags : E
g get_all_tags o

< return data

displayresults | [T TTTTTTTTTTTTTTTTTTTT
P . S e

Figure 1: User Flow Diagram

Page 5 of

CSCI370: AMS Tex Exam Builder Ching, Gehr, Lechten, Luehrmann

5.3 Database Design

The database is designed to store problems and their associated statistics, tags, and additional files.
A SQLite database is used to store the data, with tables for questions, statistics, tags, and exams.
A full UML diagram for the database schema is provided in Figure 2| Files (including associated
files and any temp files generated during the compiling of LaTeX) are stored as objects in a hidden
data directory locally on the user’s machine. The database is accessed through a Python interface,
which handles the retrieval and storage of data.

questions
tex
files
pngs tags
flag o hame
o-7id JGid
questid:id wgid:id
(questid:id questid:id
statistics exams tagquest
+-7 questid +-7 examgroup +-¢ questid
year +-¢ questid +-¢ tagid
term
scount
spoints
smin
smax
smean
smedian
sstd
Joid

Figure 2: Database UML Diagram

Page 6 of

CSCI370: AMS Tex Exam Builder Ching, Gehr, Lechten, Luehrmann

5.4 User Interface Design

The user interface is designed to be user-friendly and intuitive. The Ul is built using the Python
standard library tkinter. The UI allows the user to input raw LaTeX data, add statistics, add tags,
and add additional files. The user can filter problems by tags, difficulty, and other criteria. The
UI generates and shows the user a preview of the compiled LaTeX of a problem, and exports a

compiled LaTeX file of selected problems. Shown below are sketches of each of the GUI tabs.

Query Data .
File Dialog

And Tags List] Or Tags List
Add Tag
Raw Text Entry 2

‘Submit Button

File Explorer File Preview Data Entry

Search Button

(a) Insert Tab

Filter Tags

Delete Tags

Delete Selected

Query Data .

-

Search Button

e
@
Add New Tag

(c) Tags Tab

Figure 3: Sketches of GUI

Display Selected

Search Results Tex Render

(b) Search Tab

Build View

der
n1
Build Config

Build Button

(d) Build Tab

Page 7 of

CSCI370: AMS Tex Exam Builder Ching, Gehr, Lechten, Luehrmann

6 Software Test and Quality

6.1 Overview

The Quality Assurance (QA) plan for this project is designed to ensure that the tool meets all
functional and non-functional requirements specified. The QA strategy involves multiple levels
of testing to identify and resolve defects early, ensuring the final product is robust, reliable, and
user-friendly.

6.2 Test Environment

All testing are conducted on MacOS to match the deployment environment.

6.3 Testing Phases
6.3.1 Unit Testing

Where possible, each component of the tool is tested independently to verify it performs as expected.
This primarily consists of testing backend functions such as LaTeX parsing, database storage, and
retrieval. A suite of unit tests, built using the Python pytest framework, automatically tests all
backend routes to ensure they are functioning correctly. These tests are run regularly on MacOS to

ensure compatibility. The tests can be seen in Table 1.

6.3.2 Integration Testing

After unit testing, integration tests ensure that different modules and components of the tool
interact correctly. This phase involves checking the combined functionality of LaTeX parsing,
storage, and retrieval systems.

6.3.3 System Testing

System testing is performed on the complete, integrated tool to evaluate its compliance with the
specified requirements. This phase involves testing the tool’s performance on MacOS, its GUI
interface, and its ability to produce compilable LaTeX documents and previews.

Page 8 of

CSCI370: AMS Tex Exam Builder

Ching, Gehr, Lechten, Luehrmann

6.3.4 User Acceptance Testing (UAT)

Finally, UAT is conducted regularly with actual users from the Applied Mathematics & Statistics

department (Dr Bridgman). Feedback is collected to ensure the tool meets their needs and

expectations, and any identified issues are addressed before final deployment. UAT is to be

conducted frequently in parallel with other testing phases to ensure that the tool is developed

according to user requirements.

6.4 Test Cases

Test Case | Description Expected Result
ID
TC001 Enter raw LaTeX data for a problem The problem is stored correctly with all
LaTeX data intact
TC002 Store statistics for a problem Statistics (min, max, mean, median,
standard deviation) are correctly stored
in the database
TC003 Include additional LaTeX headers Headers are applied correctly compiled
documents
TCO004 Upload additional files (e.g., images) for | Files are stored and linked correctly
a problem with the corresponding problem
TCO005 Filter problems by criteria (difficulty, | Filtering returns accurate results based
course, etc.) on specified criteria
TC006 Runs on MacOS Tool operates fully when deployed on
MacOS
TC007 Use GUI interface for interaction GUl is responsive and user-friendly, all
functionalities accessible
TC008 Parse raw LaTeX files for individual | Tool accurately parse LaTeX files into
questions individual questions
TC009 User selects to preview a question Generate and display the preview of the
questions
TC010 Generate a complete exam A compilable LaTeX is provided for the
complete exam

Table 1: Test Cases for Problem Bank Tool

Page 9 of

CSCI370: AMS Tex Exam Builder Ching, Gehr, Lechten, Luehrmann

7 Ethical Considerations

As a tool that stores and manages exam problems and historical statistics, it is important to ensure
that the data stored is secure and confidential. No personally identifiable information is stored in
the database (only aggregated data is stored), and all data is stored locally on the user’s machine.
The tool does not use or interact with any external services, ensuring that data is not shared or
accessible to any third parties.

