

CSCI 370 Final Report

The Reactionaries V2

Sam Bangapadang
Ethan Leuthauser

Danny Nguyen

Revised December 4, 2024

CSCI 370 Fall 2024

Prof. Kathleen Kelly

1 | P a g e

Table 1: Revision History

Revision Date Comments

New 8/28/24 Completed Sections:

I. Introduction
II. Functional Requirements
III. Non-functional Requirements
IV. Risks
V. Definition of Done

Rev – 2 9/14/24 Updated and Complected Sections:

 III. Non-Functional Requirements
 IV. Risks

VI. System Architecture

Rev – 3 10/19/24 Updated and Complected Sections:

 IV. Risks
 V. Definition of Done
 VI. System Architecture
 VII. Software Test and Quality
 VIII. Project Ethical Considerations

Rev – 4

11/10/24

Updated and Complected Sections:

 IX. Project Completion Status
 X. Future Work
 XI. Lessons Learned
 XIII. Team Profile
 XIV. References
 XV. Appendix A – Key Terms

Rev – 5

11/19/24 Updated and Complected Sections:

 I. Introduction
 VI. System Architecture
 IX. Project Completion Status
 X. Future Work
 XI. Lessons Learned
 XII. Acknowledgments
 XIII. Team Profile
 XV. Appendix A – Key Terms

Rev – 6 11/23/24 Updated and Complected Sections:

 VI. System Architecture
 X. Future Work
 XII. Acknowledgments

Rev – 7 12/4/24 Updated and Complected Sections:

 VI. System Architecture

2 | P a g e

Table of Contents
I. Introduction .. 4

I.I. Client Information ... 4

I.II. Project Background .. 4

I.III. High Level Project Description .. 4

II. Functional Requirements ... 4

III. Non-Functional Requirements .. 5

IV. Risks .. 6

IV.I. Technical/Operational Risks ... 6

IV.II. Skills Risks .. 6

V. Definition of Done ... 7

V.I. Minimal Useful Feature Set ... 7

V.II. Client Acceptance Tests .. 8

V.III. Delivery Process ... 8

VI. System Architecture ... 9

VI.I. High-Level Architecture Overview .. 9

VI.II. Low-Level Overview / Technical Design .. 10

VI.II.I. General Dashboard Overview ... 10

VI.II.II. LTS Dashboard Overview .. 11

VI.II.III. Results of Performance Enhancements .. 12

VII. Software Test and Quality Assurance .. 12

VII.I. Purpose of Testing ... 12

VII.II. Description of Testing ... 12

VII.III Testing Plan... 13

VII.IV. Tools Utilized for Testing ... 14

VII.V. Threshold for Acceptability .. 14

VII.VI. Edge Cases ... 14

VII.VII. Results of Testing ... 14

VIII. Project Ethical Considerations .. 15

VIII.I. Relevant ACM Principles:.. 15

VII.II. Relevant IEEE Principles:... 15

IX. Project Completion Status .. 16

IX.I. Complete Features and Summary of Feature Performance... 16

IX.II Incomplete Features ... 16

X. Future Work ... 17

XI. Lessons Learned .. 17

XI.I. Challenges with Development Environment .. 17

3 | P a g e

XI.II. New Technologies and Tools ... 17

XI.III. Time Management and Team Collaboration .. 18

XII. Acknowledgments ... 18

XIII. Team Profile .. 18

XIV. References .. 19

XV. Appendix A – Key Terms .. 19

4 | P a g e

I. Introduction
I.I. Client Information
Qualcomm Incorporated is a U.S.-based multinational company, renowned for its pioneering advancements in
semiconductors, software, and wireless technology services. The company is a global leader in mobile technology
innovation, with its flagship Snapdragon System-on-Chip (SoC) platforms powering smartphones, tablets, and other
devices worldwide. Qualcomm is a driving force behind the development and deployment of modern technology, also
spanning Modems, Radio Frequency Transceivers, Artificial Intelligence, Connectivity Chips, Automotive Semiconductor
Solutions, and Internet of Things (IoT) Technologies. Ultimately, Qualcomm’s development efforts have transformed
connectivity across industries.

For this project, our team will collaborate with Qualcomm’s highly specialized team based in Boulder, Colorado. This
team is at the forefront of designing and engineering the Test Base Station (TBS), a critical component in the validation
and optimization of cellular tower base stations deployed worldwide. Cellular base stations act as central hubs, forming
the backbone of modern cellular networks. By working with the Boulder team, we aim to contribute to Qualcomm’s
mission of driving innovation in wireless communication technologies while ensuring the solution meets the needs of its
stakeholders, including Customer Engineering and Development teams.

I.II. Project Background
Qualcomm’s diverse portfolio of products requires extensive customer support, with over 2,000 systems utilized daily
across the organization. This high level of activity generates a significant volume of issues that engineers must address.
These issues are tracked using multiple Atlassian Jira projects, a project management and issue tracking tool. While
Atlassian Jira is the industry standard for project management, Qualcomm finds this current instance to be cumbersome
and lacks the flexibility needed to align with the company’s unique and evolving workflow requirements. To accelerate
the release of cutting-edge technology, Qualcomm has addressed the need for a solution that extends and enhances
Jira’s capabilities, rather than replacing it, to better optimize issue tracking and resolution processes.

