

CSCI 370 Final Report

JO-3D

Jonas Edlestein
Joseph Reedy
Johnny Bryant

Revised November 20, 2024

A Multi-Dimensional Software Development Team

CSCI 370 Fall 2024

Prof. Kathleen Kelly

1 | P a g e

Table 1: Revision history

Revision Date Comments

New Aug 20, 2024 Completed Sections:

I. Introduction
II. Functional Requirements
III. Non-functional Requirements
IV. Risks
V. Definition of Done
XI. Team Profile
References
Appendix A – Key Terms

Rev – 2 Sep 17, 2024 Updated Sections

I. Introduction
II. Functional Requirements
III. Non-functional Requirements

Completed Sections:

VI. System Architecture

Rev – 3 Oct 19, 2024 Completed Sections:
VII. Software Test and Quality
VIII. Project Ethical Considerations

Rev - 4 Nov 10, 2024 Completed Sections:
IX. Project Completion Status
X. Future Work
XI. Lessons Learned

Rev –5 Nov 20, 2024 Finishing touches on all sections

Rev - 6 Nov 28, 2024

Completed Sections:

VII. Technical Design

Updated Sections:

All sections were updated with suggestions from peer review

Rev - 7 Dec 2, 2024

Added a “Peer Review Section to make submission easier

Completed Sections:

XV. Annotated Peer Reviews

2 | P a g e

Table of Contents
Completed Sections: .. 1

VII. Technical Design .. 1

I. Introduction .. 4

II. Functional Requirements ... 4

III. Non-Functional Requirements .. 5

IV. Risks .. 5

Risk 1 .. 5

Risk 2 .. 5

V. Definition of Done ... 5

VI. System Architecture ... 5

1. Front-End: .. 5

2. Back-End: ... 5

3. Version Control: ... 6

Example of interaction of System Architecture Components ... 6

System Architecture Visualization ... 6

Data Flow and Interaction: .. 6

VII. Technical Design .. 6

Routing ... 6

Firebase (Database) – Functional Modules ... 7

Creating Posts/Listings ... 7

Retrieving All Posts/Listings ... 7

Retrieving One User Post/Listing ... 8

Delete One User Post/Listing ... 8

Retrieve All User Posts/Listings ... 8

Update an Existing Post ... 8

Retrieve User Information ... 8

Save User Data to Firestore ... 8

Centralize Initialization of Database and Authentication .. 9

Register a New User ... 9

User Login .. 9

Sign Out a User .. 9

Organizational Design of File Types and Functions ... 10

VIII. Software Test and Quality .. 11

Load Test .. 12

Authentication ... 13

Authentication - Functional Tests .. 13

3 | P a g e

Authentication - Security Tests .. 13

Invalid User Input ... 13

Boundary Value Testing ... 13

Invalid Data Type Testing ... 13

Injection Attack Testing ... 13

Input Constraints Testing ... 13

Dynamic Screen Size Test .. 14

Edit Test (Confirm Deletions) ... 14

Email Confirmation Test .. 14

User Navigation.. 14

IX. Project Ethical Considerations .. 14

Techno-Professional Ethical Considerations.. 15

Data Confidentiality and Integrity ... 15

Quality of Product .. 15

Social Ethical Considerations ... 15

Project Confidentiality and Integrity ... 15

Technological Development Creates/Destroys Jobs ... 15

Mindful Professionalism .. 15

X. Project Completion Status ... 16

CRUD (create, read, update, delete) for listings .. 16

Create ... 16

Read ... 17

Update ... 18

Delete ... 19

Mobile optimization... 19

XI. Future Work .. 21

User RBAC .. 21

Search Functions .. 21

Map View ... 21

XII. Lessons Learned ... 21

Cache Staleness ... 21

Thorough Assessment of Previous Development Work: ... 21

XIII. Acknowledgments .. 21

XIV. Team Profile .. 21

Michael (Johnny) Bryant .. 21

Jonas Edelstein ... 22

Joseph Reedy ... 22

4 | P a g e

References ... 29

Appendix A – Key Terms .. 31

I. Introduction
According to a study done by Robin, which offers a platform for desk booking, room scheduling, visitor management and workplace analytics, 40%

of companies are currently utilizing half of their available space or less, with only 28% of businesses using 100% of their offices. Additionally, the

demand for flexible work arrangements, including coworking spaces and short-term leases, is on the rise. According to a survey by Clutch, 60% of

coworking space members in the U.S. are interested in flexible lease terms. This trend creates opportunities for businesses to offer their

underutilized space for short-term leases to renters who cannot afford their own spaces or want to take advantage of the cost savings a coworking

space offers. The purpose of this project is to create an app called “LeaseLinks” that will serve both space owners and space renters by limiting the

effort it takes to link the two together. By doing so, space owners will have a tool to monetize previously underutilized space and space renters will

have a tool to minimize their costs related to space rental. The ultimate goal of team JO-3D and the client Boss Ventures was to move the app to

the MVP (Minimal Viable Product) stage. However, this was a lofty goal, and intermediate goals discussed later in this document were defined by

the client. The client’s end goal is to monetize the app for financial gain.

