COLORADOSCHOOLOFMINES

EARTH &« ENERGY & ENVIRONMENT

CSCI 370 Final Report

Water Walkers

Umberto Gherardi
Dylan Nichols
Joe Archibold
Caden Swartz

Revised November 24, 2024

CSCI 370 Fall 2024

Mr. Caleb Bartel



Table 1: Revision History

Revision Date

Comments

New 9/1/2024

Completed Sections:
I. Introduction
1. Functional Requirements
IIl. Non-Functional Requirements
IV. Risks
V. Definition of Done
XllI. Team Profile
References
Appendix A — Key Terms

Rev -2 9/15/2024

Completed Sections:
VI. System Architecture

Rev -3 10/18/2024

Completed Sections:
VII. Software Test and Quality
VIII. Ethical Considerations

Rev-4 11/8/2024

Completed Sections:
IX. Project Completion Status
X. Future Work
XI. Lessons Learned

Rev—-5 11/19/2024

Completed Sections:

XIl. Acknowledgements
Updated Sections:

XlIl. Team Profile

Rev -6 11/24/2024

Updated Sections:
Incorporated Final Report Feedback into All Sections

1| Page




Table of Contents

(IR oY o Yo [T o1 4T o FOR PP UPROPPUPRPR 2
1P WY Yot oo = I 2{=To [V T[4 =10 01T oL £ PP UPR 3
1T oY B WY Yot uTo Y o =1 I Y=o [0 1T T =Y oY PSR 3
LY ] PP 4
VALl T TR dToTa o] Do T =TSRSS 4
VA ISV =T o I ol a1 Tt U TP UPPTPPRPP 5
VAo T T =T =T o I @ LU = 1 PRSP 8
VAT o o =Totdl S d Y ot | I @o T 0 1Y (o [T =1 d o) o - PRSP 9
DO o o [=Tot f o g o [y o T o ) 7= | U LSRR 10
Ko FUBUIE WOTK. ..ottt ettt e e sttt e e s e b bt e e e s e s beeee s e st b aeessabeeeessasbaeeesnsbaeeesansseaeesanntaaeessnseeaens 11
X1, LESSONS LEAINEM. ...eiiuieiiiiie ettt ettt sttt stt e e st e e sttt e sabe e e subeesabeessabeesabteesasbeesabbeesabbeesabbeeaabaeesabaeesabaesaabaeesabeesssaesnnreesnnes 12
XIL ACKNOWIEAGMENTS. ...ttt e et e e e e e e e e e et e b e e e e eeeaeee s e ae st e aaaeaeeeeeesaaassssesaneeeseeseeaaansnstennnaaeaeanan 13
D =TT T o o 1T PPP PSR 14
APPENAIX A = KBY TOIIMNS. .. ttiteeeeieee et ieicctttteeee e e e e e s e s seaetrereeeeeeesesaasarastaaaeeeeesssessaasssstaseeseeessssamasssstanneeeeessssssamsssennnneeeeesesennnnnes 15
APPENIX B = Ul SCIrEENSNOLS. ...iiiiiiiiiiiie ettt e e s ettt e e e e st e e e e e sbteeeesssteeeeessbeeaeessbeeesesanseeeessnnseeeessnnsens 15

l. Introduction

Effective water management is vital to our modern society, particularly in areas of relative water scarcity like the western
United States. Water accumulates in reservoirs and flows through various sources, such as rivers and creeks. This is
especially relevant in Colorado, where much of the water supply comes from snow runoff in the mountains. Because of
the complexity related to the sources of water and our limited supply, water management is a difficult task. In order to
facilitate water management, Walker Water is developing software to visualize the geographic traversal of water over
time, referred to as the Walker Water Irrigation Management System (WWIMS). The set of tools provided by WWIMS
allows for efficient water supply administration by providing a thorough understanding of the Front Range’s water
sources. WWIMS provides a detailed map of the Front Range’s streams and reservoirs. Flow rate and water level data are
obtained from sensors and displayed in the WWIMS Ul. Another notable feature of WWIMS is its collection of sensor
data over time, allowing the application to provide historical data charts for a stream or ditch of interest.