I.III. High Level Project Description
Our team is dedicated to streamlining Qualcomm’s internal workflows by extending and enhancing an existing customer
support front-end, enabling seamless visualization, modification, and organization of Jira issues across Customer
Engineering and Development teams at Qualcomm. We aim to address pain points by introducing features that cater to
Qualcomm’s unique workflow practices, such as advanced filtering options and tailored dashboards with custom
interactions, enabling faster issue resolution and improved productivity. Through innovative front-end design and
optimizations, our solution will play a pivotal role in streaming operations and driving technological advancements
within Qualcomm. Once implemented, the software will be maintained by Qualcomm’s internal IT and development
teams, supported by thorough documentation and knowledge transfer to ensure long-term success.

II. Functional Requirements
As the project evolved, the functional requirements of the project changed drastically to address specific user needs.
One of the team’s original application requirements, supporting tier escalations, was removed from the scope after an
internal reassessment of the project requirements.

Requirement Details Priority Testing Criteria Retained
in Scope?

Tier Escalation
Tool

Implement a single-click button to
escalate issues from Tier 2 to Tier 3.

High Verify escalation functionality completes with
one click and updates issue status in Jira.

5 | P a g e

Specialized
Task Pages

Create separate pages for Long-
Term Support, Escalations, and
general use.

Medium Ensure each page is functional and supports
intended user workflows.

X

Advanced
Issue Filtering

Enable filtering by priority, type,
project, version, status, and
resolution.

High Test filters for accuracy and usability, with the
ability to save custom filter presets.

X

Rich Text Input
and Issue
Highlighting

Support RTF user input and highlight
specific Jira labels with icons for
roadmap, blocking issues, etc.

Medium Test RTF input accuracy and verify
highlighting is applied correctly to pre-
defined Jira labels.

X

Interactive
User Interface

Provide visual tools to display
dependencies and expandable issue
cards with customizable layouts.

High Confirm issue cards accurately depict issues
and that cards are customizable and
expandable.

X

Release
Management
Tools

Integrate Long Term Support (LTS)
tools for release approval, analysis,
and feature/version tracking.

High Validate LTS analysis accuracy and the ability
to manage trackers and release versions
effectively.

X

III. Non-Functional Requirements
Requirement Details Priority Testing Criteria

High-
Performance
Operations

Ensure efficient handling of issues,
filtering, and escalations.

High Measure API response times, filtering operations under
varying workloads, and ticket escalation speed.

Scalability Maintain consistent performance as
the user base and data volume
grow.

High Test system behavior under simulated high workloads and
user concurrency.

Security and
Data
Protection

Adhere to security standards for
data handling and internal libraries.

High Verify secure handling of Jira requests and npm libraries
through penetration and compliance testing.

User-Friendly
Interface

Provide an intuitive, accessible UI
with clear visual indicators for key
actions.

Medium Conduct usability and accessibility testing, ensuring WCAG
compliance.

System
Reliability

Achieve high system availability with
robust error handling.

High Monitor uptime metrics and test error-handling scenarios
to minimize disruptions.

Streamlined
Deployment

Implement CI/CD pipelines within a
Docker and Kubernetes
environment for efficient
deployment.

Medium Validate successful deployments and CI/CD pipeline
execution in the target environment.

Maintainable
Codebase

Ensure a well-documented,
modular, and easily updatable
codebase.

Medium Review code documentation and structure for
maintainability during peer reviews.

6 | P a g e

IV. Risks
IV.I. Technical/Operational Risks

Risk Description Impact (0-5) Likelihood
(0-5)

Mitigation Plan

Loss of data disrupting
Qualcomm’s existing
workflow.

5: Destructive to
Qualcomm’s internal
platforms and existing data.

0: Very
unlikely

Implement read-only access to critical data and
ensure new Jira tickets are created when
modifications are needed to avoid accidental data
loss.

Security of Jira Requests (i.e.,
Malicious Requests)

4: Could lead to
unauthorized access or
manipulation of data.

2: Unlikely Use secure storage for API keys and tokens,
implement request validation, and enforce strict
authentication protocols.

Release of confidential
information affecting
Qualcomm’s security
internals.

5: Potentially catastrophic,
leading to data breaches,
legal implications, and loss
of trust.

1: Very
unlikely

Develop and test in a secure virtual environment,
restrict data access, and implement encrypted
communications for sensitive operations.

Inadequate testing may lead
to bugs in production.

4: Could cause application
malfunctions or data
corruption.

3: Likely Develop a comprehensive testing strategy, including
unit, integration, and system testing, and enforce
thorough code reviews before deployment.

Miscommunication among
team members may hinder
productivity and lead to
misalignment in project goals.

3: Could delay the project
and cause misalignment of
goals.

2: Unlikely Use clear team communication protocols, regular
check-ins, and project management tools to ensure
alignment and consistent collaboration.

Scalability and performance
issues appear as the system
grows.

3: May cause bottlenecks or
system crashes.

5: Very
likely

Conduct performance testing, implement load
balancing, and optimize API calls to address existing
and potential bottlenecks.

Changes in project scope
affecting deadlines and final
product.

