
CSCI 370 Final Report
The Theis Four

David Karibian
Colton Morris
Ava Moon

Iris Nemechek

Revised November 20, 2024

CSCI 370 Fall 2024

Mr. Tree

Table 1: Revision history

Revision Date Comments
New August 21, 2024 Completed Sections:

I. Introduction
II. Functional Requirements
III. Non-functional Requirements
IV. Risks
V. Definition of Done
VI. System Architecture

References
Appendix A – Key Terms

Rev – 2 August 27, 2024 Updated functional and non-functional requirements to include information about end-to-end
and unit testing.

Rev – 3 August 27, 2024 Added sliding functionality and 3D cone requirements.
Rev - 4 September 9, 2024 Added design documents to system architecture
Rev - 5 September 11, 2024 Wrote system architecture technical problems and overview
Rev - 6 October 8, 2024 Wrote initial drafts of Software Quality and Ethical Consideration sections

VII. Software Test and Quality
VIII. Project Ethical Considerations

Rev - 7 October 15, 2024 Added ethical considerations to the document.
Rev - 8 November 1, 2024 Added results to document.
Rev - 9 November 10, 2024 Added team bios, acknowledgments, and finalized references.
Rev -10 November 20, 2024 Made edits and reviewed as a team.

1 | Page

Table of Contents
I. Introduction...3
II. Functional Requirements...3
III. Non-Functional Requirements... 3
IV. Risks... 3
V. Definition of Done...4
VI. System Architecture...4
VII. Software Test and Quality.. 9
VIII. Project Ethical Considerations.. 10
IX. Project Completion Status..11
X. Future Work...13
XI. Lessons Learned...14
XII. Acknowledgments.. 14
XIII. Team Profile.. 14
References.. 15
Appendix A – Key Terms.. 16

I. Introduction
The Groundwater Project was created in 2017 to enhance prospects for the expansion of knowledge about groundwater
problem-solving for the public [1]. The nonprofit advances groundwater understanding by creating learning materials
that are free and easily accessible to the public. The primary goal of this field session project is to create an online tool to
demonstrate the depletion of flow from a fully penetrating stream in response to a pumping well. The tool will interact
with the user, taking inputs, performing calculations, and displaying data in the form of graphs and heat maps. The tool
will be an addition to the currently deployed tools accessible through the Groundwater Project and demonstrate a
Depletion Fully Penetrating System (DFPS) and help aid in groundwater education.

II. Functional Requirements
1. The program must be able to take in a variety of inputs from the user via an input box feature that allows values

from 10 below to 10 above-provided test input including:
a. Spatial dimensions:

i. The perpendicular distance from the well to the stream
ii. The factor for the size of the domain to be displayed

b. Aquifer parameters [2]:
i. Hydraulic conductivity
ii. Aquifer thickness
iii. Specific yield

c. Stream parameters
i. Hydraulic conductivity of stream bed
ii. Stream flow rate

d. Well information
i. Pumping rate
ii. Locations of observations for the well (to be graphed as a function of time)

e. Time information

2 | Page

i. Duration of pumping
ii. Time step

2. From the inputs, the program shall calculate and validate calculations with unit testing:
a. Time increments
b. Fraction of pumped water from a stream
c. Rate of leakage from the stream (meters cubed per day)
d. Stream discharge (meters cubed per second)
e. Drawdown at each grid point for each time increment
f. Velocity vectors

3. From the calculation results, the program shall create and display:
a. Graph simulating the aquifer as water is being pumped out.

4. The following graphs shall supplement the main visualization:
a. Contour map of the drawdown at time t
b. WEST-EAST cross-section at time t
c. Fraction of pumping leaking from the stream
d. SOUTH-NORTH section near a stream at time t
e. Stream from rate over time
f. Observation of well 1, well 2 over time (days)

5. The program shall implement error-catching for unaccepted inputs
a. Error messages shall give users information on why input is unacceptable

6. The intended function of the website shall be ensured using end-to-end testing
a. Scripts created acting as user clicking buttons, functionality (correct output) ensured

III. Non-Functional Requirements
1. Write Groundwater DFPS project in HTML and Javascript.
2. Groundwater DFPS project must use the VSCode development environment.
3. Groundwater DFPS project must be tested on a local host.
4. Groundwater DFPS project must be deployed as a web page accessible to the public and part of the already

existing Groundwater Project website.
5. Pass tests of the Groundwater DFPS project with inputs designed to ‘break’ the program.
6. Design Groundwater DFPS project with the inexperienced user in mind.
7. Use Jest for unit testing [5].
8. Use Selenium for end-to-end testing [5].