As a team, our task is to enhance software previously developed by another Field Session team which simulates snow
runoff from mountains and is known as the Snow Runoff Simulation (SRS). Before our involvement, the SRS could already
fully simulate snow runoff in the front range in fairly high detail. However, some features have not been implemented —
for example, rainfall is not being included in the simulation, and many parameters are not easily configurable.

The simulations produced by the SRS system must be easily validated and open to accuracy adjustments. Thus, the team
will implement tools for users to compare the simulated water data (generated by the SRS) to the corresponding sensor
values observed over a similar timeframe. Furthermore, the application toolset must allow users to adjust simulation
parameters such as runoff coefficients to improve the accuracy of the simulations. Additional factors will also need to be
added to the SRS to increase its realism, including precipitation (rain) data. A final, lower priority goal for the team is to
integrate the SRS software into WWIMS, as the two applications are currently separate. The improvements made to the
SRS may allow for water supply predictions to be generated based on snowmelt levels, thus providing another tool for
water administration. In doing so, we hope to contribute to more effective water management for our community and
Colorado at large.

2 | Page



ll. Functional Requirements

For our enhancements to deliver the most value to hydrologists and hydrogeologists, we provided a method for easily
tuning and rerunning simulations, incorporated more natural elements into the simulation via precipitation data, and
designed the system to be integrated into WWIMS. The specific functionality for these enhancements included the
following:

Developing Ul elements in the SRS for users to tweak individual simulation variables, such as the runoff
coefficient, to help close the gap between simulation and real-world results.

A comparison interface between water level SRS results and the corresponding sensor data from WWIMS for a
basin of interest.

Utilizing real-time rain data from weather stations near the basin of interest to further increase the accuracy of
the SRS.

A user interface for fetching API data and running the SRS with that data.

lll. Non-Functional Requirements

This project’s nonfunctional requirements are used to support the aforementioned functional requirements by providing
details that constrain the project’s implementation and design. A few of the most notable nonfunctional requirements
are listed below.

The application must be designed with the intention of ultimately running within WWIMS.

Updates to the SRS code will be written in the C++ programming language.

Under the circumstances that SRS integration is feasible, the integration must be written in C# to align with
WWIMS.

Code must be published to a private GitHub repository which the client will be able to access.

Final code and outputs will be delivered to the client in a zipped folder.

The use of various libraries is permissible if they support the development of the SRS code.

Proprietary libraries or other paid pieces of supportive software should not be downloaded or used without prior
client approval.

SRS simulations should be performed efficiently to allow for timely data analysis.

The software must remain stable and crash-resistant when running in a Microsoft Windows 10 environment.
SRS results must be of the same format or translatable into the same format as the corresponding real world
data to ensure that results are comparable.

3| Page



IV. Risks

While working on this project, it’s crucial to understand the potential risks associated with our work. The two main
categories of risks we have considered are technology and skill based. Technology risks are those which can disrupt a
business and issues that can arise due to our implementations. Skill risks are gaps in our team's knowledge that may lead
to future problems.

e Technology Risks
o While improving the SRS, we could have made a change that breaks other parts of the SRS.
o There could have been issues with setting up API access to the various sensors the application is pulling
data from.
e Skill Risks
o Since we were working entirely on existing codebases, the team needed to spend time understanding
the different parts before we began making changes or additions. If we didn’t take this time, we could
have potentially modified or removed code that we thought was wrong, breaking certain parts of the
app.
o Only two team members had experience with C# prior to this project, our other team members needed
to spend time learning the language before they could make contributions to the app.

There is also one final risk associated with the use of the SRS and its impact in future decision making. Since the SRS may
be used to predict future water availability, inaccurate predictions could lead to poor decisions regarding water access. It
will be important for our team to keep this primary use case in mind as we make new additions to the simulation.

V. Definition of Done

The MVP for this project is to have a closed feedback loop within SRS using sensor data. The main features to fulfill that
MVP are as follows:

The application will need to run a simulation from a given map of water levels.

The application will need to fetch sensor data from the various APIs provided.

The application will need to provide some method for a user to compare simulation data with sensor data.
A user must be able to select and tune the runoff coefficient for a desired region.

The application will allow for the user to easily run a simulation with specified parameters.

The client will be given the opportunity to test the application, and especially the tuning process, to ensure it works as
desired. The client will have access to our work via a GitHub repository. Once the project is complete, the final code and
outputs will be delivered in a zipped folder.