4: Could lead to missed
deadlines and unmet
objectives.

3: Likely Establish clear scope agreements at the start, use a
change management process for new requests, and
prioritize tasks to maintain focus on key objectives.

Refactoring could lead to
further broken
implementations of previously
working systems

3: Fluctuates depending on
affected features.

4: Likely Use version control systems with rollback
capabilities, maintain robust test coverage, and
conduct regression testing after every refactor.

IV.II. Skills Risks
Skill Point of Use Impact (0-5) Likelihood

(0-5)
Risk Mitigation Plan – Avg. Knowledge (1-5)

TypeScript Front-End: Essential for
developing application
logic.

5: Essential 3: Likely Avg. Knowledge: 4.0 Ensure all team members
maintain a strong understanding through regular
code reviews and collaborative programming
sessions.

7 | P a g e

React Front-End: Core framework
for building the user
interface.

5: Essential 3: Likely Avg. Knowledge: 4.0 Provide hands-on workshops
and ensure existing UI developers mentor less
experienced team members to maintain knowledge
parity.

Python Back-End: Primary
language for backend
development.

5: Essential 2: Unlikely Avg. Knowledge: 4.0 Leverage existing backend
expertise; assign complex Python tasks to
experienced developers to ensure high-quality
implementations.

FastAPI Back-End: Building APIs
with Python.

5: Essential 4: Very
Likely

Avg. Knowledge: 3.3 Conduct targeted training
sessions and allocate simpler API tasks to junior
members to build proficiency while leveraging team
expertise.

Tailwind CSS Front-End: Utility-oriented
CSS framework.

4: Non-
Essential

2: Unlikely Avg. Knowledge: 3.0 Utilize pre-built templates and
limit custom CSS to essential components, reducing
reliance on advanced knowledge of the framework.

Mantine Front-End: React-
component library that
offers a wide range of pre-
built components.

5: Essential 2: Unlikely Avg. Knowledge: 4.6 Rely on documentation and
pre-built examples to minimize complexity in
implementation and maintain existing high
proficiency.

Vite Front-End: Build tool that
offers fast development for
front-end projects.

5: Essential 2: Unlikely Avg. Knowledge: 3.0 Assign setup tasks to
experienced developers and provide step-by-step
documentation for configuration to simplify
adoption.

Jira Scrum & Front-End:
Software used to manage
tickets.

5: Essential 3: Likely Avg. Knowledge: 3.8 Provide training on best
practices for ticket management, ensure adherence
to workflows, and use existing documentation as a
reference.

Hatch Back-End: Used for
managing Python
environments,
deployment, and
packaging.

5: Essential 2: Unlikely Avg. Knowledge: 3.0 Ensure experienced backend
developers oversee environment configuration and
deployment processes while mentoring team
members.

Zustand Front-End: Used for state-
management of React
components.

3: Replaceable 2: Unlikely Avg. Knowledge: 1.0 Allocate dedicated time to
team members to improve Zustand and assign
experienced mentors to ensure proper state
management practices.

V. Definition of Done
V.I. Minimal Useful Feature Set
The following features are considered the minimum requirements for the project to be deemed complete:

1. Long-Term Support (LTS) Workflow Automation
a. Automate the Long-Term Support (LTS) process used by Qualcomm engineers to address LTS issues.
b. Improve performance to align with envisioned speed requirements.

2. Advanced Issue Filtering
a. Implement filters based on common properties (e.g. priority, type, status, version).
b. Add preset filters for commonly used queries that can be customized.

8 | P a g e

3. RTF Support
a. Enable support for rich text input (RTF) to ensure accurate and flexible user input handling.

4. Task-Specific Dashboards:
a. Create separate pages or tabs tailored to specific tasks, such as tier escalations or long-term support

operations.
5. Intelligent Issue Display:

a. Implement highlighting and grouping of issues, pointing out current and invalid statuses.

V.II. Client Acceptance Tests
The client will conduct the following tests before accepting the software:

1. Performance Tests:
a. Measure the efficiency of the LTS workflow automation and ensure it meets performance benchmarks.
b. Verify that the refactored codebase improvements yield faster and smoother operations.

2. Filter Functionality Tests:
a. Validate the accuracy and usability of advanced issue filters for common properties and preset queries.

3. RTF Input Validation:
a. Ensure RTF input is accurately captured and correctly displayed within the system.

4. Dashboard Usability Tests:
a. Confirm that task-specific dashboards and features function as intended and support specific workflow

needs.

V.III. Delivery Process
The product will be delivered incrementally through pull requests submitted to Qualcomm’s internal GitHub repository.
Each pull request will undergo thorough code review and client testing to ensure quality and alignment with project
requirements.

 The current state of the GitHub repository employs Continuous Integration (CI) deployment upon merging with the
main branch. All deployments are integrated into Qualcomm’s internal systems, ensuring seamless updates to staging
our production environments. This setup allows the client to validate functionality and performance in real-time as
changes are deployed.

Upon completion of all the features and successful client testing, the final version will be approved for deployment and
fully operational within Qualcomm’s infrastructure.