A previous Mines Software Development Team has already worked on the project. The project had not reached its MVP status. According to the

client (Boss Ventures) the previous team had already started on the following:

• Homepage (Search Page)
• Login / Register New User

• Profile Creation – currently all information including images is hard-coded.

The client provided Tech Stack is as follows:
Back-end:

• Firebase

• Firestore

Version Control:

• Github

Front-End:

• Vue.js

• Quasar

• Pinia

The client (Boss Ventures) team member, Mike Halverson, who is the team’s lone developer/technical representative will be responsible for

maintaining the software after the product is initially developed.

II. Functional Requirements
The goal of this project is to create the MVP version of a web app designed to connect business property leases to companies/clients looking to
rent spaces. Anywhere from renting an office building to renting a chair in a salon. The group before us left our project team with some building
blocks so our functional requirements are based somewhat on what we have and the necessary next steps for the project. These requirements are
listed below:

• CRUD (Create, Retrieve, Update, Delete) functionality for property listing

• RBAC (Role based access control)
 Owners

▪ edit, delete, create, and view listings
o Renters

▪ may only view listings

• Mobile Optimization – The application should render on all devices currently on the market. There should be no artwork, buttons, text,
logos, or any other elements within the application that are not visible, collide, or are covered by other elements on the application due
to screen size induced crowding.

5 | P a g e

III. Non-Functional Requirements
• The web app should connect to a database that holds all user and other information

• The web app should protect users' information such as passwords

IV. Risks
Risk 1 – The risk of non-completion of the MVP due to lacking the skills required to get the job done.

• Likelihood (Unlikely, Likely, Very Likely)
Team members currently possess most of the skills required to complete the MVP.

• Impact (Minor, Moderate, Major)
Should the MVP not be completed, the client would not have a product to begin testing with users. Additionally, each moment they do
not have a product to take to market, the door remains open for another company getting a similar product to market before they do.

• Risk mitigation plan
Team members were committed to sharing their knowledge with other team members. Additionally, team members researched
additional skills needed to complete the project.

Risk 2 – The risk of breaking current project infrastructure or imposing extra work on client due to improper use of version control.

• Likelihood (Unlikely, Likely, Very Likely)
Impact (Minor, Moderate, Major)
Improper version control practices could lead to anything from inconveniencing the client with easily remedied merge conflicts to having
to revert to older versions of the product. This could lead to the team creating extra work for our client and potentially lead to lost work
and wasted time for the team.

• Risk mitigation plan
Team members and client tech representative, Mike Halverson, have agreed upon a standardized operating procedure for all version
control operations for the duration of the project.

V. Definition of Done
• Have working features that align with the stakeholders needs
• Have an MVP ready to present

NOTE: The client does not expect the product to be done but is rather defining this phase of the project to be done if the following are
implemented:

• CRUD (Create, Retrieve, Update, Delete) functionality for property listing

• RBAC (Role based access control) only owners can edit and delete listing

• Mobile Optimization – The application should render on all devices currently on the market. There should be no artwork, buttons, text,
logos, or any other elements within the application that are not visible, collide, or are covered by other elements on the application due
to screen size induced crowding.

• All additions and changes to the application are merged properly and delivered to the client on the agreed upon GitHub repository.

VI. System Architecture
1. Front-End:

• Vue.js: The front-end of the application is built using Vue.js, a progressive JavaScript framework for building user interfaces. Vue.js
handles the structure and behavior of the user interface.

• Quasar: Quasar is used as a UI framework on top of Vue.js. It provides a set of responsive, highly customizable components that allow for
a consistent design and faster development.

• Pinia: Pinia is a state management library for Vue.js. It manages the application's global state, allowing different components to share
and synchronize data.

2. Back-End:
• Firebase: Firebase is used for the back-end services. It provides a suite of cloud-based services that include authentication, real-time

databases, cloud functions, and hosting. Firebase handles user authentication, file storage, and other back-end services.

• Firestore: Firestore, a NoSQL document database, is part of Firebase and is used for storing and syncing data in real time. It allows for
efficient querying and is optimized for low-latency mobile and web applications.

6 | P a g e

3. Version Control:
• GitHub: GitHub is used for version control and collaboration. The codebase, including both front-end and back-end components, is

managed and versioned through GitHub repositories. This allows for collaborative development, with multiple developers contributing to
the project.

Example of interaction of System Architecture Components
• A user lands on the landing page of the application controlled by Vue.js

• The user registers as a user and their credentials are stored in the database Firebase

• A user wants to add a listing of their property, so they navigate to a page rendered by file PageAddListing.vue which is a Vue.js file.
PageAddListing.vue controls the front-end visual rendering and functionality of the application page and has access to functions that
access data stored in the backend in Firebase.

