
CSCI 370 Final Report
NREL 1: SOAP Topology

Steven Dillard
Jackson Pow
Colin Myers

December 6, 2024

CSCI 370 Fall 2024

Mr. Caleb Bartel

1 | Page



Table 1: Revision history

Revision Date Comments

New 8/22 Made the document and filled in basic information

Rev – 2 8/31 Assignment 1 Requirements

Rev – 3 9/1 Assignment 1 Requirements Revisions

Rev – 4 9/15 Assignment 2 Requirements

Rev – 5 10/17 Assignment 3 Requirements

Rev – 6 11/10 Design Working Doc Requirements

Rev – 7 11/20 Formatting

Rev – 8 12/6 Feedback & Final Touches

2 | Page



Table of Contents

I. Introduction. 4

II. Functional Requirements. 5

III. Non-Functional Requirements. 6

IV. Risks. 7

V. Definition of Done. 8

VI. System Architecture. 9, 10

VII. Technical Design Issues 11

VIII. Software Test and Quality. 12

IX. Project Ethical Considerations. 13

X. Project Completion Status. 14, 15

XI. Future Work. 16

XII. Lessons Learned. 17, 18

XIII. Acknowledgments. 19

IVX. Team Profile. 20

Appendix A – Key Terms. 21

3 | Page



I. Introduction

Virtualization technology has become a cornerstone of modern IT infrastructure, enabling
efficient resource utilization, scalability, and flexibility in network design. This project, proposed
by NREL, focuses on designing a topology for a "scepter on a platter" technology, leveraging the
capabilities of virtualization repositories such as Phenix and Minimega. The goal is to create a
network of virtual machines that can effectively simulate real devices, while meeting both
functional and non-functional requirements. By simulating this network with virtual machines,
NREL can simulate attacks on the devices in a safe environment and not have to worry about
breaking expensive hardware that is being used in the power grid. Phenix provides robust
management of network configurations, while Minimega offers a lightweight platform for
deploying and managing virtual machine clusters. Together, these tools enable the creation of a
dynamic, scalable, and secure network topology tailored to the needs of this project. This
document outlines the requirements, risks, and criteria for successful completion, guiding the
design and implementation of the virtual machine network.

4 | Page



II. Functional Requirements

Network Topology Design:

● Create a virtual machine network topology that supports multiple interconnected VMs.
● Define clear communication pathways between VMs, including support for necessary

protocols.
● Incorporate Scepter on a Platter capabilities to allow for ease of setup and sharing of

topologies

Integration with Phenix and Minimega:

● Utilize Phenix for advanced network configuration and management.
● Use Minimega as the primary platform for deploying and managing VMs.
● Ensure seamless integration between Phenix and Minimega with defined configuration

steps.
● Provide documentation for errors encountered with the communication between Phenix

and Minimega

Scalability:

● Support the addition of more virtual machines without requiring major redesigns.
● Ensure the network can handle increased loads efficiently.

5 | Page



III. Non-Functional Requirements

Usability:

● Develop a user-friendly interface for network administrators.
● Ensure ease of use in deploying, configuring, and managing the virtual machine network.
● Provide a highly detailed documentation to assist users in setting up the scepter

technology on their own
● Allow for the setting of different protocols for specific devices, such as S7 Comms and

OTSIM

Maintainability:

● Ensure the network can be easily changed and adapted to different scenarios with
minimal disruption.

● Provide documentation and clear procedures for ongoing maintenance.

6 | Page



IV. Risks

Designing a complex virtual machine network topology comes with several risks that must be
carefully managed. One of the primary risks is the potential for integration issues between
Phenix and Minimega, as these tools must work seamlessly together to achieve the desired
functionality. Misconfigurations or incompatibilities could lead to an incorrectly configured
network of virtual machines. Another significant risk is the reliance on virtualization, which,
while offering many benefits, also introduces potential points of failure, such as limited
resources being shared among virtual machines. Scalability challenges also pose a risk; if the
network is not designed with sufficient foresight, it may struggle to handle increased load or
additional virtual machines. To mitigate these risks, the project will include thorough testing,
regular audits, and the implementation of best practices in both network and virtualization
management.