IV. Risks
1. Technical risks

a. May be too technically involved for the browser to perform computation and visualizations in an
adequate amount of time.

i. This is a low risk as we can use optimization techniques, and perhaps even a server in order to
offload this computing power.

ii. This will have a mild impact on the project because we can implement a loading screen to
mitigate effects.

b. May need help to consistently scale the graphs to show the data as it is generated via the timestamps.
i. This will increase the complexity of the program but does not pose a threat as it is mostly a

consideration that will simply be handled.
c. May be difficult to implement complex calculations in JavaScript.

2. Skill risks
a. Team members do not have in-depth experience with JavaScript or HTML.

i. The team members will individually review the Groundwater HTML and JS codebase, alongside
watching tutorials and self educating to understand these technologies at a development level.

3 | Page

b. Team members are not familiar with the geological concepts of this project.
i. The team members were educated by Eileen Porter (Client) who provided resources and talked

us through many of the technical and conceptual groundwater ideas.

V. Definition of Done
1. Minimal Useful Features

a. Input Form:
i. A web-based form allowing users to input
ii. The perpendicular distance from the well to the stream
iii. Aquifer parameters (Hydraulic conductivity, Aquifer thickness, Specific Yield)
iv. Stream parameters (Hydraulic conductivity of stream bed, Stream flow rate)
v. Well information (Location, Pumping rate, Observation well locations)
vi. Time information (Duration of pumping, Number of increments)

b. Calculation Engine:
i. Calculate drawdown at various points within the defined spatial domain
ii. Calculate the fraction of pumped water coming from the stream
iii. Calculate the rate of leakage from the stream
iv. Generate time-based contour maps and cross-sectional graphs

c. Graphical Outputs:
i. Visual representations of
ii. Contour maps of drawdown over time
iii. 3D cone representing drawdown over time
iv. Cross-sectional graphs showing drawdown along specific axes
v. Velocity vectors displayed on the grid

d. Error Handling:
i. Input validation and error messages for incorrect or nonsensical inputs
ii. Graceful handling of out-of-bounds or undefined results

2. Client Acceptance Tests
a. Input a variety of realistic data sets to test and verify that the outputs are accurate and consistent
b. Test edge cases with invalid inputs to ensure error handling and feedback
c. Evaluate user interface for ease of use and responsiveness of form

3. Product Delivery
a. The final version will be deployed on the Groundwater Project’s website
b. The codebase will be shared with the client via GitHub
c. The documentation will be shared along with the codebase on GitHub

VI. System Architecture
1. Technical Issues

a. Our team is currently not experiencing any technical issues because of our simplified tech stack of only
creating a front end.

2. Technical Stack
a. We plan on only creating a front end to accommodate our client's wishes. This means we will primarily

be using JavaScript, HTML, and CSS. We also plan on using Jest for JavaScript unit testing and Selenium
for end-to-end testing. We chose Jest because it’s easy to use with JavaScript, and Selenium because it
helps test user interactions. We are also using EsLint as a linter to help us adhere to better coding
standards [9]. We used Plotly to graph all of the plots for our visualizations.

3. Design Documents
a. LaTex Math Equations

4 | Page

i. These pictures of our overleaf document contain the important input parameters, math
equations, and an overview of output graphs pertinent to our minimum viable product. The
main purpose of this document is to help us break down these equations while developing so
that we can understand them at a base level and build them from the ground up. It will also
assist us in initially coding the inputs so we can create groupings for certain equations. For the
output graphs, we just put a brief overview because most of the work that will be going into
those will be handled by a graphing library of our discretion.

b. Wire Frame

5 | Page

c.
i. The wireframe, also known as the user storyboard, contains three important elements, (1) the

input section, (2) the water simulation, and (3) the graphs. These are the core graphical
components of the application, which in conjunction provide a highly educational experience for

6 | Page

the user. The user flow will work as such. The user first will input a specific parameter. They will
be able to step through the simulation and see what happens to the well given their input data.
The graphs will help them to understand the math and equations behind this simulation.