• The user enters their data which is stored in the backend database Firebase

• Github is used by the developers of the application to work remotely and simutaneously on the application. The latest “version” of the
application is centrally stored on a remote repository that all the developers can update and attain whenever needed.

System Architecture Visualization

Data Flow and Interaction:
• User Interaction: Users interact with the application through the front-end, built with Vue.js and Quasar. The UI components fetch, and

display data stored in Firestore and managed by Pinia for state management.

• State Management: Pinia ensures that the application's state is consistent and synchronized across various components. This allows for a
smooth user experience with real-time updates.

• Back-End Communication: The front-end communicates with Firebase to handle user authentication, data storage, and other back-end
services. Firebase uses Firestore to store user data, which is then fetched and displayed on the front-end.

• Version Control: GitHub tracks changes to the codebase, allowing developers to manage updates, collaborate, and deploy new features
or fixes.

VII. Technical Design
Routing
The following figure is a flow chart detailing the routing paths on the LeaseLinks application:

7 | P a g e

Note the layout files highlighted in light blue. In a Vue.js and Quasar application, layouts are not standalone pages but wrappers/templates that
define the overall structure for the pages rendered inside them. Layouts provide reusable structural components like headers, footers, sidebars,
and navigation bars that maintain consistency across multiple pages.

Firebase (Database) – Custom Built Functional Modules
In the LeaseLinks application, .js files were intentionally designed as internal utility modules in Vue.js to centralize commonly used functionality.
This centralization was a core aspect of our technical design, aimed at streamlining tasks like creating, retrieving, updating, or deleting data in
Firebase. By consolidating these operations into reusable modules, the application ensures consistency, maintainability, and scalability. Below is a
list of the modules, their purposes, and where they are used. This was given to our client as a “handoff” tool used for future developers on this
project. Some modules are not currently in use but have been implemented as part of the forward-looking design to support future features, such
as user email verification and other planned enhancements.

Creating Posts/Listings
• firebase-createPosts.js

 Purpose

• It provides a backend interface for creating and saving posts/listings.

• Connects the frontend (e.g., PageAddListing.vue page) to the Firestore database.

 Use

• Ensures posts are tied to the currently authenticated user (uid), enabling features like filtering posts by user.

Retrieving All Posts/Listings
• firebase-getPosts.js

 Purpose

• Retrieves all posts/listings from the “posts” collection in Firestore.

• Parses each document in the snapshot and creates an array of all posts, including their Firestore document IDs (id)

and their data.

• Returns this array for use in components that need to display multiple posts.

 Use

8 | P a g e

• Displays all the current site user posts/listings on PageHome.vue page.

Retrieving One User Post/Listing
• firebase-getListing.vue

 Purpose

• Retrieves a single user post/listing by its unique listingId.

 Use

• Currently not used.

Delete One User Post/Listing
• firebase-deleteListing.js

 Purpose

• Deletes a single user post/listing by its unique listingId.

 Use

• Deletes user post/listing on UserListing.vue page

Retrieve All User Posts/Listings
• firebase-getUserListings.js

 Purpose

• Retrieves all user posts/listings associated with the current authenticated user’s identification (uid).

 Use

• Used to retrieve and display all user posts/listing on UserListings.vue page.

Update an Existing Post
• firebase-updatePost.js

 Purpose

• Updates an existing post in the posts collection of Firestore with new data (updatedData) based on the provided

listingId.

 Use

• Used when a user updates their post/listing on EditPost.vue page.

Retrieve User Information
• firebase-getUserInfo.js

• Purpose

▪ Retrieves user data from Firebase Authentication based on a user's unique ID (uid).

• Functionality

▪ Provides two functions:

• getListingUser(uid):

o Fetches a user's complete authentication record using getAuth().

• getUserEmail(uid):

o Retrieves the email address associated with a user’s uid using the Firebase Admin SDK.

• Use

▪ Currently Not used

Save User Data to Firestore

• firebase-userdata.js
• Purpose

▪ Saves additional user profile details (e.g., name, phone number, business name, location) into Firestore under the

user's collection.

o Functionality

• Saves data submitted via forms (e.g., PageAccountInfo.vue page) into a Firestore document located at users/<uid>.

• Fields include:

• Full name

• Business name

• Phone number

• Location

• Owner

• Renter

• Etc.

9 | P a g e

o Use

• Used to store custom user information beyond what is available in Firebase Authentication.

• Supports features like profile pages, where extended user details are displayed.

Centralize Initialization of Database and Authentication
• index.js

• Purpose

▪ Centralizes the setup and initialization of Firebase services (e.g., Authentication, Firestore).

▪ Provides utility functions (getListing and getUserEmail) to interact with Firestore.

• Key Responsibilities

▪ Initializes Firebase with your app's configuration (firebaseConfig).