7 | Page



V. Definition of Done

The project will be considered complete when the designed topology meets all defined
functional and non-functional requirements and has successfully passed all stages of testing and
validation. This includes achieving seamless integration of Phenix and Minimega, with all virtual
machines operating within the specified performance parameters. The network should be fully
operational, secure, and capable of scaling as needed, with all monitoring and management
tools in place and functioning correctly. A comprehensive set of documentation, including user
guides, configuration details, and maintenance procedures, must also be provided. Reach goals
include a demonstration of the network’s resilience to potential risks, such as failure scenarios
and security breaches, confirming that appropriate mitigation strategies are in place. Once
these conditions are met, and the stakeholders have reviewed and signed off on the
deliverables, the project will be officially completed.

8 | Page



VI. System Architecture

Figure 1 illustrates the overarching architecture of the network we are designing. The initial
deliverable for this project is a YAML file that specifies the desired network configuration and
operational parameters. This YAML file is used to configure Phenix, a tool developed by Sandia
Labs, which enables the simulation of network topologies. Phenix allows us to model and
visualize the network’s structure and behavior before actual implementation.

Figure 1. Architecture Diagram

To simulate a large-scale network environment, we employ MiniMega, another tool from Sandia
Labs. MiniMega is responsible for creating and managing virtual machines (VMs) on a large
scale. These VMs are integrated with QEMU, which acts as the central processing unit of the
network design. QEMU is a versatile emulator that facilitates the execution and management of
these virtual machines, providing the core functionality required for our network simulation.

An extra component of our network design is the integration of Hardware In the Loop (HIL).
This involves incorporating a real physical device, specifically a Programmable Logic Controller
(PLC), into the network. The PLC will be configured to interact with the network of virtual
machines. Communication between the PLC and the VMs is managed using the Siemens S7
protocol, a standard protocol for PLC communication that ensures seamless data exchange and
control.

9 | Page



Figure 2 shows the resulting network after all of the tools are communicating with each other
and the topology is set up with the hardware in the loop.

Figure 2. Network Topology

As a stretch goal of our project, we aim to develop a Kali Linux machine designed to simulate
network attacks. Kali Linux is a well-known penetration testing platform that will help us assess
the network’s security posture by generating and testing various attack scenarios.

This design approach allows us to create a robust and dynamic network simulation
environment, enabling thorough testing and evaluation of both network performance and
security.

10 | Page



VII. Technical Design Issues

Unresolved:

● Mini Mega was not configured on start up so additional commands needed to be run.
● Possible permission miscommunication between Mini Mega and Phenix causing running

experiments to fail.
● Ignition implementation.

Resolved:

● Issues setting up Phenix locally due to mounting issues
● Changed YAML compose file to accommodate docker volumes which allowed build to

complete
● Phenix runs on localhost port 3000 by default which, on Windows, is sometimes used by

OneDrive preventing Phenix from running. Solved by using the -listen-endpoint flag to
set it manually to 4000. (*Needed to change docker settings to allow containers to run
functions over ports.)

● * Namespace error was fixed by including the .qc2 file built by Phenix in the Minimega
path

11 | Page



VIII. Software Test and Quality

Our project is unique because the focus is on the configuration of Phenix, which involves
significantly less coding compared to typical software development initiatives. Instead of writing
extensive code, our primary objective is to tailor Phenix's settings to align with the
requirements of our client. Therefore, testing will be more geared towards ensuring that the
implementation is not only effective but also suited for the client’s needs.

Given this focus on configuration rather than traditional coding practices, we face the challenge
of not being able to utilize conventional testing methodologies to validate our work. In many
software projects, developers rely on unit tests and integration tests to confirm that the code
performs as intended. However, in our case, the nature of the work means that such tests are
not feasible.