7 | Page

8 | Page

9 | Page

VII. Software Test and Quality
1. End-To-End Testing

a. For this project, we will be utilizing end-to-end testing (E2E) to ensure the reliability and performance of
the code. End-to-end testing will allow us to verify that all aspects of the user experience are working as
intended, which is crucial given the UI-focused nature of the project. End-to-end testing provides holistic
validation by testing the entire application as a whole, not just isolated components. Using Selenium, we
can connect to a browser and run scripts that simulate real user interactions, such as clicking buttons or
entering inputs. This ensures that when a user performs certain actions, the program responds
accurately, including proper navigation, correct data handling, and appropriate feedback to the user. By
complementing end-to-end testing, we cover user experience, which ensures that the program as a
whole operates smoothly in real-world scenarios.

2. Unit Testing
a. We will use Jest testing for JavaScript unit tests to ensure the correctness of calculations and various

function behaviors. The testing strategy focuses on validating both normal and edge-case scenarios.
JUnit testing is beneficial because it can catch bugs early, ensure that code behaves as expected, and
provide a safety net when making changes, reducing the likelihood of regressions.

3. Code Reviews
a. The team has established a set of requirements for merging branches into the project to maintain high

code quality and adherence to standards. Before a pull request can be published on GitHub, the
following conditions must be met:

i. The code must pass a linting check using ESLint.
ii. All tests must pass successfully.
iii. The code must meet the acceptance criteria specified in the corresponding Jira ticket.

b. Once these prerequisites are satisfied, the pull request can be submitted for review. To continue with the
merge, approval from at least two out of three other team members is required. This process not only
ensures that the code aligns with the quality standards set by both the client and the team but also
fosters collaboration and accountability among team members.

4. Client Acceptance Testing
a. The team has started with a preparation phase.

i. The client will become equipped with a functional testing environment that mirrors our own,
following instructions detailed in our README.

ii. We will provide a brief training session, if necessary, to ensure our client is comfortable using our
testing software.

b. Once the client is set up with the software, we will begin the execution phase.
i. The client will perform the scripted E2E tests on their own device.
ii. The results of these tests will be logged in a spreadsheet for accountability.
iii. The client will also be able to use the website as a user to see if the UI meets their standards.

10 | Page

c. Once tests have been executed, we will enter the review phase.
i. If any issues are identified, the team will address them immediately, followed by retesting to

ensure the problem is resolved. The client may repeat tests as necessary to confirm that the
software now behaves as expected.

ii. Once the client is satisfied that all tests have passed successfully and the software is functioning
correctly, they will provide formal feedback, which includes any final thoughts or requests.

d. Finally, when the client is satisfied, we will enter the sign-off and deployment phase.
i. After all tests pass and the client confirms that the software meets the required standards, they

will provide formal approval via a sign-off document. This document will indicate that the client
accepts the system as ready for deployment.

ii. Upon receiving the client’s sign-off, the project will be ready for deployment to the official
Groundwater website.

VIII. Project Ethical Considerations
1. Relevant ACM/IEEE Principle

a. Principle 1: Public Interest
i. This principle emphasizes that computing professionals should contribute to society and human

well-being. The Groundwater Project aims to enhance public understanding of groundwater
issues through accessible educational tools, aligning with this principle [1].

b. Principle 3: Professional Responsibility
i. Developers must ensure that their work is of high quality and meets the expectations of users.

Given the project’s educational focus, maintaining high-quality standards is essential to provide
reliable information and tools to users [7].

c. Principle 4: Quality Products
i. This principle highlights the need for software products to be reliable and defects-free. The

software quality plan, including unit testing and end-to-end testing, aims to ensure that the final
product meets these quality standards.

2. Principles Most at Risk of Violation
a. Principle 2: Avoiding Harm

i. If the software contains errors or unreliable information, it could misinform users about
groundwater management, potentially leading to environmental harm or poor decision-making.

b. Principle 5: Respect for Privacy
i. We need to ensure that any user input processed is handled safely. If user data is collected

without proper safeguards, there is a risk of privacy violations. This could result in unauthorized
access to sensitive information.

