

CSCI 370 Final Report

CSM Bridgman 2:

Bridg Trolls
Isaac Fry

Katrina Ngo
Jaden Nguyen

Maddi Tajchman

Revised Dec. 5, 2024

CSCI 370 Fall 2024

Prof. Kathleen Kelly

1 | P a g e

Table 1: Revision history

Revision Date Comments

New Aug. 21, 2024 Completed Sections:

I. Introduction
II. Functional Requirements
III. Non-functional Requirements
IV. Risks
V. Definition of Done
XI. Team Profile
References
Appendix A – Key Terms

Rev – 2 Sept. 15, 2024 Updated Sections:

I. Introduction
II. Functional Requirements
III. Non-functional Requirements

Completed Sections:

VI. System Architecture

Rev – 3 Oct. 20, 2024 Updated Sections:

I. Functional Requirements

Completed Sections:

II. Software Test and Quality
III. Project Ethical Considerations

Rev – 4 Nov. 9, 2024 Updated Sections:

I. Functional Requirements

Completed Sections:

I. Project Completion Status
II. Future Work

III. Lessons Learned
IV. Acknowledgements
V. Appendix

2 | P a g e

Table of Contents
I. Introduction .. 2

II. Functional Requirements ... 3

III. Non-Functional Requirements .. 4

IV. Risks .. 5

V. Definition of Done ... 5

VI. System Architecture & Technical Design .. 6

VII. Software Test and Quality ... 9

VIII. Project Ethical Considerations .. 14

Principles Pertinent to the Development of the Product .. 14

Principles in Danger of being Violated ... 15

Michael Davis Tests .. 16

Ethical Considerations ... 16

IX. Project Completion Status .. 16

Features Implemented and Summary of Feature Performance ... 17

Features Not Implemented.. 18

X. Future Work ... 18

XI. Lessons Learned .. 19

XII. Acknowledgments ... 19

XIII. Team Profile .. 20

Appendix A – Key Terms .. 21

I. Introduction

This report outlines the development of a cutting-edge system designed to transform the Colorado School of Mines
course catalog into an intelligent and interactive flowchart. By leveraging automated web scraping and advanced data
preprocessing, the project aims to provide a streamlined, user-friendly visualization of course structures and
prerequisites. This tool serves as a valuable resource for students and advisors, simplifying academic planning and
enhancing the overall educational experience.
High level scope: Create a highly intelligent and interactive visual layout of the course catalog represented as a
flowchart via the automated scraping and preprocessing of the Mines course catalogs.

Client: Terry Bridgman is our official client. However, we see Professor Bridgman as advocating for the entire Mines
community, specifically the academic departments.

Currently, there is not a standardized process for departments to automatically create flowcharts. If a department
desires a flowchart, that department must create the flowchart ad-hoc without any consistency across departments.
There are also departments, like Chemical Engineering, that do not create flowcharts for their students. In order to
standardize the communication of department curriculum across the university while minimizing the possibility of

3 | P a g e

human error, we seek to automate the creation of these flowcharts directly from the Mines course catalog, which is the
source of truth.

Previous Software Revisions:

There is no existing software platform. However, Professor Bridgman has prototyped a few versions that emulate the
idea. He found these prototypes lacking for a variety of reasons:

• It was not automated
o Professor Bridgman was copy and pasting the course catalog into ChatGPT to generate a standard

• It was only slightly interactive
o The incorporation of true post-req and pre-req highlighting was minimal
o The framework used for network interaction wasn’t purposed for the end goal

Source of Data:

We have determined multiple distinct sources of data:

• Mines Course Catalog
o Accessibility: freely via the web
o Purpose: accesses the source of truth for the Mines curriculum

• LLM-generated Machine-Readable Flowchart Data
o Accessibility: freely when pinging an open source LLM
o Purpose: transforms the course catalog data into a machine-readable format

Stakeholders:

• Departments
o The administration of individual departments should be able to use our tool to automatically generate

and update flowcharts that can be distributed to students
o These individuals are expected to be non-technical. Thus, this should be a relatively accessible and

approachable process.

• Students
o Students within the university can individually benefit from interacting with their major’s flowchart
o These individuals are expected to be moderately technical, though they would not specifically be tasked

with generating the flowcharts individually.

Maintaining the Software:
After the conclusion of field session, Professor Bridgman will assume responsibility of the project, including cloud
computing resources, code repositories, and DNS hosting credentials. However, Professor Bridgman has discussed a
potential handoff to an administrative department, such as the Registrar or ITS, to control the distribution and
maintenance of the tool.

II. Functional Requirements

1. Automated Flowchart Creation:
o Automatically scrape the course catalog to pull information for each department.
o Generate flowcharts for each major that show pre-requisites & co-requisites.

2. Interactive Flowchart:
o Have an information button on each course to pull up all the relevant information of that course

(description, code, pre-requisites, etc).

4 | P a g e

o Have different modes a course can be for taken, not taken, and currently taking.
o Option to toggle arrows on and off for visualizing pre/co-requisites and post-requisites for each course.
o Implement a user-friendly UI, with front-end enhancements using a JavaScript framework, React

JS.
o Have different color schemes and account for color blindness when choosing themes.