To address this challenge, we implement a quality assurance plan that includes elements suited
to our project context. While typical software quality elements such as unit testing, user
acceptance testing, and code reviews may not apply directly due to our configuration-centric
approach, we ensure quality through tailored methods. For example, we utilize Phenix’s built-in
testing tool, Scorch. Scorch systematically evaluates each device within the network topology,
checking that each device is configured according to the specifications outlined in the YAML file,
thereby ensuring that no configuration issues arise during the build process. These features
include configurations such as: ip address, operating system, and protocol that the device uses
as part of the network.

Additionally, Scorch verifies the integrity of connections throughout the network. It ensures that
all connections are established correctly, which is vital for maintaining seamless communication
between devices. This capability addresses aspects of defect detection and verification, helping
to maintain high quality in the deployment of the configuration.

While our project doesn't align perfectly with conventional software quality techniques such as
code audits or static analysis, the combination of configuration validation and connectivity
checks provided by Scorch significantly enhances our confidence in the integrity of the network
topology, effectively ensuring that our approach to software quality meets the specific needs of
our project.

12 | Page



IX. Project Ethical Considerations

Our project involves several critical ethical considerations. Two principles that are especially
pertinent to the development of our product are:

● ACM Code of Ethics Principle 1.2: Avoid harm
● IEEE Code of Ethics Principle 7: Work to improve your understanding of technology, its

applications, and its consequences.

Principle 1.2 is crucial because it emphasizes the responsibility to minimize harm to users and
society. Given that we are using open-source tools, we must ensure that our implementations
do not introduce vulnerabilities or misuse these resources. The potential for harm increases
when we consider the cybersecurity implications of our work, as weaknesses in our
configurations could be exploited by malicious actors.

Principle 7 underscores the importance of continuous learning and understanding the broader
implications of our technology. It is essential that we remain aware of how our configurations
may affect security and user experience, ensuring that we are making informed decisions based
on the latest knowledge and best practices.

Additionally, some principles are at greater risk of being violated, particularly:

● ACM Code of Ethics Principle 3.1: Ensure that the public good is the central concern
● IEEE Code of Ethics Principle 1: Accept responsibility in making decisions consistent with

the safety, health, and welfare of the public.

Violating these principles could result in negative impacts, such as exposing vulnerabilities that
may lead to security breaches or undermining public trust in technology. The ramifications
could extend to financial loss for organizations or even threats to public safety if exploited.

This highlights the imperative to approach our ethical responsibilities with seriousness, ensuring
our project not only contributes positively to the community but also safeguards against
potential risks. By remaining vigilant about these ethical dimensions and adhering to ACM and
IEEE principles, we can contribute positively to the field while mitigating unintended
consequences.

13 | Page



X. Project Completion Status

List of Features Implemented

Through constant debugging during setup of Phenix and Minimega tools, these solutions were
found:

● Using Docker Volumes to resolve the mount binding error
● Changing the port that Phenix was running on since the default of 3000 was already in

use on Windows machines
● Provided detailed documentation on common errors and the commands that resolved

them or in the case that they were not resolved, the commands and solutions tested
● Documentation on how to set up the tools in different types of environments such as

using docker containers for Windows Subsystem for Linux (WSL), docker containers for
Kali Linux, and on building from source

● Experiments in Phenix were able to work, however, still some errors with Minimega that
need to be ironed out

List of Features Not Implemented

Due to time constraints and ongoing setup challenges, we were unable to implement several
key features of the Phenix tool, including:

● Running Experiments with Phenix: The ability to conduct controlled experiments within
the SCADA environment.

● Integration of the OT-SIM Protocol: Seamless incorporation of the OT-SIM protocol into
the virtual machines for enhanced operational testing.

● Implementing Hardware in the Loop (HIL): Establishing connections with PLC devices for
real-time control and monitoring.