4 | Page



VI. System Architecture

Technical Issues

Our team has experienced a few technical issues while exploring the codebase thus far: chief among them are the build
difficulties encountered when using the build tool. In its current state, the build tool developed by prior Field Session
teams isn’t user-friendly and provides insufficient documentation for the team to easily create a successful build. It’s easy
to make a mistake when choosing build options and there is very little indication of whether the user selections are valid.
In addition to the existing build problems, a few potential blockers also stand in the way, namely WWIMS integration and
the reliance on multiple sources of truth for sensor information.

As a stretch goal, the client has expressed interest in integrating the simulation display into WWIMS. The SRS is being run
in C++ and the display component is being run in Python. Our client also has a MySQL database that collects current
sensor data over a set interval and does not contain historical stream and reservoir sensor data. Combining previous
sensor data collected from the sensor APIs with current data provided by the MySQL database may be an issue for our
team. The database contains infrequent sensor readings. If the original data is too old, the application may not be able to
make accurate comparisons between simulation outputs and their corresponding sensor measurements.

High-Level User Flow

Entry Point Decision Run Simulation—p- Region & Timeframe Selection —p —

A

Adjust Simulation Parameters

—— _ ——

Figure 1 - Application User Flow

The main user interaction flow of our application is shown in Figure 1 above. Upon entering the application, the user will
have the choice to run the simulation or update its parameters. If they choose to run the simulation, they will be
prompted for the timeframe and region they want to observe, and the program will prep and run the simulation. The
user will then be able to visualize the simulation and compare its results with the measured sensor data. From here, the
tuner interface will appear, allowing the user to modify parameters to achieve higher simulation accuracy. Finally, the
user can save the potentially modified simulation parameters and exit the application.

5| Page



Detailed Information Flow

| Sensor Data ] Rainfall API
Sensor Providers Outputs
* USGS « Precipitation data
* Colorado State
* Soracom

1

+ Cloudloop Weather API
Outputs
! + Temperature data
A 4 L
Sensor API
Outputs
MySQL DB * Flowrate data

« Basin water level data

Color & Line Style Key

Components

= Green - New Implementation

- Blue - Modified Implementation
* Black - Existing Implementation

Data Streams

« Dashed - Asyncronous Data
« Solid - Syncronous Data

User Entry Point

 save_sensor_data() « fetch_rc_grid()

Simulation Configuration Handler Simulation
Outputs Inputs

( + Elevation data

API Handler ] . Si i i i
Simulation configuration « Snowmelt data
Inputs [ * Precipitation data
. . Model P Handl i i i
» Region selection odel Param Randler —Simulation Config—p| , Tomperature data
« Timeframe selection Inputs = Runoff coefficients
Functions ¢ RC parameter grid = Transfer proportions
p| o fetch_api_data() Functions * Initial basin water

level

A

Qutputs

Model Parameters

* Flowrate prediction
+ Basin water level
prediction

Sensor Data File Storage

T
Raw Simulation Data

Run Simulation

Files

« Snowmelt model
formulae

* RC parameter grid

|

User Entry Point

* Simulation results
* Sensor data

\

Inputs

= Region selection

- Timeframe selection
Outputs

= Region selection

» adjust_params()
« prompt_for_selections()

Data Formatter |
Functions
« format_sim_data()

| ¢——Simulation Data.

Model Parameters

Sensor & Simulation Data

-
Feedback Loop

L/

+ display_params()
- save_sim_params()

» Timeframe selection Tuner 1 | Comparator ]
Functions
= run_simulation() —Adjust Parameter Functions Functions

= generate_visualizations()
- percentage_comparison()

Figure 2 - Detailed Information Flow

This module marks the start of the application for the user, where they can choose to run the simulation or adjust
parameters. If running the application, the user will be prompted for a region and time frame selection for the

simulation.

Simulation Configuration Handler

The simulation configuration module is responsible for making synchronous API requests to each of the data endpoints
and loading the necessary model parameters (e.g., the snowmelt model formulae and RC parameter grid) from the
filesystem. Once the parameters and data have been obtained, the simulation configuration handler will aggregate and
standardize this information into a format that will be used to execute the C++ simulation.

Sensor API

This API collects stream and reservoir data from several sensor providers for the purpose of comparison to simulation
results. Additionally, the APl makes synchronous requests to the MySQL database, where asynchronous sensor data is

stored.