3. Program Usability:

• Make the flowcharts distributable to all departments/offices on campus.
4. Backend Pipeline:

• Build a backend pipeline to process catalog data into a machine-readable format (JSON).
• Ensure that the backend pipeline is separate from flowchart generation to maintain extensibility for

future iterations of the project.

Stretch Goals:

5. Historical Grade Data Integration:

• Generate a heat map for courses based on historical grade data to indicate course difficulty.
• Use this data to suggest optimal semesters for students to take certain classes.

6. Extended Functionality:

• Integrate previous catalog data to allow users to generate flowcharts for past academic years.
• Explore using additional tools like AWS for scaling and managing large data sets or LLM processing.

Toggle for aligning the classes by recommended semester to take it, vs just laying it out in the given

course catalog format.

7. Additional Student Customization

• Implement more options so students can fully customize their school flowchart.

• Possible additions include:

o Allow students to interact with the flowchart by marking courses they’ve completed and
seeing adjusted pre-requisite chains.

o Include functionality for students to add minors or master’s classes for a fully customized
view.

o Allowing students to select courses to fill elective squares, to visualize the pre-requisites in
the flowchart.

III. Non-Functional Requirements
1. Non-Functional Requirements:

o Ensure the system is reliable and scalable.
o Maintains consistent performance across different departments.
o Color Mines core, major specific, and focus area courses differently, similar to current department

flowcharts.

Stretch Goals:
2. Additional Visual Enhancements:

o Implement a toggle or customization for users to save flowcharts to modify them later.
o Include a toggle for aligning the classes by recommended semester versus laying them out strictly

by pre-requisite format.

5 | P a g e

o Add drag-and-drop functionality for students to create custom schedules.

IV. Risks

Every project carries inherent risks that can impact timelines, functionality, and overall success, and the Catalog-to-
Flowchart system is no exception. Identifying potential challenges early enables the team to develop effective mitigation
strategies, reducing the likelihood and severity of adverse outcomes.

In this section, we discuss key risks associated with our project, including time-intensive learning curves, challenges in
scraping the course catalog, formatting limitations of visualization libraries, and potential intractability of the flowchart.
For each risk, we evaluate its likelihood, potential impact, and propose targeted mitigation strategies to address these
challenges and ensure the project remains on track.

1. Time used for learning the chosen language(s) might take too much time.
o Likelihood: Likely
o Impact: Major
o Risk Mitigation: Dedicate time to structured learning using specific online resources such as

Codecademy, freeCodeCamp, or Udemy crash courses on the chosen programming language(s). Allocate
two weeks for intensive learning sessions to ensure a basic understanding before implementation.

2. We can’t scrape the course catalog.

o Likelihood: Unlikely
o Impact: Major
o Risk Mitigation: Consult with our client and domain experts if challenges arise. Additionally, prepare a

fallback plan that involves using publicly available datasets or manual data entry for initial testing if
scraping becomes unfeasible.

3. Impossible to strictly control format using the given libraries.

o Likelihood: Unlikely
o Impact: Moderate
o Risk Mitigation: Research and prototype other visualization libraries such as D3.js or Cytoscape.js that

might provide greater flexibility. Include a comparative analysis of options and allocate time for testing
alternate libraries to ensure a smoother transition if needed.

4. Intractability of the flowchart

o Likelihood: Unlikely
o Impact: Moderate/Major
o Risk Mitigation: Maintain a contingency plan to offer a static flowchart version in scenarios where

interactivity is too resource-intensive or complex. This fallback ensures the core functionality of the tool
is not compromised while allowing room for future enhancements.

V. Definition of Done

Defining "done" is essential for ensuring that our project meets the agreed-upon standards of functionality, usability,
and quality. This section outlines the criteria that signify the completion of the Catalog-to-Flowchart system, including
the delivery of a minimally viable feature set, automation of key processes, interactivity, and accuracy.

6 | P a g e

Our project’s minimal useful feature set includes the development of an automated, interactive, and accurate system.
Automation ensures that the tool can retrieve and process data without manual intervention, interactivity enhances
user engagement by allowing real-time updates and dynamic adjustments to the flowchart, and accuracy guarantees
that the visualized data aligns with the current course catalog and curriculum information.

To ensure the software meets client expectations, we will conduct rigorous testing, focusing on scenarios such as
handling inaccessible catalogs gracefully. For example, the system should fail in a controlled manner, alerting users to
the issue without crashing. Additionally, the tool will support the generation of a complete flowchart via a single
command, simplifying the user experience and reducing potential errors. Successful testing will be marked when the
client, Terry Bridgman, expresses satisfaction—described humorously as “leaping from joy.”

The product will be delivered by November 26, before Thanksgiving Break, through the GitHub repository shared with
the client. This ensures accessibility and transparency while allowing the client to review and provide feedback as
necessary.

VI. System Architecture & Technical Design

System Architecture Overview:

The Catalog-to-Flowchart system architecture, illustrated in Figure 1, is designed to seamlessly integrate data collection
and visualization processes. It is divided into two primary segments—Information Collection and Visualization—
comprising three key components: the Web Scraper, LLM, and React program. These components work together to
transform raw data from the Colorado School of Mines Catalog into an interactive, user-friendly flowchart tool, ensuring
both accurate representation and an engaging user experience.