9 | P a g e

VI. System Architecture
VI.I. High-Level Architecture Overview

Figure 1: Application Architecture Diagram, Derived from Summer Team [1]

The application consists of a React-based frontend and a Fast-API based back-end, designed to provide a seamless
interface for managing Jira tickets and Long-Term Support (LTS) workflows. This architecture ensures a responsive and
efficient user experience tailored to Qualcomm’s operational requirements. The diagram above illustrates the core
components and their interactions.

The front-end leverages ReactJS as the primary framework, combined with TypeScript for type safety and scalable
development. It consists of two main components: the general dashboard and LTS dashboard, accessible through
selectable tabs. These dashboards allow users to filter and visualize Jira issues while ensuring intuitive navigation and
task management. The UI components are built with the Mantine library, which standardizes design and minimizes the
need for custom styling. The front-end communicates with the back end through REST API calls, which fetch data and
perform actions as needed.

The back-end is powered by FastAPI, which serves as a lightweight and high-performance web server. It processes REST
API requests from the front-end, interacts with the Atlassian Jira REST API, and leverages a Time-To-Live (TTL) Cache to
optimize data retrieval and system responsiveness.

The TTL Cache is configured to store infrequently changing data, such as projects, priorities, and fix versions, for 12
hours. This interaction reduces latency by minimizing repetitive API calls to Jira, which can be time-intensive, especially
for metadata that changes infrequently. By storing this data locally in the cache, the system ensures a more responsive
user experience while reducing the load on Jira’s API, improving overall performance and scalability.

10 | P a g e

Key third-party elements include:

• Mantine Component Library: Provides pre-built and customizable UI components for consistent design across
the application.

• Atlassian JIRA REST API: Handles all interactions with Jira, including fetching, updating, and creating ticket data.

This architecture design ensures for a cohesive integration of technologies, providing users with a responsive interface
tailored to Qualcomm’s workflows.

VI.II. Low-Level Overview / Technical Design

VI.II.I. General Dashboard Overview

Figure 2: Refactored General Dashboard

The General Dashboard serves a critical front-end component for managing and filtering Jira tickets across all projects.
Initially, the dashboard was set up to integrate automation for escalation and handover processes. However, these
functionalities were later removed from scope. This refactor establishes a foundation for integrating these processes in
the future, while delivering significant performance, usability, and maintainability improvements.

During the development phase, the dashboard was refactored into a table-based structure utilizing the Mantine React
Table (MRT) library. This decision was made to maintain design and functional consistency with the newly developed LTS
Dashboard. This significant refactor led to the below improvements:

1. Performance Enhancements
a. By integrating API caching and removing the unnecessary custom fields in the back-end (discussed in a

later section), page load times were significantly reduced.
b. Previously, the dashboard took approximately 8000-9000 milliseconds to load. After optimization, the

load time was reduced to under 3000 milliseconds.
2. Standardized Component Library

a. The General Dashboard was migrated away from custom Radix components in favor of the Mantine UI
library.

b. This transition eliminated the need for custom UI components, streamlining development and improving
maintainability.

3. Simplified UI and Usability
a. The new table structure enables for better organization and navigation of ticket data, with intuitive

filtering options for common metadata such as ticket type, priority, status, resolution, and parent
project.

b. The consistent design ensures that users experience a cohesive interface across both the General and
LTS dashboards.

11 | P a g e

By focusing on performance, usability, and maintainability, the General Dashboard now provides an efficient and
consistent user experience while reducing the complexity of the codebase. Additionally, the groundwork laid in this
refactor supports the potential for future integration of automated processes.

VI.II.II. LTS Dashboard Overview

Figure 3: LTS Dashboard

Figure 4: Tab Navigation & LTS Design Wireframe

The Long-Term Support (LTS) Dashboard is a specialized interface designed to streamline actions and workflows related
to LTS processes. This dashboard provides advanced filtering and analytical capabilities that help users manage and
assess LTS tickets more effectively. Key features and functionality include:

1. Version-Based Filtering
a. Users can filter issues based on release types, specifically “Active”, “Completed”, and “Previous”

versions.
b. Selecting a release type in the navigation bar automatically filters the relevant issues to be displayed in

the table. This filtered data can be further refined using the column-based filter menus below the
header of every column.

2. LTS Status and Label Grouping

12 | P a g e

a. Tickets are grouped dynamically by their LTS Status (e.g. Proposed, Approved, Merged), providing a clear
visual organization of tickets.

b. Additional grouping is available by Labels, allowing users to categorize tickets based on relevant
workflow labels.

c. This grouping structure enhances usability by enabling users to quickly identify and prioritize tickets
within their workflow.

d. Several groups are established to identify edge cases or invalid statuses, functioning as a utility to
ensure the integrity of the ticket merging process.

3. LTS Analysis Columns:
a. The dashboard introduces three dedicated columns: Impact, Confidence, and Portability, which provide

critical metrics for LTS ticket evaluation.
b. These metrics, entered by ticket reporters, help assess the viability of merging the ticket with the active

release.
i. Impact: Evaluates the importance or severity of the ticket.

ii. Confidence: Indicates the certainty or reliability of the analysis
iii. Portability: Reflects how easily the solution can be implemented across different versions.

c. The columns also serve as a tool to identify tickets missing an LTS analysis.
4. Navigation and Usability:

a. The LTS Dashboard is accessible via a tab-based navigation system located at the top of the application.
b. This design allows users to easily switch between the General Dashboard and the LTS Dashboard,

ensuring a seamless workflow.
5. Visualization and Design Enhancements

a. The layout and user experience of the LTS Dashboard are informed by design wireframes (as shown in
Figure 4). These wireframes were iteratively refined to maximize usability and align with Qualcomm’s
operational needs.