▪ Sets up Firebase services like:

• Authentication (auth)

• Firestore Database (db)

▪ Uses onAuthStateChanged to track user authentication state changes and update the userStore and LocalStorage.

▪ Provides helper functions:

• getListing(listingId): Fetches a specific listing from Firestore.

• getUserEmail(uid): Retrieves a user's email from the user's collection in Firestore.

• Why It’s Necessary

▪ Without this file, you would need to repeat Firebase initialization code and utility functions in every component or

module where Firebase is used, leading to duplication and maintenance issues.

Register a New User
• firebase-register.js

• Purpose

▪ Creates a new user in Firebase Authentication using an email and password.

▪ Updates the user’s profile with a display name based on the provided first and last name.

• Use

▪ Used on the PageRegister.vue page when a user submits a registration form.

▪ Handles the creation of a new user account and sets up their profile information.

User Login
• firebase-login.js

 Purpose

▪ Logs in a user via Firebase Authentication using their email and password.

▪ Updates the application state (userStore) with the authenticated user's data on successful login or clears it on failure.

 Use

▪ Used on the PageLogin.vue page when a user submits their login credentials.

▪ Handles session management and error notifications for login attempts.

Sign Out a User
• firebase-signout.js

 Purpose

▪ Signs out the currently authenticated user using Firebase Authentication.

▪ Clears the user's data from the application state (userStore) and provides feedback to the user during the process.

 Use

▪ Used in components or pages where a logout option is available, such as a settings page, profile dropdown, or

navigation drawer.

▪ Ensures the user is signed out of Firebase and their session is terminated.

10 | P a g e

Organizational Design of File Types and Functions
The following is the organizational design of file types according to their function. This was part of the handoff package given to our client as a tool
to help future developers on their project adhere to the same design.

RBAC (Role-Based Access Control) Design
The following was our team’s RBAC design for the application. However, due to time constraints we were not able to implement it. This design was
passed off to our client for future groups to implement.

11 | P a g e

VIII. Software Test and Quality
Team JO-3D implemented and provided the results for the following tests to the client, BossVentures in order to ensure the product that they are
receiving is able to handle the tasks it was asked to perform. A more detailed description of each test is listed below the following spreadsheet:

12 | P a g e

Category Test Name Environment Setup Expected Result Result
Load Test Response Time Application Vitest <200 ms Passed

 Error Rate Application Vitest 0 Passed

 Concurrent Users Application Vitest
 Site does not
crash Passed

Authentication Login: Valid Application Vitest
 Handles proper
authorization Passed

 Login: Invalid Application Vitest
 Handles proper
authorization Passed

Strong/Weak Password
requirements Application Vitest

Handles proper
authorization Passed

 Password Storage Application Vitest n/a Passed

SQL Injection
Prevention/Sanitizatio
n of User Inputs Application Vitest

 Handles queries
properly Passed

Invalid User Input Boundary Value Testing Application Vitest
 Does not allow
invalid input Passed

Invalid Data Type
Testing Application

 Does not allow
invalid input Passed

Injections Attack
Testing Application Vitest

 Does not allow
invalid input Passed

Input Constraints
Testing Application Vitest

 Does not allow
invalid input Passed

Dynamic Screen Size Test
Horizontal Scrolling
Intact Over All Devices Application Vitest

 Ensure
functionality Passed

No Content Hidden or
Cut Application Vitest

 Ensure
functionality Passed

Page Elements/Buttons
Accessible Application Vitest

 Ensure
functionality Passed

Images/Video/Media
Scale Properly Application Vitest

 Ensure
functionality Passed

Edit Test (Confirm Deletions)
Data/Images Deleted
on Front End (Site) Application Vitest

 Database
updates Passed

Data/Images Deleted
on Back End
(Database) Application Vitest

 Database
updates Passed

Email Confirmation Test Bulk Email Application Vitest Email received Not Passed

 Single Email Application Vitest Email received Not Passed

User Navigation
Ease Finding Critical
Site Navigation Buttons In Person Survey n/a

 Most said
very easy

Overall Navigation
Experience In Person Survey n/a

Most said
very good

Load Test
A load test is a performance test used to evaluate how an application behaves under normal or peak usage conditions. The goal is to determine
how well the system performs when multiple users access it simultaneously, helping to identify bottlenecks and ensure the application can handle
expected traffic. J0-3D will be testing the LeaseLinks site for the following:

• Response Time - How long it takes to process a request (e.g., page loads, API calls).

• Error Rate - Percentage of failed requests or errors under load.

13 | P a g e

• Concurrent Users - The number of users the system can support simultaneously.

Authentication
Authentication is a critical part of any application’s integrity and security both from a functional and security standpoint. JO-3D will test the
following on the LeaseLinks application:

Authentication - Functional Tests

• Login with valid credentials - Verify users can log in with correct usernames/emails and passwords.