7.1 ACM/IEEE Code of Ethics

The development of the Problem Bank tool adheres to the ACM/IEEE Code of Ethics. Key principles
that are followed include:

¢ 2.05. Keep private any confidential information gained in their professional work, where
such confidentiality is consistent with the public interest and consistent with the law.

¢ 3.10. Ensure adequate testing, debugging, and review of software and related.

¢ 3.11. Ensure adequate documentation, including significant problems discovered and solutions
adopted, for any project on which they work.

By following these ethical guidelines, the team ensures that the Problem Bank tool is developed
and deployed responsibly and ethically.

7.2 Michael Davis’ Framework Test
The Problem Bank tool has been evaluated using Michael Davis” Framework Test to ensure ethical
considerations are met. The tool is assessed based on the following criteria:

7.2.1 Harm Test

Does this option do less harm than any alternative? Do the benefits outweigh the harms?

There is no harm associated with the development and deployment of the Problem Bank tool.
The tool is designed to enhance the efficiency and quality of exam creation and assessment processes
for the Applied Mathematics & Statistics department. The benefits of the tool, including improved
data management and analysis, outweigh any potential harm.

Page 10 of

CSCI370: AMS Tex Exam Builder Ching, Gehr, Lechten, Luehrmann

7.2.2 Legality Test

Would this choice violate a law or a policy of my employer?

As the tool stores exam problems and statistics, it is important to ensure that no student data
or personally identifiable information is exposed. It is also important to ensure that the integrity
of the exam problems is maintained per Colorado School of Mines policy. There is little to no risk
of any data exposure or integrity issues as the data is stored locally and the tool does not interact
with any external services. This ensures only users with credentials to the machine can access the
data(ie only Dr Bridgman).

8 Results

The Problem Bank tool successfully meets the core functional and non-functional requirements

outlined at the beginning of the project. The key results include:
¢ Functional Performance:

— The tool allows for the entry of raw LaTeX data, including additional files.

— Users can store multiple sets of statistics (min, max, mean, median, standard deviation)

for each problem.

— Filtering functionality is operational, enabling filtering by year, course, exam, question
number, question type, and difficulty.

— The tool allows for the user to filter by tags, difficulty, and other criteria.

— The tool allows for the user to build and compile a LaTeX document of selected questions,

including the creation of a full exam.
¢ Non-Functional Performance:

— The tool runs locally on MacOS and provides a comprehensive GUI.
— A full set of documentation is provided for users and developers. Additionally, the code
base is well-documented, including quality comments, for future maintenance.

e User Feedback:

— Initial feedback from the Applied Mathematics & Statistics department indicates that
the tool is intuitive and meets the intended use cases effectively.

— Minor adjustments were made to enhance usability and functionality based on user
feedback.

Page 11 of

CSCI370: AMS Tex Exam Builder Ching, Gehr, Lechten, Luehrmann

Overall, the project was completed on time, and the client has accepted the software, with plans

for continued use and potential future enhancements.

9 Future Work

Future work on the Problem Bank tool could include the following enhancements:

* Cloud-based version While not the initial scope of the project, a cloud-based version of the
tool could be developed to allow for easier sharing and collaboration among instructors. This

also allows the tool to be utilized by a wider audience.

¢ Automated Parsing of LaTeX Files Implementing an automated parser for LaTeX files
could streamline the process of entering problems into the system. This involves extracting

questions and answers from LaTeX files and storing them in the database.

¢ Improved UI/UX While the current GUI is functional, further improvements could be made
to enhance the user experience. This could include additional features such as drag-and-drop
functionality for adding files, improved filtering options, and a more visually appealing

interface.

¢ Generative Adversarial Networks (GANs) Implementing GANs to generate new problems
based on existing problems in the database could be a valuable feature. This would allow
instructors to create new problems based on existing ones, maintaining consistency in

difficulty and style.

10 Lessons Learned
Throughout the development of the Problem Bank tool, several key lessons were learned:

¢ Project Management:

— Time Management: Adhering to a strict timeline was essential. Weekly milestones and

regular check-ins with the client ensured steady progress.