There are three main channels of communication between components of the system. The first channel concerns
communication that uses direct Web URL access of webpages to either pull information or push our final product to the
end user. The second channel concerns all external connections to the data storage container of choice. The current
iteration makes use of an AWS Simple Storage Service (S3), which will be accessed using a Boto3 API. The last channel
concerns internal movement within AWS, which we use for both storage and processing.

Figure 1: Architecture design of the Catalog-to-Flowchart system

7 | P a g e

Catalog Web Scraper:

Figure 2 illustrates the foundational assumptions and processes behind the Catalog-to-Flowchart system’s data
collection. Our project relies on the Colorado School of Mines administration, likely the Registrar, maintaining an
updated catalog accessible via the internet. Using web scraping techniques, catalog data is retrieved from the active
URL, despite challenges posed by inconsistent formatting across departments and within individual webpages.

Figure 2: Mines catalog to Scraper Connection.

Two key types of information are critical to this process: the course catalog, which includes course descriptions and
prerequisites, and the curriculum, which outlines required courses and their suggested progression within a student’s
academic journey. These datasets are scraped separately, reflecting the distinct structure of the information and the
need for specialized storage.

Post-scraping, the data is stored as preprocessed .json files, enabling further refinement and consumption by an LLM.
While not directly usable for flowchart visualization due to its unstructured nature, this preprocessing stage makes the
data manageable and ready for transformation.

The web scraper operates as a serverless function in AWS, scheduled to run as a cron job for regular updates. This
ensures the flowchart remains accurate and current without requiring manual intervention from administrative staff.
Despite the inherent limitations of web scraping—such as potential errors and reliance on institutional updates—it
remains the most reliable and accessible method due to restricted access to clean data sources maintained by ITS and
the Registrar.

Large Language Model (LLM) - AWS Bedrock:

After exiting the webscraper, the preprocessed data is stored in an AWS Simple Storage Solution (S3) bucket. Storing
data in S3 ensures that the data is accessible by all parts of the model architecture (as opposed to locally storing the
data, which may or may not be accessible or distributed).

After the Webscraper runs, it will automatically check to see if the hash of the resulting .json already exists within the S3
bucket. If not, it will trigger the LLM to parse the new version of the .json file. However, if the hash already exists, then
we can assume that an LLM has already processed that data, so there will be no need to re-process the same data. This
reduces computation overhead and costs.

AWS Bedrock enables streamlined access to foundational LLMs via a simple interface. The LLM can consume the
preprocessed data and parse the necessary information into a .json that is consumable by the visualization process. For
instance, the LLM can cleanly retrieve the course codes of the pre-requisites, the co-requisites, the credit hours, and the
title. While this process is not necessarily deterministic, it is near-deterministic, and the LLM can consistently process the
data.

8 | P a g e

After consumption by the LLM, the data is now considered as “processed” and consumable by the visualization process.
The .json output from the LLM is stored in the S3 bucket, as seen in Figure 3, which is accessible by the visualizer. By this
point in the system architecture, the messy and text-based data from the publicly accessible webpage has been
transformed into a machine-readable format.

Figure 3: AWS S3 Bucket and LLM Processing connection.

Visualization Program:

The visualization component of the Catalog-to-Flowchart system is a React.js program designed to dynamically render
processed data from .json files, offering an interactive and user-friendly experience. This program includes features such
as individual course components that display additional details on click, a dropdown menu for selecting majors, and
toggleable arrows to visualize prerequisites. These interactive elements enhance usability and ensure proper
representation of the processed data.

To support dynamic updates, AWS Boto3 API calls retrieve the appropriate .json files from S3 based on the selected
major in the dropdown menu. This enables the tool to update displayed courses and their associated information in real
time, as shown in Figure 4.

Figure 4: Connection between user interactive dropdown with JavaScript React program.

Final Flowchart Design:

The final flowchart design in Figure 5 combines the features of existing catalog flowcharts across all Mines departments.
It displays courses organized by year and semester, taken from the course catalog’s recommended schedule. It also
contains a color-coded system to highlight Mines core, major core, and focus area courses. Black arrows are in place to
show pre-requisites/co-requisites and can be turned off by the user with a toggle. Additionally, every course has a “more
information” button for the full course description as processed from the catalog. All features serve as a centralized
place for students to look at curriculum plans and in-depth course information.

9 | P a g e

Figure 5: Final Flowchart Design

VII. Software Test and Quality

Functional Requirements: Automated Flowchart Creation, Backend Pipeline

The following unit tests ensure the functionality of the backend scraping and preprocessing objects and methods. This
includes, but is not limited to, the webscraping functionality, the S3 interaction and functionality, and the Bedrock LLM
determinism.

These tests only focus on functionality rather than interactions. The structure that runs the backend pipeline will be
managed differently.