• Login with invalid credentials - Test login attempts with incorrect passwords or non-existent users.

Authentication - Security Tests
• Password policies - Check if the system enforces strong passwords (e.g., minimum length, special characters).

• SQL Injection in login - Verify the application sanitizes user inputs to prevent SQL injection attacks.

• Password storage - Check if passwords are securely hashed before being stored.

Invalid User Input
Often users input incorrect information into fields on applications whether innocently or maliciously in site attacks. JO-3D will test for these
scenarios including edge cases. Some of the things JO-3D will be testing for are listed below:

Boundary Value Testing
• Input size limits: Try entering:

o Too short: Empty fields or single characters.
o Too long: Inputs exceeding the maximum allowed length (e.g., 51 characters in a 50-character field).

• Whitespace characters: Use spaces, tabs, or newlines as inputs (e.g., " ").

Example:

• Username: Enter 256+ characters (when only 255 allowed).

• Password: Leave the field empty.

Expected Result:

• Errors with clear messages (e.g., “Input exceeds maximum length”).

• Application should not crash.

Invalid Data Type Testing
• Enter numbers in text fields (e.g., username = 12345).

• Enter letters in numeric fields (e.g., age = abc).

• Using special symbols where not allowed (e.g., username = #@!user).

Example:

• Phone number: Enter abc123.
Expected Result:

• Should reject invalid data types (e.g., “Enter only numeric values”).

Injection Attack Testing
• SQL Injection: Enter SQL commands like:

o ' OR 1=1; --

• XSS (Cross-Site Scripting): Enter:
o <script>alert('XSS');</script>

• Command Injection: Try:
o ; rm -rf /

Expected Result:
• Input should be sanitized or escaped (see Appendix) to prevent SQL attacks.

• No sensitive information leaked in error messages.

Input Constraints Testing
• Password validation: Use inputs without special characters or required elements (e.g., password = password123 when special symbols are

required).

• Email validation: Enter improperly formatted emails like user@@domain.com or user.com.

14 | P a g e

• Username validation: Use reserved words (e.g., admin, root).

Expected Result:

• Display relevant validation errors.

• Passwords should meet all password complexity rules.

Dynamic Screen Size Test
Dynamic screen size testing ensures that an application provides a smooth, consistent, and responsive user experience across multiple devices and
screen sizes, including desktops, tablets, and smartphones. JO-3D will utilize either Chrome’s device emulator or real devices to ensure the
LeaseLinks application is optimized on all known devices. JO-3D will check that on every device the LeaseLinks application does the following:

• The layout adapts without horizontal scrolling.

• No overlaps or content cuts on any screen size.
• Page elements (buttons, text) remain accessible.

• Image, video, and media scale properly.

Edit Test (Confirm Deletions)
Proper data maintenance is critical for both the security and functionality of an application. JO-3D will test to ensure any data including images is
properly deleted from the LeaseLinks application. JO-3D will ensure deletions performed will be deleted on both the front end (site) and the back
end (database) of the application.

Email Confirmation Test
JO-3D will test whether emails that are sent are received by the intended recipient. Testing will include the following:

• Bulk emails sent are received by all recipients and only one email is received by each recipient.

• Single emails are received by the proper recipient and all data in the sent email is in the received email.

User Navigation
A positive user experience is critical for an application's success. JO-3D will have users test the navigability of the LeaseLinks application. Things

that users will be asked to provide feedback on are:
• Ease to find critical site navigation action buttons.

• Overall experience navigating the application.

User Navigation Testing - Results
Six human users helped test the usability of the application. Test outcomes were either “fail” or “pass.” The tests conducted were whether the user
was able to:

I. Add/create a listing
II. Delete a listing

III. Update a listing
IV. Upload photos
V. Locate their listings (and other people’s listings)

IX. Project Ethical Considerations
JO-3D is conscious of the many ethical considerations that must be taken during implementation of modern technological projects. JO-3D has
divided those considerations into the following two categories:

• Techno-Professional Ethical Considerations

• Techno-Social Ethical Considerations

15 | P a g e

These moral and ethical considerations are founded on team JO-3D's personal high moral standards, the belief in a social contract, and standards
set forth by the IEEE (Institute of Electrical and Electronics Engineers) and ACM (Association for Computing Machinery), two prominent professional
organizations in the field of computer science and engineering. When relevant the relevant ACM/IEEE principal reference number will be listed with
the corresponding ethical consideration for this project.

Techno-Professional Ethical Considerations

Data Confidentiality and Integrity
IEEE, 3.12. Work to develop software and related documents that respect the privacy of those who will be affected by that software. [2]

• JO-3D will work to ensure all user data on the LeaseLinks application is secure and free from malicious interventions like Cross-Site
Scripting attacks. JO-3D is aware that a breach of user data could have a ripple effect since users often use data like passwords on
multiple sites and applications. JO-3D will utilize software development products that have built in tools to prevent malicious attacks on
the site both external and internal to ensure user’s data is protected. Additionally, JO-3D will test the efficacy of said products. When
weighing the efficacy of systems employed to protect users' data JO-3D uses the “reversibility” test defined below.