— Scope Creep: Clearly defining the project scope and adhering to it helped prevent delays.
Any additional features were carefully considered and prioritized based on their impact.
The team faced some scope creep, but was able to manage it effectively, while still

delivering a high-quality product, beyond the client’s initial expectations.

Page 12 of

CSCI370: AMS Tex Exam Builder Ching, Gehr, Lechten, Luehrmann

¢ Technical Solutions:

— GUI Design: Using Python’s tkinter library for the GUI interface was effective in creating
a user-friendly application. Iterative design and user testing were crucial for refining the
interface.

— Modular Architecture: Designing the system with a modular architecture facilitated easier
debugging and future enhancements. Each component was independently tested and
then integrated.

¢ User Feedback:

— Regular user feedback was invaluable. Engaging with the end-users throughout the
development process ensured the tool met their needs and expectations. Client feedback
was the most important aspect of the project, in informing the team of what was needed

and what was not.
¢ Ethical Considerations:

- Ensuring data privacy and security was paramount. Storing data locally and avoiding
external services helped maintain the confidentiality and security of exam problems and

performance data.

Overall, the project provided valuable insights into project management, technical design, user
feedback, and ethical considerations, contributing to a successful outcome. The team is grateful
for the opportunity to work on this project and looks forward to applying these lessons to future

endeavors.

11 Acknowledgements

The team thanks Dr Terry Bridgman for providing the opportunity to work on this project and for
his guidance and feedback throughout the development process. The team also appreciates the
support and resources provided by Daniel Greenberg and the CSCI370 course staff, which were
instrumental in the successful completion of the project.

Additionally, the team extends their gratitude to the guest lecturers and industry professionals
who shared their insights and expertise, contributing to a valuable learning experience. Special
thanks to:

Page 13 of

CSCI370: AMS Tex Exam Builder Ching, Gehr, Lechten, Luehrmann

Jesse Garland, Chris Jezek, and Michael Garioto from WWT, for presenting "Building the
Right Thing: Understanding the client goals and problems to maximize the value of your

team’s backlog." [2]

Matthew McElhaney and Mike Buckner from BPX, for their talk on system architecture. [3]]

Troy Sornson from Salesforce, for his talk on quality assurance. [4]

Paul Christopher from Google, for presenting "So you have a CS degree, now what?" [5]

Page 14 of

CSCI370: AMS Tex Exam Builder Ching, Gehr, Lechten, Luehrmann

12 Team Profile

Brandon Ching
Graduated Mechanical Engineering & Computer Science

Hometown: Coppell, Texas

Landon Gehr
Major: 2nd Year Computer Science
Hometown: Louisville, Colorado

Brandon Lechten
Major: 2nd Year Computer Science
Hometown: Boise, Idaho

Erik Luehrmann
Major: Senior Applied Math and Statistics/Computer Science

Hometown: Austin, Texas

Page 15 of

CSCI370: AMS Tex Exam Builder

Ching, Gehr, Lechten, Luehrmann

A Glossary of Terms, Abbreviations, and Acronyms

Term
ACM
AMS
CSCI
GANs
GUI
IEEE
LaTeX
QA
SQL
UAT
Ul
UX
UML

Definition

Association for Computing Machinery
Applied Mathematics & Statistics
Computer Science Course Code
Generative Adversarial Networks
Graphical User Interface

Institute of Electrical and Electronics Engineers
A document preparation system
Quality Assurance

Structured Query Language

User Acceptance Testing

User Interface

User Experience

Unified Modeling Language

Page 16 of

CSCI370: AMS Tex Exam Builder Ching, Gehr, Lechten, Luehrmann

B Project Prompt

COLORADO SCHOOL OF MINES

Background

Each term in the Applied Mathematics & Statistics department consists of 2-3 exams
consisting of 8-10 problems per exam, per course. With the advent of Gradescope and
Canvas statistics on the students’ performance has been recorded per problem over the
last 5-7 years. The problems are not identical from term to term though they are somewhat
similar. Unfortunately, they may also differ in difficulty. There is a need to archive these
problems in such way that a sample exam could be constructed based on problem type
and statistical performance. For example, ‘| need a problem on Integration by Parts of
medium difficulty’.

Project Description

This tool is basically a problem bank. Exam problems over the years would be archived
along with student performance. The user would be able to construct a new exam by
requesting problem types and difficulty levels. The archive would be maintained and grow
with each subsequent terms adding to the problem bank.

The tool needs to support 2 very simple operations:
1. Allow user to add test problems and associated (if any) graphics/files along with
topic categories and performance statistics per problem.
2. Allow user to ‘build’ an exam by specifying problem category and difficulty level.

However, beyond these simple tasks are the following requirements:

1. A majority of the instructors use LaTeX for test creation. Thus, the problems would
need to be stored in their raw form, preferably LaTex.