Test Name Category Environment Setup Action Expected Result

test_pytest Unit Testing Pytest Suite Catalog
metadata,
AWS .env

Verifies if pytest is set
up and running
correctly

The test passes if assert True
executes without errors

test_catalog_singl
e_simple

Unit Testing Pytest Suite Catalog
metadata,
AWS .env

Tests the LLM's ability
to parse a simple
course catalog entry
without boolean logic

Each field should match
predefined values, and costs
calculated for the text output and
input should approximately
match expected values

10 | P a g e

test_catalog_singl
e_prompted

Unit Testing Pytest Suite Catalog
metadata,
AWS .env

Tests the LLM's
handling of a course
catalog entry with
unclear boolean logic
included in the prompt

Each field should match
predefined values, specifically
with boolean logic accurately
represented, and the LLM's costs
calculated for the output and
input should align closely with
expected value

test_catalog_singl
e_complex

Unit Testing Pytest Suite Catalog
metadata,
AWS .env

Tests the LLM's ability
to parse a course
catalog entry with
unclear boolean logic
not included in the
prompt

Each field should match
predefined values, and costs for
text output and input should align
closely with the expected values

test_catalog_singl
e_complex_again

Unit Testing Pytest Suite Catalog
metadata,
AWS .env

Repeats the test with
another complex
course catalog entry to
ensure consistency
when unclear boolean
logic is not in the
prompt

Each field should match
predefined values, and costs for
text output and input should align
closely with the expected values

test_catalog_five Unit Testing Pytest Suite Catalog
metadata,
AWS .env

Tests the LLM's ability
to handle and parse
multiple (five) classes
with varying levels of
complexity

Each field should match the
predefined values for all classes,
and costs for the output and input
text should align closely with the
expected values

test_multiple_tra
cks

Unit Testing Pytest Suite Catalog
metadata,
AWS .env

Tests the LLM's ability
to extract and
correctly identify
multiple tracks within
the Computer Science
(CS) department's
curriculum

The response contains 7 tracks,
each starting with
'ComputerScience' and including
an underscore. Tracks must
match predefined categories.

test_multiple_maj
ors

Unit Testing Pytest Suite Catalog
metadata,
AWS .env

Tests the LLM's
capability to extract
and differentiate
between multiple
majors (Chemistry and
Biochemistry) and
their associated tracks
within the Chemistry
department's
curriculum

The response contains 4 entries,
with each major track starting
with either 'Chemistry' or
'Biochemistry' and separated by
an underscore. Tracks should
match categories such as
'General', 'Environmental', and
'Biochemistry'

test_multiple_pla
ngrids

Unit Testing Pytest Suite Catalog
metadata,
AWS .env

Tests the LLM's ability
to generate multiple
curriculum plan grids
for different tracks
within the Applied

The response contains 3 tracks.
The test passes if all 3 grids
conform to expected standards

11 | P a g e

Mathematics and
Statistics (AMS)
department

test_emplace_si
mple

Unit Testing Pytest Suite Catalog
metadata,
AWS .env

Tests the ability to
store and retrieve a
simple text file in an
S3 bucket

The file is successfully stored and
the file's content matches the
original string when retrieved.

test_json_formatt
ing

Unit Testing Pytest Suite Catalog
metadata,
AWS .env

Tests the storage and
retrieval of a JSON
object in an S3 bucket,
ensuring correct
formatting and
content

The JSON object is correctly
stored as a string in the S3 bucket
and is accurately retrieved. The
response should be evaluated as
a dictionary when parsed,
confirming proper JSON
formatting

test_webscraper_
init

Unit Testing Pytest Suite Catalog
metadata,
AWS .env

Tests the initialization
of the object with
catalog metadata

The catalog metadata contains
'CSCI' as a key, confirming
successful initialization

test_url_valid Unit Testing Pytest Suite Catalog
metadata

Pings a valid URL for
the Computer Science
(CSCI) department to
check connectivity

The HTTP response status code
should be 200, indicating the URL
is accessible

test_class_code_i
nvalid

Unit Testing Pytest Suite Catalog
metadata

Tests the behavior of
the web scraper when
an invalid department
code is provided

InvalidDeptCodeError is raised
with the message: "NOT_A_DEPT
dept. name not found in catalog
metadata."

test_class_codes Unit Testing Pytest Suite Catalog
metadata

Retrieves class codes
for the CSCI
department to verify
the correctness of the
information retrieved

The response includes 'CSCI128'
as a key, and the entry for
'CSCI101' contains the correct
title and semester hours

test_file_saving Unit Testing Pytest Suite Catalog
metadata

Tests the ability of the
web scraper to save
the retrieved
department
information as a file

A JSON file for the specified
department ('AMS') is
successfully created in the
predefined directory

test_all_catalog_
metadata

Unit Testing Pytest Suite Catalog
metadata

Verifies metadata
.yaml file is correctly
formatted and all
URLs for departments
are accessible.

The number of departments in the
catalog metadata matches the
number retrieved from the
website. Each URL for the
departments is accessible, with a
status code of 200

test_all_course_c
atalogs

Unit Testing Pytest Suite Catalog
metadata

Tests the retrieval and
saving of all course
catalogs for each
department listed in
the catalog metadata

A JSON file for each department
is created in the directory.
Departments that issue courses
should have corresponding files.

test_major_requir
ements_multiple

Unit Testing Pytest Suite Catalog
metadata

Verifies that the major
requirement grids are

All plangrids conform with
expected plangrid structure

12 | P a g e

correctly formatted for
all degree-granting
departments

test_pipeline_init Unit Testing Pytest Suite Catalog
metadata,
AWS .env

Tests Pipeline class
with the specified
configuration file and
root folder. Checks
interactions between
S3, Bedrock, and the
web scraper
components

The Pipeline is consistent with the
configuration file

Functional Requirements: Backend Pipeline

The following test plan ensures that the pipeline executes the backend components in appropriate and consistent ways.