Reversibility test: would this choice still look good if I traded places? (i.e., if I were one of those adversely affected by it?)

Quality of Product
• IEEE, 3.08: Ensure that specifications for software on which they work have been well documented, satisfy the users requirements, and

have the appropriate approvals. [2]

• IEEE, 3.10: Ensure adequate testing, debugging, and review of software and related documents on which they work. [2]

JO-3D always employs the best industry practices in all things related to software development. JO-3D will continually touch base with the
client/user to ensure all of their specifications and requirements are met. Additionally, JO-3D will perform extensive testing to ensure any edge
cases not addressed or foreseen by the client/user are properly addressed. JO-3D is aware that if these measures to ensure product quality are not
properly implemented the client/user will be left with a product that does not meet their standards and may be a product that ends up costing
them revenue without any foreseeable return.

Social Ethical Considerations

Project Confidentiality and Integrity
• ACM, 1.3: Be honest and trustworthy. [1]

• ACM, 2.03: Use the property of a client or employer only in ways properly authorized, and with the client’s or employer’s knowledge and
consent. [1]

All members of team JO-3D have entered into a non-disclosure agreement with Boss Ventures and must consider the implications of not adhering
to said agreement. In doing so, the client at a minimum will lose revenue and lose the opportunity to bring a novel product to the market.

Technological Development Creates/Destroys Jobs
• ACM, 3.1: Ensure that the public good is the central concern during all professional computing work. [1]

• ACM, 1.2: Avoid Harm. [1]

Team JO recognizes the delicate balance of technological development and job opportunities. Team JO-3Drecognizes that the development of the
app LeaseLinks may have a causal effect of jobs like leasing agents to become obsolete. Team JO-3D hopes that with the development of this
application more lives are made better. Additionally, team JO hopes the convenience and cost saving function the application provides outweighs
any damage done within the job market.

Mindful Professionalism
• IEEE, 2.1: Strive to achieve high quality in both the processes and products of professional work. [2]

• IEEE, 2.2: Maintain high standards of professional competence, conduct, and ethical practice. [2]

Team JO-3D recognizes that beyond project considerations the humans bringing the project to fruition must also be considered. Team JO-3D
commits to positive, edifying, respectful, and uplifting human interactions with all involved on this project. JO-3D asks that each team member
employ the “mirror”, and “common practice” tests defined below when weighing whether an interaction with a client or team member is
appropriate or beneficial.

o Mirror test: Would I feel proud of myself when I look into the mirror?
o Common practice test: What if everyone behaved this way?

https://www.acm.org/code-of-ethics#h-3.1-ensure-that-the-public-good-is-the-central-concern-during-all-professional-computing-work.
https://www.acm.org/code-of-ethics#h-2.1-strive-to-achieve-high-quality-in-both-the-processes-and-products-of-professional-work.
https://www.acm.org/code-of-ethics#h-2.2-maintain-high-standards-of-professional-competence,-conduct,-and-ethical-practice.

16 | P a g e

X. Project Completion Status
The client does not expect the application to be a minimal viable product by the end of the semester. Their focus is on our learning and making
honest progress towards their goal of an MVP. Intermediate completion goals that were set were the implementation of 3 things:

1) CRUD (create, read, update, delete) for listings
2) Mobile optimization
3) RBAC (role-based access control) for lessors and lessees (stretch goal)

a) CRUD and Mobile optimization were implemented. However, we were not able to get to RBAC due to a lack of time.

CRUD (create, read, update, delete) for listings

Create

17 | P a g e

Read

18 | P a g e

Update

19 | P a g e

Delete

Mobile optimization
Viewing of the application was made optimal for all devices ranging from 344 – 1280 pixels in height to 600 – 1368 pixels in width. For example,
here is the home page for the smallest and largest height and width devices in the range provided:

20 | P a g e

Galaxy Z fold 5 – 344 x 882

Surface Pro 7 – 912 x 1368

21 | P a g e

XI. Future Work
Future work on this web application involves several enhancements to improve usability, functionality, and access control. A primary feature yet to
be implemented is a “Map View”, which would allow users to see all available listings on an interactive map. This map would display location-based
pins for each listing, giving users a spatial overview of available properties and helping them quickly identify options within specific areas. In terms
of search functionality, the application currently provides labels to filter results by amenities, location, and other variables, but these filters are not
yet connected to the backend. Implementing dynamic search capabilities would empower users to refine their search results effectively, finding
listings that best meet their needs and preferences. Another essential future feature is the introduction of Role-Based Access Control (RBAC), which
would allow different types of users—such as lessees and lessors—to have tailored access permissions. With RBAC, users could be limited to
certain actions based on their roles, such as creating and editing only the listings they have posted. Future work implementations are summarized
below in order of their respective priority:

User RBAC
 Role Based Access Control (RBAC) for Lessee or Leasor to change the view and access to things like creating and editing posts

based on the listings they have put up.