File Storage

Various input and output files from the system will be stored locally. As there is no database within this system, this is the
only persistent storage which the system is writing to. The file storage will contain several pre existing file format types,
including those used to represent elevation data, reservoir and sensor data, climate data, and the simulation output. File
formats new to our system will be the RC parameter grid to adjust runoff coefficients spatially.

6 | Page



Simulation

Most of the simulation will not be altered as there already exists a functioning snow runoff simulation with a solid
structure. However, some improvements will be made. Firstly, the simulation will be modified to use a geographic,
grid-based specification for each cell’s runoff coefficient. This allows for full customization of the runoff coefficient in
every grid cell of the simulation. Then, the simulation will be improved by factoring in rain data to the calculation of
runoff, rather than only simulating water runoff from snowmelt.

Data Formatter

The data formatter component will format the simulation data to be compared with sensor data. After standardization,
both types of data are fed into the comparator.

Feedback Loop

The feedback loop is the interactive portion of this system. Feedback loop functionalities include the displaying of
simulation results and sensor data in the comparator, and the ability to adjust spatial RC parameters in the tuner. The
comparator will display simulated versus measured (by sensors) fill level and flow rate for each reservoir/stream. The
simulation data comes from the data formatter module. The measured sensor data comes from the file storage, as this
data would have been fetched by the sensor API previously. The tuner component will display a large grid of RC values
mapped to the geographic coordinates for each cell in the grid. From this display, the user will be able to modify cells’ RC
parameters to make the simulation more accurate in the future. This modified RC parameter grid could be saved back to
the file system.

Component Communication

To summarize how each component communicates with each other, the simulation configuration handler component
fetches all API data, which is immediately sent to the simulation. The simulation also gets data from the tuner
component to run the simulation. Finally, the simulation’s output is passed to the comparator to display the results.

Simulation Improvements

This new structure also helps us to improve the simulation’s accuracy. In particular, we are fetching hourly geographical
rain data and adding this precipitation to the simulation in the same way that snowmelt adds water to the simulation.

7 | Page



VII. Software Test and Quality

Our testing plan includes a variety of unit, integration, usability, and functionality tests. These tests, including their
expected and actual results, are listed in detail in the table below.

Test Name Category Env Setup Action Expected Result Actual Result
Simulation Unit Test Dev  Premade elevation data Simulation parse  Each cell has the Passing
Parameter Loading file w/ set RC params and load params  specified parameter

for each cell value
Simulation Parser  Unit Test Dev  Simulation file in .dat Parse the Ensure the data Passing
format that aligns with simulation output  extracted is the same
the expected file in C# as the data extracted
configuration used in the in the Python script
display.py file used to display the
simulation
Tuning Grid Testing Unit Test Dev  Various premade tuning Tuning grid and RC parameters are Passing
grids and coordinate lists coordinates lists  correct for each
(elevation data file) parsed and rc coordinate within the
provided parameter grid. Coordinates

assigned for each outside the domain of
coordinate based  the grid remain with
on the tuning grid  unset RC parameters

Comparator Testing Usability Test Dev  Configure the Walk through a The client is able to Comparator
comparator component typical user flow to understand the data displays sensor
with simulation and ensure the being displayed, and  data, simulation
sensor data comparator results can take appropriate  data, and reservoir

are presented in  action to modify the capacities in a bar
an insightful way  simulation for closer  chart format for

for the client future approximations easy comparison
Simulation Config  Integration Dev Create a sample input  Call APl handler  API handler should Passing
Handler Test/ from the user entry point with the sample properly use inputs
Functional to send to the API input from user entry point,
Test handler calling the APIs at the

correct time based on
the interval provided

Tuner Integration  Integration Dev Provide existing RC User uses a tuner Simulation uses Passing
Testing Test/ param grid format to modify the modified parameters
Functional parameter grid. that the user specified
Test Simulation is via the tuner
initialized

Feedback Loop Integration Dev  Feedback loop has been Walk through the The feedback loop is  Passing

E2E Test/ configured entire feedback intuitive for the user,
Functional loop user interface and contains all the
Test/ features necessary to
Usability Test understand and adjust

the simulation

Table 1 - Software Quality Plan

Due to the scope of our project, we are unable to perform traditional user acceptance testing. However, the team is
continuously receiving feedback from the client throughout the development process; feedback is obtained through live
functionality demonstrations during bi-weekly client meetings. Furthermore, we are employing additional quality

8 | Page



assurance through our code review process. All changes to the software are reviewed by another team member with a
pull request to ensure that code quality meets the standards of the team.