Edge cases: failures in the pipeline (at either the Build stage or the Lambda stage), failures in regular execution timing

Threshold for Acceptability: backend is distinct from the frontend and runs automatically

Lambda
Connection

Build,
Integration,
Deployment

AWS
CodePipeline

Git repos
credentials, AWS
credentials to
CodePipeline and
Lambda

Ensure that the
Lambda function
can read from the
appropriate
CodeBuild S3
bucket and update
itself with the code.

An update to the production
branch (main) of the
backend pipeline kicks off
the CodePipeline, dumps
the build in an S3 bucket,
and the Lambda handler
updates the Lambda source
code.

Pipeline
Failures

Build,
Integration,
Deployment

AWS
CodePipeline

Git repos
credentials, AWS
credentials to
CodePipeline and
Lambda

Force the pipeline to
fail, whether in build
or deployment, and
ensure that it
doesn't affect any
production code

A failure in the CodePipeline
doesn't change the Lambda
code.

Regular
Execution
Timing

Build,
Integration,
Deployment

AWS
CodePipeline

Git repos
credentials, AWS
credentials to
CodePipeline and
Lambda

Create a cron job to
periodically run a
simple Lambda
function to ensure
that AWS Lambda
can execute on a
consistent schedule

A cron job runs periodically
to explain sources of failure
in the Lambda (i.e. if the
simple cron job isn't failing,
then the failure in the
deployment must be
somewhere else besides the
Lambda).

Notification
of Build
Failure

Build,
Integration,
Deployment

AWS
CodePipeline

Git repos
credentials, AWS
credentials to
CodePipeline and
Lambda

Force the build to
fail and send an
update to the AWS
account manager
with a descrptive
failure warning

After the execution the
Pipeline Failures test, an
email is sent to the account
manager (Isaac).

13 | P a g e

Functional Requirements: Interactive Flowchart and Product Usability

The following test plan ensures the creation, customization, and usability of the final minimum viable product. This
includes, but is not limited to instantiation, color selection, base functionality, customization, accessibility, and overall
user experience tests.

Edge Cases: Some tests include handling imperfect files pulled from S3, such as non-existent prerequisites.

Test Name Category Environment Setup Action Expected Result
Initial
Creation Test

Build,
Integration,
Deployment

AWS Hosted
Server

IP and Domain
name

WebApp is
Launched by a user.

WebApp is launched and
instantiated correctly, no
errors

Course
Status Color
Test

Usability
Testing

AWS Hosted
Server

IP and Domain
name

The user cycles
through all three
course status colors
(completed,
completing, to be
completed), for
each class.

All classes cycle in the same
way. (To be completed ->
Completed -> Completing)

PreReq
Highlighting
Test

Usability
Testing

AWS Hosted
Server

IP and Domain
name

The user toggles the
option to see pre-
reqs, selects a
class, and then
unclicks the class.

Only prereqs of the selected
courses get highlighted,
other classes stay as they
are. Everything returns to
normal when a class is
unclicked.

PreReq DNE
Test

Usability
Testing

AWS Hosted
Server

IP and Domain
name

The user navigates
to a major with a
known issue in the
Mines catalog. They
select the classes
with a missing
prereq

Notice Appears notifying
user of a missing prereq

All Major
Track
Creation Test

Usability
Testing

AWS Hosted
Server

IP and Domain
name

The user cycles
through all available
majors and checks
for issues with any
specific class

All majors should be
accurately depicted when
selecting a new major. All
classes needed shown and
all prereqs come before
postreqs

Colorblind
Testing

Usability
Testing

AWS Hosted
Server

IP and Domain
name, Willing
Colorblind
participant

Testing to make sure
our color schemes
are understandable
for people with
colorblindness

Participant can distungish
differences between colors
on at least 1 palette

Load Testing Load Testing AWS Hosted
Server

IP and Domain
name, Load
testing script

1000 instances of
our WebApp will be
created,
performance will be
measured by user
experience.

Performance will not be
altered with multiple users
accessing our web app.

14 | P a g e

Final
Usability Test

Usability
Testing

AWS Hosted
Server

IP and Domain
name, Willing
participants that
haven't interacted
with the program
at all.

Multiple users will
be given access to
the full website.
They can explore the
web app and use it
based on their own
intuition. Then they
will rate the program
based on design,
usability,
convenience, etc.,
as well as give us
any other feedback
to incorporate.

The user will rate the
program above a 5/10 on
every component for a
successful test, or average
above a 7/10 for a good test.
The user will also give
tangible feedback that we
can implement.

Testing has been carried out throughout the length of the project; it will continue to be iterated on, and our web
application will be updated accordingly.

VIII. Project Ethical Considerations

Ethical considerations play a pivotal role in the development of the Catalog-to-Flowchart system. Adhering to the
principles outlined by the Association for Computing Machinery (ACM) and the Institute of Electrical and Electronics
Engineers (IEEE), this project prioritizes transparency, accessibility, and the responsible use of technology. These
guidelines emphasize the importance of creating systems that uphold user trust, maintain data integrity, and promote
fairness.