Search Functions
 Currently there are labels to narrow down search based on amenities and location and other variables, but these menus do not

have functionality on the backend.

Map View
 Map based on listing addresses to see the listings available in a rendered map view with pins based on location

Additional future work might include enhancing user experience through notification systems, such as alerts for new listings or updates to saved
properties, as well as introducing messaging functionality for users to communicate directly within the platform. Another potential improvement is
integrating advanced analytics for property owners, providing them with insights into views, and other user interactions with their listings. These
are features and updates that could help elevate the user experience of the app after the initial launch and testing has begun.

XII. Lessons Learned
Overall, team JO-3D performed exceptionally well. However, like with all projects there were the inevitable bumps in the road and lessons that
were learned. These lessons are listed below:

Cache Staleness

During the development of our application, we encountered an issue known as "cache staleness" or "cache retention." This occurs when outdated
versions of files are stored in the cache, causing older versions of the app to load instead of the latest updates. In our case, this resulted in the
home page failing to load, leading one developer to mistakenly assume they had broken the app. As a result, they reverted to an older version via
Git, which led to a loss of ten hours of work. After discovering the impact of cache staleness, our team now clears the cache each time before
launching the application to ensure the most recent version is displayed.

Thorough Assessment of Previous Development Work:
Team JO-3D initially believed we had thoroughly assessed prior development work before moving forward. However, since parts of the tech stack
were new to some team members, there were gaps in understanding that led to redundant code. This caused confusion, especially with routing,
where duplicate routing files existed. Some pages were routed by function and variables in one file, while others were routed in the duplicate,
leading to inconsistencies. All redundant routing files were deleted. Going forward, we plan to review prior code more carefully to ensure a unified
approach.

XIII. Acknowledgments
We would like to give a massive shoutout to BossVentures LLC for helping foster our growth in web app development and for allowing us to be a
small part of the exciting growth of their company. Special shoutout to Julianna Bologa and Mike Halverson who were our client liaisons
throughout the project. You guys are/were wonderful, and your guidance was/is greatly appreciated! Lastly, we would also like to give a massive
shoutout to Kathleen Kelly, our Advisor/Mentor/Idol on the school side. Professor Kelly helped us to stay on track, achieve our goals, return a
quality product to our client, and taught us a lot about teamwork and communication along the way.

XIV. Team Profile
Michael (Johnny) Bryant

Senior

22 | P a g e

Computer Science
Hometown: Los Angeles, California
Work Experience: US Army – Signal Support Systems Specialist Airborne, Fiber Optic Technologies – Project Foreman
Intel – Project Manager, Paragon Ballroom and Dance Instruction – Owner, Dance Instructor, Choreographer
I am excited to be part of a project that not only allows me to apply some of what I have learned about Computer Science so far but also allows me
to learn even more.

Jonas Edelstein
Senior
Computer Science
Hometown: Seattle, Washinton
Work Experience: IT Intern – Infinity Concrete construction, IT Intern – Lavner Education, Athletic Communications Associate – Colorado School of
Mines.

Joseph Reedy

Junior
Computer Science at Mines
Work Experience: Junior Software Engineer at Pax8
As a computer science major, I am excited to apply my knowledge and learn new skills.

23 | P a g e

XV. Annotated Peer Reviews
Review 1

24 | P a g e

25 | P a g e

Review 2

26 | P a g e

27 | P a g e

Review 3

28 | P a g e

29 | P a g e

References
All references must be numbered in the order they are cited within the text
Formatted per IEEE format
Be sure to include citations for interviews.

[1] "ACM Code of Ethics and Professional Conduct," [Online]. Available: https://www.acm.org/code-of-ethics.
[Accessed 19 October 2024].

[2] IEEE-CS/ACM joint task force on Software Engineering Ethics and Professional Practices (SEEPP), "Code of Ethics:
IEEE-CS/ACM Joint Task Force on Software Engineering Ethics and Professional Practices," [Online]. Available:
https://www.computer.org/education/code-of-ethics. [Accessed 19 October 2024].

30 | P a g e

31 | P a g e

Appendix A – Key Terms
Include descriptions of technical terms, abbreviations and acronyms

Term Definition

API API – and API or Application Programming Interface, is a set of rules that allow
software applications to communicate with each other. APIs can make software
development faster and easier by allowing developers to integrate data,
services, and capabilities from other applications

back-end The back-end is the infrastructure and data that allows an application to
function. It's also known as the server-side and is made up of the server,
application, and database. The back-end is responsible for storing and
processing data for users, and for ensuring that everything runs smoothly
behind the scenes.