VI.II.III. Results of Performance Enhancements
Performance Metric Before After

Network Performance
(General Dashboard)

~8,000-10,000 ms ~2,000-3,000 ms

Network Performance
(LTS Dashboard)

N/A ~4,000-5,000 ms

API Calls per Scroll (n)
(General Dashboard)

(1 + n) Calls 1 Call

VII. Software Test and Quality Assurance
VII.I. Purpose of Testing
The purpose of the team’s testing efforts is to ensure code clarity, maintainability, and functionality throughout the
development of the application. Testing guarantees that incremental changes of the codebase meet both client
expectations and system requirements. Through manual user-interface and regression testing, the team ensures that
the previous functionality remains functional as new features are being implemented.

VII.II. Description of Testing
The team employs frequent code reviews and manual testing as part of the quality assurance process.

1. Code Reviews:
a. Allow the client to review the team’s work regularly and to provide detailed revisions as necessary for

the sake of code clarity and functionality.

13 | P a g e

b. Code reviews have taken the form of a pull request (PR), following the GitHub flow model [2], which
each new change committed to a branch.

c. PRs are reviewed by Martin Bakiev, a Qualcomm Engineer assigned to our project, ensuring code clarity,
encapsulation, and maintainability. An automated test suite runs to confirm the code builds successfully
in both front-end and back-end environments.

d. This iterative process allows for continuous client feedback, promotes concise code syntax, and
identifies areas needing improved documentation for future teams.

2. Manual User Interface (UI) Testing
a. Ensure that the application behaves correctly from the end-user's perspective. Verifies that key

interactions, such as filtering issues, switching tabs, and interactions with Jira issues work as intended.
b. Each test case is executed by hand, validating UI visibility, interaction flow, data accuracy, and layout

responsiveness to meet client specifications.
2. Regression Testing

a. Ensures that previously working functionality remains intact after changes, including new feature
additions or code refactoring. The team focuses on maintaining system stability across incremental
updates.

b. The following behaviors are tested:
i. Positive behavior: Adds data to the system (e.g. filter selection)

ii. Negative behavior: Removes data (e.g. filter deselection)
iii. Neutral behavior: Does not alter data, ensures smooth interaction (e.g. tab switching)

c. The suite could be automated with tools like Cypress so that it can be run on a more consistent basis.

VII.III Testing Plan
Test Name Priority Expected

Behavior
Issue Type Environment Action Expected Result Test Type

Column
Sorting:
Sorting
Function

Medium Positive User Input LTS
Dashboard:
LTSList

Click a column header’s sorting
function button, issues should
be reordered based on the
column values in ascending or
descending order.

Issues should be reordered based on
the column values in ascending
order.

UI Test

Bulk Action:
Approve
Tickets

High Positive User Input LTS
Dashboard:
Bulk Actions

Select multiple tickets and
perform the bulk “Approve”
action.

All selected tickets should have their
status updated to "Approved."

Functional
Test

Bulk Action:
Invalid Bulk
Operation

Medium Negative Edge Case LTS
Dashboard:
Bulk Actions

Attempt to perform a bulk
action (e.g., "Deny") on tickets
missing required fields.

The system should prevent the
operation and display an error
message for incomplete tickets.

Validation
Test

Page Reload
After Bulk
Action

Medium Neutral Regression LTS
Dashboard:
Bulk Actions

Perform a bulk action (e.g.,
Approve).

The changes from the bulk action
should persist and update Jira
accordingly.

Regression
Test

Empty Result
After Filter

Application

Medium Neutral User Input General
Dashboard:

FilterMenu

Apply filters that do not match
any issues in the system.

The issue table should display a
message indicating that no results

were found.

UI Test

Submit Filter
Button: Submit
Filter Options

High Neutral User Input General
Dashboard:
FilterMenu

The "Submit Filter" Button is
Selected from the FilterMenu

When inspecting the selected filter
options object, the currently
selected results should appear in the
corresponding returned JSON for
each type.

Regression
Test

Submit Filter
Button:
Resubmission

Medium Neutral Edge Case General
Dashboard:
FilterMenu

The "Submit Filter" button is
resubmitted, after an Initial
submit, with an added &
removed option

When inspecting the selected filter
options object, the selected filters
should be available upon the first
submission but modified after. The
page skeleton should appear, and
the page should be reloaded with
updated results.

Regression
Test

14 | P a g e

Submit Filter
Button:
Remove Filter

Medium Negative User Input General
Dashboard:
FilterMenu

The "Submit Filter" Button is
Submitted After a Filter
Removal

When Inspecting the Selected Filter
Options Object, The Selected Filters
Should NOT Contain the Removed
Filter.

Regression
Test

Grouping of
LTS Issues

High Positive Regression LTS
Dashboard:
LTSList

Verify that issues are correctly
grouped.