In this section, we explore how the ACM Code of Ethics and IEEE Code of Ethics influence decisions in our project,
including ensuring accurate representation of academic information, safeguarding user data, and fostering inclusivity in
the tool’s design. These principles guide us in delivering a system that not only meets technical objectives but also aligns
with broader societal and ethical responsibilities.

Principles Pertinent to the Development of the Product

IEEE 2.01 Provide services in their areas of competence, being transparent about any limitations in their experience and
education.

This principle is essential for ensuring that the flowchart generation system is built by thoroughly understanding
the technical requirements and potential constraints. For instance, automating the scraping of course data
requires technical expertise in web scraping. Recognizing skill limitations ensures that the product is reliable and
works as intended within the scope of the competencies.

IEEE 3.11 Ensure adequate documentation, including significant problems discovered and solutions adopted, for any
project on which they work.

This principle emphasizes the importance of maintaining proper documentation throughout the development
process. Given that this project will be handed over to Professor Bridgman, comprehensive documentation will
ensure the continuity and maintainability of the system. It will also facilitate the understanding of challenges
encountered (such as parsing errors in the course catalog) and how these were addressed in the final solution.

IEEE 7.04 Review the work of others in an objective, candid, and properly documented way.

15 | P a g e

As the project evolves, code reviews and peer feedback play a critical role in ensuring the quality of the
software. This principle promotes a culture of constructive feedback among team members, allowing for
improvement of the flowchart automation tool. It also ensures that any design or implementation decisions are
properly reviewed and refined to meet the needs of stakeholders.

ACM 1.5 Respect the work required to produce new ideas, inventions, creative works, and computing artifacts.

The project involves automating the process of generating flowcharts based on course data and creating an
innovative interface for user interaction. Respecting intellectual property—such as the course catalog data—
ensures ethical handling of data and respects the work involved in creating such resources.

ACM 3.5 Create opportunities for members of the organization or group to grow as professionals.

This principle highlights the importance of fostering growth among team members. Opportunities are created
for both developers and future users to gain valuable insights and skills. For the development team, it provides
hands-on experience in data automation, backend development, and UX design. For users, the tool offers a
streamlined process to interact with academic data, improving their understanding of their educational paths.

Principles in Danger of being Violated

IEEE 5.05 Ensure realistic quantitative estimates of cost, scheduling, personnel, quality and outcomes on any project on
which they work or propose to work and provide an uncertainty assessment of these estimates.

If realistic estimates for cost, scheduling, and outcomes are not provided, the project could face delays, budget
overruns, or fall short of expectations. Misjudging the complexity of automating flowchart generation or the
data preprocessing steps could result in the tool being incomplete or unusable, negatively affecting the entire
Mines community.

IEEE 5.04 Assign work only after taking into account appropriate contributions of education and experience tempered
with a desire to further that education and experience.

Assigning work without considering team members' education and experience could lead to errors in crucial
aspects like data scraping or interactive design. This may result in poorly functioning features for the user
interface and backend functionality, such as inaccurate prerequisite mapping, ultimately compromising the
tool's usability and reliability.

IEEE 7.08 In situations outside of their own areas of competence, call upon the opinions of other professionals who have
competence in that area.

Failing to consult experts when outside the team's competence could lead to critical technical mistakes,
particularly in areas like data processing, large-scale automation, or user interface design. The project might
suffer from incorrect implementations or overlooked technical challenges, reducing the effectiveness and
scalability of the system.

ACM 2.9 Design and implement systems that are robust and usably secure.

If the system lacks robust security measures, sensitive data (such as proprietary grade data in a future
implementation) could be exposed or manipulated. This would undermine user trust and could result in
breaches that harm the institution and violate privacy laws, significantly damaging the tool's credibility and the
university's reputation.

16 | P a g e

Michael Davis Tests

The Michael Davis ethical tests provide a structured framework for evaluating the ethical implications of engineering
and computing projects. These tests help assess whether a project aligns with professional and societal ethical
standards, such as transparency, fairness, and responsibility. Here, we identify components to be considered when
determining whether our product meets these standards:

Stakeholders: The primary stakeholders include Mines students, academic departments, and future maintainers of the
tool.

Interests: Students want an accurate and interactive flowchart to guide their academic planning. Departments expect an
easy-to-use, reliable tool for automating the generation of standardized flowcharts.

Responsibilities: The team is responsible for ensuring the tool's accuracy, security, and functionality. Professor
Bridgman, as a client and advocate, oversees guiding the tool’s progress and ensuring it meets Mines' needs.

Alternative Actions and Consequences:

• Manual flowchart generation: This option avoids the tool but would continue the current ad-hoc, error-prone
process.

• Outsource development: Hiring an external developer may result in a more polished tool but could be costly
and disconnect the product from the community’s specific needs.

Evaluating Alternative Actions through Michael Davis Tests:

• Harm Test: The tool aims to reduce errors in academic planning by automating flowchart creation. Developing it
in-house avoids the financial burdens of outsourcing and fosters community ownership. If the development
team ensures accuracy and security, the harms (like technical errors or data breaches) would likely be minimal
compared to the benefits, such as increased efficiency and accuracy in course planning.

• Common Practice Test: If every university relied on manual flowchart creation, it would lead to inconsistency,
errors, and inefficiency in academic planning. Students could face confusion due to varying formats and
outdated information, while departments would struggle to maintain accuracy. Continuing this practice would
hinder standardization and improvement, making automated flowchart creation a more effective and beneficial
solution.