● YAML Configuration File: A streamlined YAML file to automate the setup process and
enhance user experience.

● Simulated Cyber Attacks: Utilizing a Kali Linux machine to test Phenix’s resilience against
cyber threats.

Performance Testing Results

Performance testing was significantly impacted by the challenges encountered during the setup
process. Key issues included outdated dependencies within the Phenix tool, mount binding
configurations that were not set as shared mounts, and permission conflicts between Phenix
and Minimega. Consequently, our performance testing shifted focus to troubleshooting these
specific issues across various environments, rather than achieving a stable operational
benchmark.

14 | Page



Summary of Testing

Testing was conducted across several environments, each revealing challenges:

● WSL (Windows Subsystem for Linux): Encountered port conflicts, mount binding not
being shared, and potential permission errors that hindered setup.

● Virtual Machine: Faced persistent permission issues and complications with shared
mount configurations.

● Dual Boot Kali Linux: Similar challenges with shared mounts and ongoing permission
errors were noted.

● Steam Deck: Encountered difficulties related to shared mounts and permission
mismanagement, preventing successful setup.

Each setup attempt resulted in errors, ultimately obstructing the establishment of functional
Phenix instances.

Results of Usability Tests

Usability tests were conducted in each environment, yielding the following insights:

● Mount Binding Issues: The occurrence of mount binding problems—specifically, mounts
not being configured as shared—was a common issue across multiple environments.

● Permission Mismanagement: Attempts to resolve mount binding issues by setting them
as shared mounts often led to new errors, particularly concerning permission conflicts
between Phenix and Minimega.

These usability tests underscored the complexity of the setup process and highlighted the need
for a more robust configuration strategy.

15 | Page



XI. Future Work

The challenges encountered during the setup of Phenix have highlighted several areas for future
improvement and development. Two primary avenues for future work include:

1. Resolving Binding Mount Configuration: One significant issue was the binding mount
not being configured as a shared mount. While we were able to resolve this using docker
mounts, future efforts could focus on investigating the underlying causes of this issue.
This may involve:

○ Analyzing version histories and changelogs of Phenix to identify any
modifications that could have impacted mount configurations.

○ Collaborating with the Phenix development community to determine best
practices for configuring shared mounts in various deployment environments.

○ Conducting tests across different setups to identify reliable methods for
achieving the desired shared mount behavior.

2. Enhancing Permission Management between Phenix and Minimega: Another critical
area for future work is the permission management issues that arose when integrating
Phenix with Minimega. These conflicts were particularly evident when attempting to
implement solutions in the YAML Docker Compose file that utilized volumes to address
shared mount concerns. To tackle this challenge, future work could include:

○ Developing a detailed configuration guide that outlines the necessary permission
settings within the Docker Compose file, ensuring that Phenix and Minimega can
operate cohesively.

○ Testing various configurations and settings in the Docker Compose file to identify
effective solutions that prevent permission conflicts while maintaining
functionality.

○ Engaging with the community to share findings and solicit feedback on
configuration strategies that others have successfully employed.

Addressing these key issues allows for the creation of a more stable and user-friendly setup for
Phenix, ultimately enhancing its utility as a SCADA tool for managing virtual machines in a
virtual network.

16 | Page



XII. Lessons Learned

Throughout the project, we gained valuable insights into several critical topics related to setting
up Phenix as a SCADA tool. Each lesson emerged from hands-on experience, particularly
through debugging issues and exploring alternative solutions. Here’s a detailed breakdown of
what we learned:

1. Docker Compose Files: Our experience with Docker Compose files was crucial for
orchestrating the various components of Phenix and Minimega. Initially, we struggled to
configure the YAML file correctly, leading to issues such as service conflicts and
misconfigured environment variables. Through debugging, we learned the importance of
clearly defining each service's dependencies and network configurations. We also
discovered that meticulous attention to indentation and syntax in YAML is essential to
avoid deployment failures. This experience emphasized the need for precise
documentation within our configuration files.