VIII. Project Ethical Considerations

Some particularly relevant ACM and IEEE Principles to consider are highlighted below:

e ACM 1.1 - Contribute to society and human well-being, acknowledging that all people are stakeholders in
computing.

o Ultimately, our software aims to benefit the general public by providing knowledge regarding the flow of
water. As a team, we should keep this mission in mind throughout the development process.

e ACM 2.5 - Give comprehensive and thorough evaluations of computer systems and their impacts, including
analysis of their risks.

o Our product will be used to inform the actions of water managers. Specifically, one of the reach-goals for
our project is to alert water managers when reservoirs and ditches are predicted to overflow: this alert
will be produced based on the results of a programmatic simulation. It is therefore paramount that our
simulation is able to provide accurate and timely predictions to ensure water managers have adequate
time to address water distribution issues.

® ACM 3.6 - Use care when modifying or retiring systems.

o Most of our work this semester required building on previous field sessions’ work, which required
modifying or removing certain parts of their code. We needed to ensure that these modifications were
warranted and necessary before they occurred.

e ACM 3.7 - Recognize and take special care of systems that become integrated into the infrastructure of society.

o While this software is still in its early stages, the end-goal for this product is to be a tool used by water
administrators.

e |EEE 3.07 - Strive to fully understand the specifications for software on which they work.

o Our regular meetings and product demos with our client ensure that our software design decisions are in
line with our client’s needs and objectives for the project. If we fail to observe this principle, our product
will not meet the requirements of our client nor our end users.

Michael Davis tests are a pertinent aspect of ensuring software meets certain ethical standards. Two of these tests are
discussed below:

o Mirror Test: Would | feel proud of myself when | look into the mirror?

o One of the reasons why our group was interested in this particular project was because we recognized
the potential good it can do for society. As our client expressed to us, water management is a
generational issue that impacts the lives of millions. Our group believes that contributing work to a
system that alleviates the burden on water managers and permits them to make productive decisions is
a worthwhile pursuit. We are proud that we have the opportunity to tackle such a complex and universal
issue.

e Professional Test: What does the Software Engineering Code of Ethics say about this problem?

o The Software Engineering Code of Ethics calls for work to be aligned with public interests, maintains that
the work must be of a high quality, and finds that the work should be conducted in a collaborative
manner. It’s clear that the values and intentions behind this project will aid the public; should the team
maintain a high quality of software and practice effective communication, our solution will pass the
Professional Test.

Finally, there are significant concerns if our software is completed without proper quality assurance. In particular, the

comparator component is expected to provide accurate information on the state of water in reservoirs. If this
information is faulty, users could make misguided decisions. Additionally, it is critical that the accuracy of the snowmelt

9 | Page



simulation is made clear to users, and that users have the ability to increase this accuracy. This ensures that water
administrators do not use the software in potentially unprofessional ways.

IX. Results

We are proud to have implemented all of the functional requirements outlined in this report. Our notable features and
accomplishments for this project include:

® Aninteractive graph window comparing simulation results to the most recent actual measured reservoir water
levels.

® A parameter tuner, where users can modify runoff coefficients for areas of the simulation quickly and easily, and
pass these modifications into the simulation.

e A unified user interface containing the above two features as well as the ability to fetch all APl data and run the
simulation at the press of a button.

® Improvements to the simulation, including bug fixes and the addition of hourly rainfall data to the snowmelt
runoff.

Images for the user interface that we have implemented are provided in Appendix B of this report.
There were also some features that our team planned on implementing, but fell short in some regard.

As mentioned in the detailed description of our application’s data flow, there are two factors of interest when it comes to
modeling snowmelt: water level and flow rate. Our application successfully provides a feedback loop tool for viewing and
modifying the simulation’s water level predictions. Our group initially assumed that the simulation modeled flow rate in
some capacity. Unfortunately, this assumption was incorrect. The team was primarily focused on validating the accuracy
of the simulation with their feedback loop work, and they lacked the capacity to implement an accurate and robust flow
rate model. However, the team wanted to ensure that the flow rate was easy to implement if the desire arose in the
future, which prompted them to make a few key design decisions, e.g., creating an abstract “comparison graph” class
that can be instantiated to either compare reservoir water levels or stream flow rates.