Ethical Considerations

If the software quality plan for this project is poorly implemented or is insufficient, several ethical concerns arise.
Inaccuracies in the flowcharts could lead to students incorrectly planning their academic paths, potentially delaying
graduation or causing them to take unnecessary courses. Inconsistent or unreliable software might also undermine trust
from both students and departments, reducing the tool's usefulness. Additionally, without a strong focus on security,
there could be a risk of exposure to sensitive academic or personal data. Exposure to this kind of data can threaten
privacy and confidentiality of student information. Failing to meet these ethical obligations would harm the very
stakeholders the tool is designed to serve.

IX. Project Completion Status

This project aimed to create an automated and interactive tool to generate course flowcharts for the Mines community,
fulfilling the need for a standardized approach to curriculum mapping across departments. Through automated scraping
and processing of the Mines course catalog, the tool builds flowcharts that highlight course pre-requisites, co-requisites,

17 | P a g e

and post-requisites, helping departments and students better visualize academic pathways. The front-end, built with
React, enables users to click on courses to view detailed information, toggle visual elements for course dependencies,
and customize their flowcharts.

We successfully met all core functional and non-functional requirements, including automatic flowchart creation, an
intuitive interface, and backend data processing in a format easily extendable for future development. Although stretch
goals like integrating historical grade data to generate a difficulty heat map were not completed, the tool remains a
powerful resource for planning and advising, accessible across departments. The project was delivered through a GitHub
repository and AWS hosting credentials, positioning it for ongoing use and maintenance by Professor Bridgman and
other Mines stakeholders.

Features Implemented and Summary of Feature Performance

Automated Flowchart Creation

Description: Automatically scrapes the course catalog to gather information for each department, generating flowcharts
for each major that accurately display course pre-requisites and co-requisites.

Performance: The scraper successfully extracts data for all departments, allowing flowchart creation to be consistent
and reliable. Flowcharts generated are as accurate as expected with inconsistencies in the catalog and cohesive across
different departments.

• Performance caveat: the scraper depends on an AWS service (Bedrock) that can be curtailed at any point by
AWS. For instance, during the middle of the semester, AWS incorrectly flagged the production account as a
fraudulent account, thereby significantly reducing the number of calls per minute. While AWS restored the
account’s standing, it’s possible that AWS can, as a service provider, arbitrarily reduce access to Bedrock at any
point.

Interactive Flowchart

Description: Users can click on courses within the flowchart to highlight their pre-requisites and co-requisites. An
information button on each course displays additional course details, and a toggle on each course allows users to switch
highlighting of courses and arrows on and off for clearer visualization of dependencies. There is a settings menu that
allows users to choose between modes and color schemes.

Performance: Interactivity is smooth and responsive, enhancing user engagement, according to usability tests with
students across campus. The toggle functionality provides flexible visualization options, with minimal loading time when
retrieving course information. Color schemes and themes were tested and adjusted amongst individuals with color
blindness to best represent flowchart components.

User-Friendly UI (React JS)

Description: The front-end UI, designed in React, aimed to provide an intuitive and accessible experience, suitable for
technical and non-technical users.

Performance: User feedback indicates that the interface was clear and straightforward, making flowchart navigation and
customization easy. Front-end performance was optimized, ensuring a seamless user experience across different screen
sizes.

18 | P a g e

Program Usability Across Campus

Description: The flowchart tool is distributable to all departments and offices on campus, allowing for easy access and
distribution among stakeholders.

Performance: Deployment tests confirm that the tool can be used across various departments, with all necessary
permissions and configurations in place to support accessibility campus-wide.

Backend Pipeline

Description: Developed a backend pipeline that processes catalog data into a machine-readable format (JSON),
separated from flowchart generation for future scalability and adaptability.

Performance: The backend performs reliably, supported by comprehensive tests for Lambda connection, pipeline
integration, and update processes.

• Lambda Connection Tests: Verified that Lambda could update from the CodeBuild S3 bucket, ensuring the backend
pipeline adapts with every code change.

• Pipeline Failure Tests: Safeguards prevented production code from being affected by forced build or deployment
failures, ensuring reliability and protection for production.

• Scheduled Execution and Notification Tests: A cron job confirmed regular Lambda execution, and notification tests
ensured timely alerts on build failures, effectively streamlining backend reliability and maintenance.

Features Not Implemented

• Our team aimed to reimplement the backend by integrating ITS cloud data to replace the original setup with the
webscraper, with the goal of achieving centralized data access, improved scalability, and enhanced security.
However, dependency on ITS coordination hindered our progress. The integration required close collaboration with
ITS to configure access and permissions, which proved challenging within the project's timeline. Despite these
setbacks, we see this feature as a high priority for future development, as ITS cloud integration would streamline
data handling, improve system reliability, and support secure data management.

• In terms of displaying prerequisites on the flowchart, the initial plan was to implement an arrow toggle button that
would show arrows coming from courses with different arrow types to indicate corequisites vs. prerequisites.
However, due to the complexity of calculating the directions of the arrow paths to avoid unnecessary overlapping,
an alternative feature was implemented to have a prerequisite toggle on each course that will highlight courses and
have temporary arrows.