2. Docker Volumes: The transition to using Docker volumes was a pivotal moment in our
project. After researching Docker volumes, we understood that they provide a more
robust solution for data persistence and inter-container communication. This approach
not only simplified our setup but also enhanced performance by avoiding the
complexities of bind mounts. Our learning process involved testing various volume
configurations and understanding their impact on file sharing and permission
management between containers. This resolved mount binding issues, but the shared
mount configuration led to permission conflicts.

3. Setting Up Tools in Multiple Environments: The necessity of testing Phenix in diverse
environments—such as WSL, Virtual Machines, Dual Boot Kali Linux, and Steam
Deck—highlighted the challenges across multiple enviroments. Each environment
presented unique issues, such as port conflicts and permission errors. Through these
experiences, we learned the importance of establishing a standardized testing protocol
to streamline future setup processes. Documenting the specific requirements and
known issues for each environment became a vital part of our workflow, ultimately
helping to minimize setup time and errors.

4. Mounts and Binding Mounts: Our exploration of mounts and binding mounts was
essential for understanding how Docker interacts with the host system. Initially, we faced
significant challenges with shared mount configurations, which were important for
Phenix’s functionality. As we delved into the differences between various mount types,
we learned that binding mounts can complicate permission management when not
configured correctly. This knowledge allowed us to better troubleshoot and adjust our
setup, reinforcing the idea that a deep understanding of Docker's mounting mechanisms
is vital for effective container management.

5. Docker Containers: Working with Docker containers taught us the importance of
isolation and reproducibility in software development. We learned how containers
encapsulate dependencies, allowing for more predictable deployments. However, we
also encountered issues when containers needed to interact with each other, especially
regarding shared resources. Through debugging inter-container communication, we

17 | Page



recognized the value of defining clear networking rules and shared volumes in our
Docker Compose configurations. This understanding significantly improved our ability to
troubleshoot issues and optimize our container setups.

6. Volume Permission Management: Managing permissions for Docker volumes proved to
be one of the more complex challenges we faced. The integration of Phenix and
Minimega highlighted how permission mismanagement could lead to service failures.
Our debugging efforts included giving full permissions within the Docker containers to
allow proper access to shared volumes but to no avail. This experience underscored the
need for careful planning around volume management in future projects.

To summarize, each lesson learned through this project not only enhanced our understanding of
Docker and its ecosystem but also informed our approach to future software deployments.
These insights will be instrumental in improving our workflows and ensuring smoother setups in
subsequent projects.

18 | Page



XIII. Acknowledgments

A special thank you to our client, Nicolas Blair, for his support and collaboration throughout this
project. Your insights and encouragement were instrumental in guiding our efforts. We also
wish to express our gratitude to our advisor, Caleb Bartel, whose valuable guidance and support
helped us navigate the challenges we encountered. Your contributions made a significant
impact on our journey, and we sincerely appreciate all you have done to help us succeed.

19 | Page



XIIII. Team Profile

Steven Dillard

Bio: Senior majoring in Computer Science

Roles: Advisor point of contact and project report scribe

Colin Myers

Bio: Junior majoring in Computer Science

Roles: Client point of contact and scrum board overseer

Jackson Pow

Bio: Senior majoring in Computer Science

Roles: Presentation specialist

20 | Page



Appendix A – Key Terms

Term Definition

Mini Mega Minimega is a network emulation tool that allows users to
simulate complex network topologies for testing various
configurations and interactions in a controlled environment.

Phenix Phenix is a SCADA tool designed for managing virtual machines
within a virtual network, providing real-time monitoring and
control capabilities for operational processes.

YAML File The YAML file serves as a configuration document for Docker
Compose, defining the services, networks, and volumes required
for deploying Phenix and Minimega within Docker containers.

21 | Page