Firebase Firebase (backend / infrastructure) is Google's mobile and web app

development platform that helps developers build apps and games used for

authentication just a JavaScript function to add authentication

Firestore Firestore is Google’s NoSQL document database that's used to store data in

documents organized into collections. It's designed to simplify the process of

syncing, storing, and querying data for mobile, web, and IoT (Internet of Things)

apps. Firestore is suitable for applications that require query ability, scalability,

and high availability, such as those that involve live asset tracking, activity

tracking, real-time analytics, and more

Git Git – an open-source version control software, to enable real-time collaboration

between multiple people.

GitHub GitHub - a cloud-based platform that allows users to store, share, and

collaborate on code and files. It's a web-based interface that uses Git, an open-

source version control software, to enable real-time collaboration between

multiple people.

MVP

An MVP is a Minimum Viable Product. As the name suggests, it requires the

minimum amount of development to achieve a state where users may test it. By

merely developing the minimum amount to achieve viability the cost of

development is limited prior to testing. Therefore, if while testing the product

users don’t rate it well, costs associated with overdevelopment will be saved.

Quasar Quasar is a component library of Vue (see Vue.js in here in Appendix A)

Pinia Pinia is a store library for Vue, it allows you to share a state across

components/pages and keep any existing state while developing

serverless back-end A serverless back-end is a platform that eliminates the need for developers to

deploy and maintain web servers and other common back-end features like

authentication or database access management.

Virtual DOM Virtual DOM (Virtual Document Object Model) is a programming concept where
a virtual representation of a UI is kept in memory synced with “Real DOM” by a
library such as ReactDOM and this process is called reconciliation. Virtual DOM
makes the performance faster, not because the processing itself is done in less
time.

Vue.js

Vue.js – an open-source JavaScript framework for building user interfaces (UIs).

Vue.js is built on top of HTML, CSS, and JavaScript, and uses a component-based

programming model to help developers efficiently create UIs. It is a Virtual DOM

(see Virtual DOM here in the Appendix)

32 | P a g e

escaped Escaping means treating special SQL characters like single quotes ('),

semicolons (;), and others as literal text. This is used in reference to SQL

injection attacks being turned benign by the use of “escaping” any potentially

harmful characters rendering them literal text rather than destructive SQL

command elements

	I. Introduction
	The client provided Tech Stack is as follows:

	II. Functional Requirements
	III. Non-Functional Requirements
	IV. Risks
	V. Definition of Done
	VI. System Architecture
	1. Front-End:
	2. Back-End:
	3. Version Control:
	Example of interaction of System Architecture Components
	System Architecture Visualization

	Data Flow and Interaction:

	VII. Technical Design
	Routing
	Firebase (Database) – Custom Built Functional Modules
	Creating Posts/Listings
	Retrieving All Posts/Listings
	Retrieving One User Post/Listing
	Delete One User Post/Listing
	Retrieve All User Posts/Listings
	Update an Existing Post
	Retrieve User Information

	Save User Data to Firestore
	Centralize Initialization of Database and Authentication
	Register a New User
	User Login
	Sign Out a User

	Organizational Design of File Types and Functions
	RBAC (Role-Based Access Control) Design

	VIII. Software Test and Quality
	Load Test
	Authentication
	Authentication - Functional Tests
	Authentication - Security Tests

	Invalid User Input
	Boundary Value Testing
	Invalid Data Type Testing
	Injection Attack Testing
	Input Constraints Testing

	Dynamic Screen Size Test
	Edit Test (Confirm Deletions)
	Email Confirmation Test
	User Navigation
	User Navigation Testing - Results

	IX. Project Ethical Considerations
	Techno-Professional Ethical Considerations
	Data Confidentiality and Integrity
	Quality of Product

	Social Ethical Considerations
	Project Confidentiality and Integrity
	Technological Development Creates/Destroys Jobs
	Mindful Professionalism

	X. Project Completion Status
	CRUD (create, read, update, delete) for listings
	Create
	Read
	Update
	Delete

	Mobile optimization
	Galaxy Z fold 5 – 344 x 882
	Surface Pro 7 – 912 x 1368

	XI. Future Work
	User RBAC
	Search Functions
	Map View

	XII. Lessons Learned
	Cache Staleness
	During the development of our application, we encountered an issue known as "cache staleness" or "cache retention." This occurs when outdated versions of files are stored in the cache, causing older versions of the app to load instead of the latest up...

	Thorough Assessment of Previous Development Work:
	Team JO-3D initially believed we had thoroughly assessed prior development work before moving forward. However, since parts of the tech stack were new to some team members, there were gaps in understanding that led to redundant code. This caused confu...

	XIII. Acknowledgments
	XIV. Team Profile
	Michael (Johnny) Bryant
	Jonas Edelstein
	Joseph Reedy

	XV. Annotated Peer Reviews
	Review 1
	Review 3

	References
	Appendix A – Key Terms