When inspecting the labels

IssueList: Scroll
Load 30 Issues

High Positive User Input General
Dashboard:
Issue List

Scroll to the bottom of the
issue list page

30 additional issues are fetched and
seamlessly loaded into the issue list.

UI Test

IssueList: Load
Enough Issues
to Fill
1920x1080
page

High Positive User Input General
Dashboard:
Issue List

Load the general dashboard
with a 1920x1080 screen
resolution.

Enough issues are fetched and
rendered to fully occupy the vertical
space without empty gaps.

UI Test

VII.IV. Tools Utilized for Testing
1. GitHub & Git Bash

a. For version control, pull request management, and code reviews.
2. Spreadsheets

a. To track and manage test cases (can be replaced with a specialized tool like Qase).
3. Manual Testing

a. Executed by the team, focusing on UI functionality.

VII.V. Threshold for Acceptability
1. Code Reviews

a. All PRs must be built successfully in both front-end and back-end environments and approved by our
Qualcomm contact, Martin Bakiev.

b. Through this process, there are typically requests for additional revisions until the branch can be merged
with the main branch.

3. UI & Regression Testing
a. All critical interactions and functionalities must behave as intended, with accurate data display and

consistent performance throughout the application.

VII.VI. Edge Cases
1. Massive Pull Requests

a. The previous team submitted large PRs, leading to delayed reviews that slowed down productivity. The
current team aims to avoid this by using smaller, well-scoped PRs.

2. File Structure Issues
a. Incorrect dependency installation ~3000 unintended files to be added to a PR. This issue was identified

and resolved early, preventing further delays.

VII.VII. Results of Testing
1. Improved Clarity

a. Incremental PRs with iterative reviews have enhanced code maintainability and progress.
2. Early Error Detection

a. Issues like dependency misplacement were caught early, avoiding further complications with continuous
deployment.

3. Continuous Client Collaboration
a. Regular feedback has resulted in better documentation and streamlined code.

15 | P a g e

VIII. Project Ethical Considerations
Since this project will be primarily used by Qualcomm engineers to improve customer service workflows, there are
minimal ethical concerns associated with it that could potentially harm the public. However, it is important to consider
relevant ACM/IEEE principles to ensure ethical standards are upheld during the project’s development.

VIII.I. Relevant ACM Principles:
ACM 1.7 Honor confidentiality .

• This project involves Qualcomm’s internal database, making it essential for all team members to maintain strict
confidentiality. No confidential information about Qualcomm or this project should be shared publicly.

• This confidentiality requirement will impact on the group’s ability to seek external assistance during
development. For instance, team members cannot share code on public platforms like Stack Overflow to resolve
errors, as all development must remain within Qualcomm’s secure network.

ACM 2.4 Accept and provide appropriate professional review .

• Given the limited timeframe for this project, it is unlikely that all aspects of the application will be fully
developed. To ensure the code is efficient and functions as intended, it is crucial for the team to seek
professional reviews from Qualcomm software engineers as well as conduct internal peer reviews.

• Feedback from these reviews will be incorporated into the project to improve its overall quality and
functionality.

ACM 3.6 Use care when modifying or retiring systems .

• Since the project aims to enhance and extend on Qualcomm’s current Jira interface, the team has developed a
more efficient and user-friendly design while preserving some aspects of the current Jira interface that do not
require modification.

• When removing, modifying, or updating any features of the current Jira interface, the team has taken care to
ensure that these changes do not disrupt the workflows of Qualcomm engineers or compromise the quality of
their work.

VII.II. Relevant IEEE Principles:
IEEE 3.08. Ensure that specifications for software on which they work have been well documented
satisfy the users’ requirements and have the appropriate approvals .

• To facilitate future development, it is necessary to maintain comprehensive documentation. This ensures that
future teams can easily understand the codebase and continue development.

• The team regularly collaborates with Qualcomm stakeholders to confirm that the implemented features align
with the specified requirements.

• All changes to the project undertake client review and approval to guarantee they meet user’s needs and
expectations.

IEEE 7.06. Assist colleagues in being fully aware of current standard work practices including policies
and procedures for protecting passwords, files and other confidential information, and security
measures in general.

• With access to Qualcomm’s confidential files and work accounts, the team prioritizes adherence to data privacy
policies to protect sensitive information and credentials.

• Team members actively support one another in protecting Qualcomm’s CCI (Commercially Confidential
Information), ensuring strict compliance and minimizing risks of unauthorized disclosure.

IEEE 8.02. Improve their ability to create safe, reliable, and useful quality software at reasonable cost
and within a reasonable time.

16 | P a g e

• This project provided an opportunity for the team to learn and apply new technologies, enhancing their ability
to deliver high-quality software within the project timeline.

• By refining initial requirements and prioritizing key deliverables, the team ensured that project goals were met
on schedule while allotting time to develop the necessary skills for producing a reliable Jira application.

IX. Project Completion Status
IX.I. Complete Features and Summary of Feature Performance
The project has successfully met most of the goals set by the client, with key features implemented and significant
performance improvements achieved. One of the major accomplishments is the addition of preset filters for Long-Term
Support (LTS) queries, which include filtering for the three most recent active releases. These filters are integrated into
the LTS release management dashboard, enabling users to efficiently manage and organize LTS tickets. The dashboard
also supports bulk modifications to LTS tickets, allowing users to perform actions such as approvals, denials, and data
editing. Importantly, these bulk actions adhere to RTF formatting standards, ensuring data consistency and usability.
However, it should be noted that bulk actions are currently limited to the LTS dashboard and are not currently
supported on the general ticket page.