3. Application of Michael Davis's Tests
a. The Test of Harm:

i. Will the use of the software potentially cause harm to users or the environment? The
Groundwater Project must ensure that the calculations and visualizations it provides do not
misrepresent data or lead to poor groundwater management practices. If miscalculations occur,
users could make harmful decisions regarding water usage or conservation.

b. The Test of Professional Standards:
i. Does the product meet the standards of the profession? Given that the project aims to provide

educational resources, it must adhere to the highest standards of accuracy and reliability in its
calculations and outputs. If the software fails to meet professional standards, it undermines the
educational purpose of the project.

4. Ethical Considerations of Inadequate Software Quality Plan
a. If the software quality plan is not implemented properly or is insufficient, several ethical concerns may

arise:
i. Deficient Product Quality: Users may receive inaccurate information, which could lead to

harmful environmental or public health decisions.

11 | Page

ii. Erosion of Trust: If users encounter frequent errors or unclear outputs, they may lose trust in the
Groundwater Project and its mission, undermining its goal of education and awareness.

iii. Legal and Regulatory Risks: Inaccurate representations of groundwater data could lead to
compliance issues with environmental regulations, resulting in legal action against the
organization.

iv. User Exploitation: Without proper validation and error handling, inexperienced users may be
exploited due to misinformation, leading to financial or resource-related consequences.

IX. Project Completion Status
Our project aimed to develop an educational tool to visualize the depletion of fully penetrating streams for the
Groundwater Organization. The project is nearly complete, with all primary components developed, tested, and
documented. Key achievements include designing and implementing input handling, calculation engines, and
comprehensive graphical outputs for simulating groundwater depletion. The codebase has undergone rigorous unit and
end-to-end testing using Jest and Selenium to ensure both functionality and reliability, addressing user interface
interactions and calculation accuracy. Additionally, the team has completed thorough documentation, covering
functional requirements, testing processes, and ethical considerations, and has conducted client acceptance tests to
validate the system's performance and user experience. The only remaining step is to deploy the final version of the tool
to the official Groundwater Project website, marking the final phase of project completion. Once deployed, the tool will
be accessible to the public, supporting the project’s mission to enhance understanding of groundwater management.

Selenium End-to-end Tests:

Test Name Description Goal Result

testMenuNavigation Tests menu navigation Navigate through GUI Pass

testGraphsDisplay Tests graph display Check if the graphs load Pass

testGraphLayout Tests layout of graphs
Ensure the layout is sufficient for
~8 graphs Pass

Jest Unit Tests:

Test Name Description Goal Result

calculateLogarithmicTimeSteps - Test 1 Logarithmic time steps Validate calculation accuracy Pass

calculateLogarithmicTimeSteps - Test 2 Logarithmic time steps Validate calculation accuracy Pass

calculateLogarithmicTimeSteps - Test 3 Logarithmic time steps Validate calculation accuracy Pass

erfc Function - Test 1
Complementary error
function Check erfc at 0 Pass

12 | Page

erfc Function - Test 2
Complementary error
function Check erfc at 1 Pass

erfc Function - Test 3
Complementary error
function Check erfc at -1 Pass

erfc Function - Test 4
Complementary error
function Check erfc at 2 Pass

calculateQFraction - Test 1 Q fraction calculation Check Q fraction value Pass

calculateQFraction - Test 2 Q fraction calculation Qfraction with d=0 Pass

calculateQFraction - Test 3 Q fraction calculation Qfraction with large d Pass

calculateQFraction - Test 4 Q fraction calculation Throw error on zero time Pass

calculateQFraction - Test 5 Q fraction calculation Throw error on negative time Pass

calculateDistance - Test 1 Distance calculation Check distance (0,0)-(3,4) Pass

calculateDistance - Test 2 Distance calculation Check distance (1,1)-(4,5) Pass

calculateDistance - Test 3 Distance calculation Check distance (-2,-3)-(4,1) Pass