The second piece of work that the team did not have time to implement was a fully-featured Ul for the tuner. Based on
our conversation with a hydrogeologist, the team believed it would be beneficial for a user to remain in the application
while making changes to the tuner files. The team initially conceptualized this feature as embedding an Excel file within
the WPF application, which they believed would give the user traditional file modification functionalities while still
allowing for a more seamless user experience. However, a more robust Ul would be ideal: regional areas could be
selected by clicking and dragging over a geographical area, and these areas could have their parameters modified. The
team determined that this feature would make the most sense to be implemented after the WPF application had been
implemented into WWIMS.

The final feature that the team was unable to accomplish was incorporating their work into the WWIMS application.
Although this was a stretch goal for the team given the scope that the client defined, it is recommended that future field
session teams prioritize this work to provide maximum value to Walker Water.

As outlined in section VII, the team completed a variety of tests to verify the quality of the developed application. The
first form of testing the team successfully completed was unit testing. While writing code, the team implemented several
small tests to ensure the basic functionality for several different components was being met. The tests were successful,
allowing the team to quickly catch minor bugs in their code before integrating these components into the larger
application framework.

Additionally, the team found that providing mandatory code reviews before merging new features was extremely
beneficial. On several occasions, the team was able to catch errors introduced from the different program setups each
group member was using. This was especially important since future users may be running slightly different software,

10 | Page



and ensuring that the code does not behave differently depending on those factors is crucial to the usefulness of the
application.

After merging each individual component into one complete application, the team performed a final series of integration
tests to verify that information was being properly passed between the components. To simplify these tests, the team
created a configuration file that contained all the information being shared. Each component could then write its
information to the file before navigating to the new component. Using this method, the integration tests proved to be
successful. There were no issues of lost or incorrect information when switching from one component to another.

X. Future Work

Firstly, we did not have the time to add all potentially useful features to the user interface of our application. Some
recommendations for future features are listed below. These features would also serve as good starting points for future
teams to make quick, meaningful improvements:

o Not all parameters and files can be set within the user interface — some must be set by directly modifying the
configuration file. A settings menu for the application could implement these features.

® The simulation has many flags and parameters that can be set, such as how many simulation frames should be
skipped. These flags are currently set to a specific setting and cannot be modified by the user without modifying
the code. Allowing the user to modify these parameters allows for more customization and flexibility in the
simulation.

® The previous team created a Python application which plays a timelapse of the simulation: this timelapse cannot
be accessed from our application’s user interface. Adding this Python script to the application would make it
easier to interact with as a user.

Our team’s contributions were aimed towards determining the accuracy of the simulation. While we did add an extra
accuracy factor, namely precipitation data, we did not introduce many new features that drastically increased the quality
of the simulation results. Future field session teams should use our work to improve the accuracy of the simulation itself
by adding more data factors and work closely with hydrogeologists to verify its accuracy. The goal of the simulation
project was to give end users the power to run meaningful simulations, and thus, to be able to make more informed
decisions about stream and reservoir water management based on the results. Adding further richness and accuracy to
this service will aid in driving this goal forward.

Some particularly noteworthy improvement recommendations for the simulation have been highlighted below:

e Flow Rate — This was discussed more thoroughly in the previous section, but adding flow rate calculations to the
simulation will provide another output metric which will be useful both for verifying accuracy of the simulation,
and for providing water administrators with more information about water’s behavior in the simulation.

e Sophisticated Handling of Reservoir Overflow — Firstly, it should be possible for reservoirs to have a current water
volume greater than their capacity while they are overflowing. Secondly, knowing when a reservoir is
overflowing would be highly useful to a water manager as this may signal that they should be taking more water
out of this reservoir.

e Runoff Coefficient Handling — The simulation treats runoff coefficient as being water lost per unit of time, while
the hydrogeological version of runoff coefficient is unitless. As such, there is not a clear way to translate between
what the simulation and tuner uses, and how hydrogeologists understand runoff coefficients. So, while users can
currently tweak RC parameters, this does not correspond with real runoff coefficients. Being able to somehow
translate between these or use a different, potentially more relevant unit of measure could improve the clarity of
the simulation from the user’s perspective.