Another completed feature is the addition of warning icons on the LTS dashboard. These icons highlight tickets missing
required fields, improving workflow visibility and helping users address incomplete data. Backend optimizations have
also significantly improved page loading time. When the project was initially received, the general dashboard took
around 8000-9000 milliseconds to load. After extensive refactoring, both the general and the LTS dashboards now load
in less than 3000 milliseconds in the browser window, demonstrating a drastic improvement in responsiveness and
efficiency.

In terms of quality assurance, the team has thoroughly tested the user interface to ensure that all features function as
intended. The testing process assisted in identifying and resolving bugs, ensuring a seamless user experience. Basic test
cases have been implemented to validate the integration between the front-end and back-end, although there is room
to expand the test suite for more comprehensive test coverage.

IX.II Incomplete Features
While the project has made significant progress, some features are incomplete. The general dashboard was initially
meant to set up automation for the handover and escalation workflows, but this functionality was pushed out of scope
early in the project due to the lack of a feasible way to automate these processes at the time. Consequently, the
dashboard currently lacks the necessary implementation to support actions related to these workflows.

If these workflows were to be implemented in the future, they would require:

1. Workflow Definition and Automation Feasibility
a. Clearly defined business rules for handover and escalation processes.
b. Integration with external systems to automate escalations and streamline handovers.

2. System-Level Changes
a. Enhancements to the API and back-end logic to support creation and execution of work-flow related

actions.
b. UI updates to enable users to interact with these workflows intuitively, such as adding buttons or

prompts for escalation and handover actions.
3. Testing and Validation

a. A robust test suite that includes edge cases and complex workflows to ensure reliability.

While significant refactoring has improved the dashboard’s performance and maintainability, additional development
will be necessary to fully integrate these workflows. Despite these limitations, the project has delivered substantial
enhancements, providing a solid foundation for potential expansion to include automated handover and escalation
workflows.

17 | P a g e

X. Future Work
While significant progress was made during this semester, there are opportunities for future field session groups to
enhance and expand onto this project. Below is a list of recommended future work.

1. Support for Intelligent Linking of Issues and Dependency Diagrams
a. Description: Implement functionality to visualize issue relationships in formats such as graphs or trees.
b. Resources: Dependency mapping libraries, React components for visualization, existing project

infrastructure.
c. Knowledge/Skills: React, JavaScript/TypeScript, state management, data visualization.
d. Estimated Time: 2-3 weeks.

2. Single-Click Tier 2 to Tier 3 Escalation
a. Description: Add automation for single-click escalation workflows, integrating it with the existing

project.
b. Resources: Jira REST API documentation, current project infrastructure.
c. Knowledge/Skills: React, FastAPI, familiarity with Jira workflows.
d. Estimated Time: 3-5 weeks.

3. Comprehensive Backend Test Cases
a. Description: Expand the current suite of test cases to include advanced scenarios and edge cases.
b. Resources: Testing tools (e.g. pytest), existing back-end codebase.
c. Knowledge/Skills: FastAPI, Python, testing frameworks.
d. Estimated Time: 2-3 weeks.

4. Issue Handover Workflow Automation
a. Description: Automate the issue handover process between team tiers, allowing for smoother and faster

ticket transitions.
b. Resources: Jira REST API documentation, existing project infrastructure.
c. Knowledge/Skills: React, FastAPI, familiarity with Jira workflows.
d. Estimated Time: 3-5 weeks.

5. User Authentication (internal work)
a. Description: Implement secure user authentication methods to integrate with Qualcomm’s internal

infrastructure.
b. Resources: Qualcomm’s internal authentication systems.
c. Knowledge/Skills: Secure authentication methods, React, system integration.
d. Estimated Time: To be handled by Qualcomm engineers.

XI. Lessons Learned
XI.I. Challenges with Development Environment
The team did all of their development within a Windows Subsystem for Linux (WSL) on a Windows 365 Cloud PC which
introduced performance issues. Intermittent unresponsiveness of the development environment impacted productivity
at times, as the environment did not perform as expected. However, optimizing settings, managing resources, and
diagnosing issues within these tools allowed for performance improvements and workarounds for some limitations.
Navigating these challenges taught the team valuable troubleshooting skills specific to WSL and cloud-based
environments.

XI.II. New Technologies and Tools
At the beginning stages of the project, the team struggled to progress as we familiarized ourselves with new
technologies and tools that expanded the team’s technical skillset. Knowledge of full-stack development has largely
improved, with tools such as React and Mantine UI for front-end development, FastAPI and httpx for back-end
development, and Jira for sprint planning and task management. As we gained familiarity with these tools, our efficiency

18 | P a g e

and workflow improved significantly. In the future, these experiences will allow the team to onboard new tools and
frameworks more quickly.