calculateDistance - Test 4 Distance calculation Grid and well same point Pass

calculateDrawdown - Test 1 Drawdown calculation W(u)-W(u')=0 returns 0 Pass

calculateDrawdown - Test 2 Drawdown calculation Different u and u' values Pass

calculateDrawdown - Test 3 Drawdown calculation r=0 returns correct value Pass

calculateDrawdown - Test 4 Drawdown calculation Large u and u' approach 0 Pass

calculateDrawdown - Test 5 Drawdown calculation Throw error on zero time Pass

calculateDrawdown - Test 6 Drawdown calculation Throw error on negative time Pass

calculateStreamLeakage - Test 1 Stream leakage calc Valid input calculation Pass

calculateStreamLeakage - Test 2 Stream leakage calc Zero pumping rate Pass

calculateStreamDischarge - Test 1 Stream discharge calc Correct discharge calculation Pass

13 | Page

calculateStreamDischarge - Test 2 Stream discharge calc Zero leakage case Pass

Stream Flow Integration - Test Stream depletion over time Validate stream flow model Pass

calculateLogarithmicTimeSteps - Negative Time Negative total time Handle negative input Pass

calculateLogarithmicTimeSteps - Zero Increments Zero increments Handle zero increments Pass

calculateLogarithmicTimeSteps - Large
Increments Large increments

Validate performance on large
input Pass

calculateQFraction - Negative Sy Negative specific yield Check for error on negative Sy Pass

calculateQFraction - High Specific Yield High specific yield Handle high Sy values Pass

calculateDistance - Non-numeric Input Invalid non-numeric input Handle non-numeric values Pass

calculateDistance - Large Coordinates Large coordinate values Manage high-value inputs Pass

calculateStreamLeakage - Negative Qw Negative pumping rate Ensure error on negative Qw Pass

calculateStreamDischarge - Zero Initial Qs Zero initial discharge Handle zero discharge gracefully Pass

X. Future Work
Future development will focus on creating a dynamic visualization tool to represent key hydrological parameters in real
time. This tool will depict fluctuating water levels, the baseline (initial) water level, and the spatial relationships between
critical features such as the stream, valve, and pumping opening, along with the aquifer's depth profile [10]. This feature
will respond interactively as users input various parameters and adjust time steps, allowing for real-time updates to the
graphical representation. Graphs will be synchronized with interactive control elements (such as the orange buttons) to
facilitate the display of gradient changes over time. This synchronization is essential for ensuring a seamless user
experience, where the gradient graph reflects the evolving dynamics accurately.

14 | Page

XI. Lessons Learned
1. The Importance of Simplified Technology Stacks: Our choice to use only a front-end stack (JavaScript, HTML,

and CSS) streamlined development, allowing us to focus on the UI and calculations without the complexity of
back-end integration. This decision minimized technical issues and made debugging more manageable.

2. Value of Testing and Validation: Implementing unit tests with Jest and end-to-end tests with Selenium was
essential for ensuring that our application met functional requirements. Early testing allowed us to identify and
resolve issues quickly, ultimately improving the reliability of the tool. It saved us a great amount of time by
implementing these tests before developing because we knew that everything was functional as we developed
more, so no parts of the code were built on faulty functionality.

3. Effective Use of Project Management and Collaboration Tools: Utilizing code review processes on GitHub
and maintaining coding standards with ESLint helped us maintain quality across the codebase and avoid merge
conflicts. This setup fostered collaboration and kept our code organized, allowing for smooth teamwork and
version control.

4. Challenges of Working in Unfamiliar Domains: Developing an educational groundwater tool required learning
domain-specific knowledge about aquifer behavior and water flow. Researching and consulting resources to
understand these concepts was necessary to ensure the accuracy of our calculations and visualizations.

5. Adaptability of Agile Development: Applying an iterative approach helped us build up functionality
progressively, from basic input handling to complex visualizations.

6. Deploying to Production Environments: Preparing the final product for deployment on the official Groundwater
Project website posed unique challenges, especially in configuring files and ensuring seamless integration. This
phase showed the importance of deployment testing and comprehensive documentation to support smooth
delivery.