11 | Page



Setup Speed - The process for fetching weather data and preparing the files for the simulation is currently very
slow. The Herbie Python library our team used has built-in functionality that allows for multi-threaded API
fetches, which could drastically improve the time it takes to initially prepare files before running the simulation.
Simulation Speed — The current iteration of the simulation is, in general, very slow to run. Optimizing the
simulation could significantly improve it. Our team has not substantially analyzed the code in terms of improving
its speed. If a team were to do so in the future, the usability of the software could be substantially enhanced.
Time Frames — There is currently little flexibility in the simulation for the time frame that the user selects. It
would definitely be useful to have an option for the simulation to run at a higher level, over more time and with
less precision. This could also improve the speed of the simulation by simulating less data points and providing
more general estimates.

Additional Tuning Parameters — Currently, only runoff coefficients can be adjusted by the tuner. It is very likely
that there exist other parameters per simulated point that could be tuned by a user to make the simulation more
accurate. For example, the client has identified factors such as vegetation density being influential to runoff.

In the previous section, we discussed how we could not meet our stretch goal of integrating the SRS and user interface
into WWIMS. Accomplishing this in the future may be a significant task, but it will substantially increase the usability and
functionality of the application. Doing so would mean that the SRS application will be able to communicate with and
easily share data with the WWIMS application, which has a vast array of geographical and hydrological data. As such,
integration with WWIMS should be a primary goal for future work on this project.

Xl. Lessons Learned

As a team during this project, we engaged with aspects of software development that we weren’t particularly familiar
with before starting the project. Additionally, working for a client in the setting of a four-person team was a unique
structure for us. Because of these challenging and exciting aspects of the project, we have learned multiple valuable
lessons, including the following:

An initial obstacle for the team was understanding and implementing the WPF MVVM design pattern. As only
one of the team members had experience with this technology, there was a great deal of research done to
ensure that code quality and maintainability was adhered to by all members of the team. We also found WPF
documentation to be either difficult to find, or overly verbose and confusing in most cases, which made it
difficult to make significant progress early on. These challenges were overcome by following a set of foundational
WPF video tutorials, and by making use of modern and well-documented libraries, like LiveCharts2, to
accomplish more complex pieces of functionality.

A major source of volatility for us was our client relations. Ultimately, we feel fulfilled with our client relationship,
but there were various roadblocks that came up throughout development. John is our main client and the head
of Walker Water, but in early meetings we were able to speak with some of his colleagues. However, for various
reasons, these colleagues stopped associating with Walker Water or were unable to meet with us. This created
some inconsistency in the feedback we were receiving throughout the semester. Ultimately, this has taught us to
be flexible in dealing with stakeholders. It is still up to our team to put out the best product we can with the
feedback the clients can or can’t provide us.

In a similar vein, particularly as we are college students working in a professional setting, it can be easy at first to
over-promise on meeting the requests clients make for a particular feature or improvement. However, we have
learned that it is more valuable to both us and to the client to be realistic with what we can accomplish, and
re-iterate the requirements we plan on meeting. From our understanding, clear expectations will lead to more
satisfaction even if some client ideas need to be rejected or placed on hold.

A final challenge our team faced was picking up the project from previous field session groups. As more groups
contribute to the project, it can become increasingly difficult to hand off the work and knowledge to new teams.

12 | Page



Our team encountered several cases where the existing code had strange errors and identified several instances
where the documentation and inline comments failed to explain certain decisions and functionalities. This has
taught our team the importance of clear documentation, and the role it plays in this project. If we want future
teams to be able to carry on work for this project, they will need to understand the decisions and contributions
our team made.

Xll. Acknowledgments

The team would firstly like to thank Trevor Hirsche, the team’s hydrogeologist contact. Early on in the semester, Trevor
helped to define the scope, requirements, and underlying purpose of the project. The team would also like to express
their immense appreciation to their client, John Walker, for his continued support and advice throughout the project
development. John provided access to several data sources that were necessary for the success of the project, including
a personal MySQL database, and worked closely with the team to ensure all members understood the basic physics of
snowmelt and the value behind the application. John’s hydrology expertise allowed the team to move forward with
confidence when faced with uncertainty. Finally, the team would like to thank their advisor, Caleb, for helping to conduct
sprint retrospectives and ensure the team remained on-track for every class deliverable.