XI.III. Time Management and Team Collaboration
Effective time management and collaboration were essential throughout the project. Using GitHub Flow as a version
control strategy taught the team the best practices for coordinating work with team members, managing pull requests,
and ensuring high quality code. The team learned the importance of having a clear and consistent method of
communication and adhering to daily meetings and standups to maintain a cohesive workflow throughout the length of
the project.

XII. Acknowledgments
The team extends its gratitude to our clients, Kevin Wolver and Martin Bakiev, along with their team, for their support
and guidance throughout this project. We deeply appreciate their willingness to dedicate time to help us familiarize
ourselves with the project, address challenges, and provide continued advice and feedback. Their insights were
instrumental in keeping us aligned with the project’s goals and overall vision. Additionally, we are grateful for the
opportunity to visit Qualcomm’s Boulder campus, which was both a fun and enlightening experience.

We would also like to thank our advisor, Kathleen Kelly, for her firm support and mentorship. Her guidance was critical
in helping us navigate challenges, make consistent progress, and stay on track with the project’s timeline. The sprint
meetings were particularly helpful in enabling the team to plan effectively and meet our objectives.

Thank you all for your contributions to the success of this project.

XIII. Team Profile
Sam Bangapadang
Junior
B.S in Computer Science, Focus: Data Science
Hometown: Aurora, CO
Work Experience: Applied Math & Science IT Admin
Hobbies: Powerlifting, Video games, Cycling

Danny Nguyen
Junior
B.S in Computer Science, Focus: Data Science
Hometown: Littleton, CO
Work Experience: Undergraduate Researcher, CSCI 128 Teacher Assistant
Hobbies: Hiking, Video games, Weightlifting

Ethan Leuthauser
Junior
B.S in Computer Science, Focus: Data Science
Hometown: Commerce City, CO
Work Experience: Next Gen Transport, Inc. (Information Technology Intern)
Hobbies: Weightlifting, Music Production, Video Games

19 | P a g e

XIV. References

[1] D. Coventry et al. “CSCI 370 Final Report” Colorado School of Mines and Qualcomm, Colorado, United States, 2024.
Accessed: Sept. 14, 2024. [Online]. Available: https://cs-
courses.mines.edu/csci370/FS2024S/FinalReport/FinalReport_Qualcomm.pdf.

[2] “GitHub Flow.” GitHub Docs. Accessed: Oct. 20, 2024. [Online]. Available: https://docs.github.com/en/get-
started/using-github/github-flow.

[3] E. Anderson et al. “ACM Code of Ethics and Professional Conduct.” Association for Computing Machinery. Accessed:
Oct. 20, 2024. [Online]. Available: https://www.acm.org/code-of-ethics.

[4] P. Barnes et al. “Code of ethics.” Institute of Electrical and Electronics Engineers Computer Society. Accessed: Oct. 20,
2024. [Online]. Available: https://www.computer.org/education/code-of-ethics.

XV. Appendix A – Key Terms
Term Definition

Escalation Process for transferring tickets between tier 2 and tier 3 teams.

FastAPI Python library for building Web APIs.

httpx Python based HTTP client library.

Jira Agile management tool developed by Atlassian.

Long Term Support (LTS) A version of software or a product that receives extended maintenance and
support over a specified time period.

Long Term Support Analysis Quantifications of the Long-Term Support Process. Consists of Impact,
Confidence and Portability metrics.

Mantine/Mantine UI Pre-styled React component library.

npm Node Package Manager.

Rich Text Format (RTF) Standardized text format.

Test Base Station (TBS) Qualcomm’s internal custom integrated cellular call flow test box.

Tier 2 Bug ticket response.

Tier 3 Engineering team ticket response.

Windows Subsystem for Linux Windows Terminal extension which allows for running Linux environments
without a virtual machine.

Windows 365 Cloud PC Remote Windows desktop.

	I. Introduction
	I.I. Client Information
	I.II. Project Background
	I.III. High Level Project Description

	II. Functional Requirements
	III. Non-Functional Requirements
	IV. Risks
	IV.I. Technical/Operational Risks
	IV.II. Skills Risks

	V. Definition of Done
	V.I. Minimal Useful Feature Set
	V.II. Client Acceptance Tests
	V.III. Delivery Process

	VI. System Architecture
	VI.I. High-Level Architecture Overview
	VI.II. Low-Level Overview / Technical Design
	VI.II.I. General Dashboard Overview
	VI.II.II. LTS Dashboard Overview
	VI.II.III. Results of Performance Enhancements

	VII. Software Test and Quality Assurance
	VII.I. Purpose of Testing
	VII.II. Description of Testing
	VII.III Testing Plan
	VII.IV. Tools Utilized for Testing
	VII.V. Threshold for Acceptability
	VII.VI. Edge Cases
	VII.VII. Results of Testing

	VIII. Project Ethical Considerations
	VIII.I. Relevant ACM Principles:
	VII.II. Relevant IEEE Principles:

	IX. Project Completion Status
	IX.I. Complete Features and Summary of Feature Performance
	IX.II Incomplete Features

	X. Future Work
	XI. Lessons Learned
	XI.I. Challenges with Development Environment
	XI.II. New Technologies and Tools
	XI.III. Time Management and Team Collaboration

	XII. Acknowledgments
	XIII. Team Profile
	XIV. References
	XV. Appendix A – Key Terms