X. Future Work

To enhance the usability and functionality of our project, we recommend several key areas for future work. Each area
will require specific resources, skills, and time to implement effectively.

Gear the Platform Towards Students

To tailor the application for students, future work should focus on user experience design and student-focused features
such as simplified navigation and academic progress tracking. This would require resources in UI/UX design software
(e.g., Figma or Adobe XD) and user testing tools to gather feedback from students. Developers will need skills in user-
centered design principles and experience in educational software. We estimate it will take 4–6 weeks to prototype and
refine student-centered features.

19 | P a g e

Increase Customizability

Adding customizability features—such as personalized color schemes, adjustable layouts, and content filters—would
empower users to tailor the tool to their preferences. This would require JavaScript and CSS frameworks (e.g., React
with Material-UI), which are already in use, but additional frontend libraries may be helpful. Familiarity with advanced
front-end design and state management is necessary. Implementation could take approximately 3–5 weeks.

Enable Flowchart Saving (PDF or Browser Cache)

Enabling users to save or export their flowcharts as a PDF or in the browser cache for later retrieval would significantly
increase functionality. Resources for this feature include PDF libraries like jsPDF or HTML2Canvas, along with browser
storage APIs for caching. Team members will need knowledge of client-side storage and export utilities in JavaScript.
This feature would likely take 2–4 weeks to complete, including testing and debugging.

By addressing these areas, the project will better meet student needs, offer enhanced user experience through
customizability, and provide practical options for saving work, making the tool more versatile and valuable to its users.

XI. Lessons Learned

• Working with AWS turned out to be more challenging than we initially anticipated. We spent more time than
expected learning how to set up services like S3 and IAM roles securely and efficiently to connect to our front-
end component. However, referencing resources online and referring to documentation helped navigate the
nuances of permission controls and service setup overall. This experience taught us the importance of planning
for a learning phase when working with complex technologies, especially when they are central to the project's
infrastructure.

• ITS and the Registrar’s office have a database with course catalog information which could potentially replace
our entire back-end component to avoid the need for web scraping the Mines course catalog and the
inconsistencies that come with this process. Having the connection between the database and the front-end
could be faster to pull course information and have the most updated version of the catalog with minimal
manual maintenance.

• One of the biggest takeaways from this project was realizing the value of getting to know each other as a team
right from the start. Establishing strong communication early on set the foundation for a collaborative and
supportive environment where everyone felt comfortable sharing ideas and providing constructive feedback.
During our initial meetings, we focused on understanding each other's strengths, work styles, and individual
goals for the project. We found that this early bonding provided a framework for open, honest discussions and
led to more productive problem-solving and innovative solutions.

XII. Acknowledgments

We would like to express our sincere gratitude to our client, Terry Bridgman, and advisors for their support and guidance
throughout this project. Our client’s insights and feedback were invaluable in aligning our efforts with real-world needs,
while our advisors provided essential mentorship, constructive feedback, and encouragement, helping us navigate
challenges effectively. This project would not have been possible without their contributions, and we are deeply
appreciative of their time, knowledge, and commitment.

20 | P a g e

XIII. Team Profile

Isaac Fry
Year: Senior
Discipline: Computer Science – General, Minor in Public Affairs (McBride)
Hometown: Windsor, CO
Work Experience: Data Engineering Intern (Chevron), Legislative Energy Policy Research Intern (State of Colorado),
Quantitative Trading Intern (Solea Energy)
Activities: Music Director (Red Rocks Church)

Katrina Ngo
Year: Junior
Discipline: Computer Science – General
Hometown: Thornton, CO
Work Experience: Software Engineer Intern (Transamerica)
Activities: Teacher Education Alliance, DECtech

Maddi Tajchman
Year: Junior
Discipline: Computer Science – Business, Minor in Applied Mathematics and Statistics
Hometown: Firestone, CO
Work Experience: Software Engineering Intern (Trimble Inc)
Activities: Pi Beta Phi (Vice President of Recruitment), ACM-W member, SWE member

Jaden Nguyen
Year: Junior
Discipline: Computer Science – General
Hometown: Arvada, CO
Work Experience: Engineering Intern for the Department of Defense
Activities: Music Director (Miner Dissonance ACapella@Mines), Lead Peer Mentor (Parents and Families Programs)

21 | P a g e

Appendix A – Key Terms

Term Definition

Web scraper A tool or script used to extract data from websites, automating the retrieval of
specific information.

Cron job A time-based scheduling utility in operating systems that automates tasks, such
as running the web scraper periodically.

Pre-req The courses that must be taken before a given course can be taken

Co-req Course that must be taken at the same time as a given course

Post-req The courses for which a given course is a pre-req

LLM Large Language Model, similar to ChatGPT

IRSA Institutional Research & Strategic Analysis, a department within the
administration that can issue proprietary reports

AWS Amazon Web Services, a cloud hosting service for storage and computation

AWS Bedrock A functionality from AWS that integrates the storage of foundational LLMs and
interaction with those models

AWS Simple Storage Service (S3) A scalable cloud-based storage solution by Amazon Web Services, used to store

and retrieve data.

Near-Deterministic A process or operation that produces consistent results in most cases but might
vary slightly due to inherently probabilistic structures.