XII. Acknowledgments

We want to extend our sincere gratitude to our advisor, Professor Tree, and to our client, Eileen Poeter, for their invaluable
contributions throughout this project. To our advisor, Professor Tree, thank you for your detailed review of our document
and your thoughtful feedback, which greatly improved the clarity and focus of our work. We also deeply appreciate your
careful consideration of our questions and your flexibility in working with us as we navigated the complexities of this
project. To our client, Eileen Poeter, we are incredibly grateful for your commitment to ensuring our design
documentation was thorough and precise. Your clear communication and willingness to explain technical details—often
more than once—helped us understand and address our challenges. Your guidance and support have been instrumental in
shaping this design, and we truly appreciate the time and effort you both dedicated to its success.

XIII. Team Profile
Colton Morris

Colton is a senior studying computer science. He is interested in machine learning and software development and is the
group's client liaison.

15 | Page

David Karibian

David is a junior studying computer science with an interest in quantum finance and business. He is the advisor liaison of
the group.

Ava Moon

Ava is a junior majoring in computer science with an interest in cybersecurity and consulting. She is the scrum master of
the group.

Iris Nemechek

Iris is a junior majoring in computer science with an interest in cybersecurity and software engineering.

References
1. The Groundwater Project. [Online]. Available: https://www.gw-project.org. [Accessed: Oct. 8, 2024].
2. U.S. Geological Survey, "Aquifers and groundwater," [Online]. Available:

https://www.usgs.gov/special-topic/water-science-school/science/aquifers-and-groundwater. [Accessed: Oct. 8,
2024].

16 | Page

https://www.groundwaterproject.org

3. Jest Documentation. "JavaScript testing framework." [Online]. Available: https://jestjs.io/docs/getting-started.
[Accessed: Oct. 8, 2024].

4. Selenium Documentation. [Online]. Available: https://www.selenium.dev/documentation/. [Accessed: Oct. 8,
2024].

5. Guru99, "Software testing basics," [Online]. Available:
https://www.guru99.com/software-testing-introduction.html. [Accessed: Oct. 8, 2024].

6. National Groundwater Association, "Understanding aquifer depletion," [Online]. Available:
https://www.ngwa.org/aquifer-depletion. [Accessed: Oct. 8, 2024].

7. International Association of Hydrogeologists, "Stream-aquifer interactions," [Online]. Available:
https://www.iah.org/stream-aquifer. [Accessed: Oct. 8, 2024].

8. Stanford University, "Hydraulic conductivity Logging Glacial Aquifers," [Online]. Available:
https://gemcenter.stanford.edu/estimating-hydraulic-conductivity-nmr-logging-glacial-aquifers. [Accessed: Oct. 8,
2024].

9. GitHub, "Using ESLint for coding standards," [Online]. Available: https://eslint.org/docs/latest/user-guide.
[Accessed: Oct. 8, 2024].

10. Environmental Protection Agency, "Groundwater Modeling Researching," [Online]. Available:
https://www.epa.gov/land-research/ground-water-modeling-research. [Accessed: Oct. 8, 2024].

Appendix A – Key Terms
Term Definition

Depletion Fully Penetrating
System (DFPS)

A system that models the impact of water pumping from an aquifer on fully
penetrating streams, showing the resulting drawdown and flow changes.

Hydraulic Conductivity A measure of a material's ability to transmit water, typically expressed in meters
per day.

Aquifer A body of permeable rock or sediment that holds and transmits groundwater.

Streambed Conductivity A parameter representing the ease with which water flows through the streambed
material into or out of the stream.

Jest A JavaScript testing framework for unit testing to validate the correctness of
individual functions and modules.

Selenium A software testing framework used for end-to-end testing of web applications by
simulating user interactions.

E2E Testing A testing methodology that validates the functionality and performance of an
entire application by simulating real-world user interactions from start to finish.
This ensures that all integrated components of the system work together as
expected.

ESLint A static code analysis tool for identifying and fixing problems in JavaScript code.
It enforces coding standards and improves code quality by identifying errors,
style issues, and potential bugs before runtime.

Drawdown The lowering of the water table or piezometric surface caused by groundwater
pumping.

Contour Map A two-dimensional graphical representation showing lines of constant drawdown
values across the modeled aquifer.

17 | Page

https://cee.stanford.edu/hydraulic-conductivity
https://www.epa.gov/groundwater-modeling