2. Some problems have associated graphics which would also need to be stored and
accessed along with the problem.

3. Statistics (e.g., mean/median, recommended points, etc.) needs to be stored and
referenced/reported upon request.

4. The category of problems requires flexibility as the list may grow over time.

5. More recent problems also have an associated rubric which should be reported
upon problem request.

Desired Skill Sets

- Some database understanding. This project is not necessarily requiring the use of a
database application, but some understanding of relational database concepts may
aid in the development of the archive structure.

- Anunderstanding of LaTeX. Some problems may have dependencies that are not
immediately obvious (i.e., additional packages, user commands/defines, etc.). The
developers should have some familiarity with the language.

- Some fundamental understanding of user interface design.

Page 17 of

CSCI370: AMS Tex Exam Builder Ching, Gehr, Lechten, Luehrmann

C
[1]

2]

[3]

[4]

[5]

References

T. Bridgman, “Terry bridgman - applied mathematics and statistics.” https://ams.mines.edu/

project/bridgman-terry/, 2024.

J. Garland, C. Jezek, and M. Garioto, “Building the right thing: Understanding the client goals
and problems to maximize the value of your team’s backlog..” Guest lecture at Colorado School
of Mines, May 2024. Presentation available at https://cs-courses.mines.edu/csci370/
Slides/GuestSpeakers/WWT_GuestSpeaker.pdf.

M. McElhaney and M. Buckner, “Architecture and design.” Guest lecture at
Colorado School of Mines, May 2024. Presentation available at https://148prod-my.
sharepoint.com/:p:/g/personal/matthew_mcelhaney_bpx_com/EWDzYOoVsVBFto4mL_
HSLZEB315-Neua6ulnl2ZWwfdO0dA7rtime=SsCsFMuL3Eg.

T. Sornson, “Quality assurance and testing.” Guest lecture at Colorado School of Mines,
May 2024. Presentation available at https://cs-courses.mines.edu/csci370/Slides/
GuestSpeakers/Salesforce_GuestSpeaker.pdf.

P. Christopher, “So you got a cs degree ... now what?.” Guest lecture at Colorado School
of Mines, June 2024. Presentation available at https://docs.google.com/presentation/d/
1ay6Lg2mP4UTEGJexwXtL-Yzi7LunuNOpkAfoIQCdhnU/edit#slide=1id.p.

Page 18 of

https://ams.mines.edu/project/bridgman-terry/
https://ams.mines.edu/project/bridgman-terry/
https://cs-courses.mines.edu/csci370/Slides/GuestSpeakers/WWT_GuestSpeaker.pdf
https://cs-courses.mines.edu/csci370/Slides/GuestSpeakers/WWT_GuestSpeaker.pdf
https://l48prod-my.sharepoint.com/:p:/g/personal/matthew_mcelhaney_bpx_com/EWDzY0oVsVBFto4mL_HSLZEB3l5-Neua6uLnl2ZWwfd0dA?rtime=SsCsFMuL3Eg
https://l48prod-my.sharepoint.com/:p:/g/personal/matthew_mcelhaney_bpx_com/EWDzY0oVsVBFto4mL_HSLZEB3l5-Neua6uLnl2ZWwfd0dA?rtime=SsCsFMuL3Eg
https://l48prod-my.sharepoint.com/:p:/g/personal/matthew_mcelhaney_bpx_com/EWDzY0oVsVBFto4mL_HSLZEB3l5-Neua6uLnl2ZWwfd0dA?rtime=SsCsFMuL3Eg
https://cs-courses.mines.edu/csci370/Slides/GuestSpeakers/Salesforce_GuestSpeaker.pdf
https://cs-courses.mines.edu/csci370/Slides/GuestSpeakers/Salesforce_GuestSpeaker.pdf
https://docs.google.com/presentation/d/1ay6Lq2mP4UIEGJexwXtL-Yzi7LunuNOpkAfoIQCdhnU/edit#slide=id.p
https://docs.google.com/presentation/d/1ay6Lq2mP4UIEGJexwXtL-Yzi7LunuNOpkAfoIQCdhnU/edit#slide=id.p

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Client

	Requirements
	Functional Requirements
	Non-functional Requirements

	Risks
	Technical Risks
	Project Management Risks

	Definition of Done
	System Architecture
	Technical Design Issues
	System Design
	Database Design
	User Interface Design

	Software Test and Quality
	Overview
	Test Environment
	Testing Phases
	Unit Testing
	Integration Testing
	System Testing
	User Acceptance Testing (UAT)

	Test Cases

	Ethical Considerations
	ACM/IEEE Code of Ethics
	Michael Davis' Framework Test
	Harm Test
	Legality Test

	Results
	Future Work
	Lessons Learned
	Acknowledgements
	Team Profile
	Glossary of Terms, Abbreviations, and Acronyms
	Project Prompt
	References