13 | Page



XIll. Team Profile

Umberto Gherardi

Computer Science + Computer Engineering

Hometown: Fort Collins, CO

Work Experience: Software Engineering Intern, Technology Solutions Consulting Intern,
Undergraduate Researcher, CSCI403 Teaching Assistant

Interests: Hiking, biking, misc. outdoor activities, spending time with family and friends

Umberto Gherardi led the design of the C# WPF UI components, wrote parsers for the simulation output and
sensor data files, and worked to integrate each of the individual components into a cohesive application.
Umberto was also responsible for assisting with the development of the MVVM project structure.

Dylan Nichols

Computer Science + Computer Engineering

Hometown: Las Vegas, NV

Work Experience: Software Engineering Intern

Interests: Competitive Dance Games, Game Development, Music Production

Dylan Nichols was responsible for leading the development of the MVVM structure inside of C# WPF and
served as a technical advisor to ensure scalable design from other team members. Dylan also assisted with
frontend development and Ul implementation.

Caden Swartz

Computer Science (General)

Hometown: Littleton, CO

Work Experience: Software Engineering Intern
Interests: Listening to music, hiking, gaming, reading

Caden Swartz led the design for simulation tuning component, added rainfall to the simulation, and also
provided some finishing touches and quality-of-life features to the WPF application.

14 | Page



Joe Archibold

Computer Science (Data Science)

Hometown: Longmont, CO

Work Experience: Data Science Intern, Data/Software Engineering Intern
Interests: Video games, board games, hiking, and disc golf.

Joe Archibold primarily worked on the simulation configuration handler and implementing the API access to
the database and weather systems. He also helped add minor changes to the simulation to fix inconsistencies.

Appendix A — Key Terms

Include descriptions of technical terms, abbreviations and acronyms

Term Definition

Runoff Coefficient A representation of the amount of rainfall or snowmelt that ends up in ditches,
expressed as a decimal value between 0 and 1.

WWIMS Walker Water Irrigation Management System (Our client’s existing application)

SRS Snow Runoff Simulation (The software developed by previous field session

teams and improved upon by our team)

WPF Windows Presentation Foundation (A C# .NET format used to create Windows
Desktop Applications)

Appendix B — Ul Screenshots

B | MainWindow = ] X

Snowmelt Simulation Feedback Loop - Main Menu

Run Simulation

Adjust Simulation Parameters

View Last Comparison

15 | Page



Figure 3 - Feedback Loop Main Menu View

1 MainWindow

Reservoir Water Fill Level Comparison

Timeframe Selection: 08/04/2024 @ 00:00 - 08/06/2024 @ 00:00

| ‘ "

@ Sensor Reading @ Simulation Prediction  ® Reservoir Capacity

Tog o

4000

3500

3000
= 2500
<
k] 2000
g
K
2

1500

1000

Boulder Lake
500 @ Sensor Reading 0.0on NAat NA
@ Simulation Prediction [ ‘ H
® Reservoir Capacity 793 | ” ‘ ” m ‘
BN 5 1 e RO o 117 1 T e T
Alcxand‘cr Lake Bull F‘m(h 1 Cole W‘Uppcv Doughty 2‘ Sliderock Glava:y 12 Hov‘/ard L\Hy‘?ad Muskva‘t PC&G Rim Ro‘(k Lake Tn(‘klc Wonlack 1
Reservoirs
Figure 4 - Comparator View

B MainWindow — a

Adjust Simulation Parameters

Tuner Grid File

Tuner RC Mappings File

Generate Empty Tuner Grid

Input Simulation Points File

Run Tuner

Updated Simulation Points File
Return to Main Menu

Load Saved File Selections Save

Figure 5 - Simulation Parameter Adjustment View

16 | Page



7 MainWindow

Run Parameter Configuration

Region Grid

rc_out3.csv

Simulation Executable

WatershedAnalysis.exe
Simulation Start Date Simulation End Date
11/22/2024 E 11/23/2024 E

Figure 6 - Run Parameter Configuration View

17 | Page



