
CSCI 370 Final Report

Lab Ratz

James Garrison
Jacob Wienecke

Scott Ruckel
Eliot Edwards

Revised June 15, 2022

CSCI 370 Summer 2022

Professor Bodeau

Table 1: Revision History

Revision Date Comments
New 5-17-2022 n/a

Rev – 2 5-18-2022 Initial requirements filled in; team profile edited

Rev – 3 5-19-2022 Team profile edited

Rev – 4 5-20-2022 Requirements revised

Rev – 5 5-23-2022 Risks revised

Rev – 6 5-27-2022 Added system architecture section

Rev – 7 6-03-2022 Added testing and ethical considerations sections

Rev – 8 6-06-2022 Results table added

Rev – 9 6-08-2022 Updated project completion status and lessons learned

Rev – 10 6-09-2022 Added future work section

Rev – 11 6-12-2022 Updated table of contents section

Rev – 12 6-13-2022 Added Lessons Learned section

Rev – 13 6-15-2022 Made revisions from peer group review

1 | Page

Table of Contents

I. Introduction 3

II. Functional Requirements 3

III. Non-Functional Requirements 3

IV. Risks 3

V. Definition of Done 0

VI. System Architecture 0

VII. Software Test and Quality 0

VIII. Project Ethical Considerations 0

IX. Project Completion Status 0

X. Future Work 0

XI. Lessons Learned 0

XII. Team Profile 0

References 0

Appendix A – Key Terms 0

2 | Page

I. Introduction
This project, brought to us by Table Mountain Innovation, is an interface designed to track and compare blood test data
from multiple testing corporations over time and coagulate all of the data gathered into an interactive and visually
pleasing graph. The purpose of the progressive web application that we are designing is to be able to clearly visualize all
different types of blood tests in a singular place so the user can draw conclusions and see improvement or deterioration
from their own test results.

Our client, Table Mountain Innovation, is run by Chris Crowley who is an innovator with nearly 40 years of industry
experience. When discussing the project with Chris, it was clear he felt very strongly about the topic. Chris recently found
out that he had an autoimmune disease after nearly 3 years with hundreds of blood tests taken. When parsing through
hundreds of blood tests data reports, Chris pondered that there had to be a better way for users to track and compare
data in one place in order to draw their own conclusions and not have to wait for a doctor who could potentially miss the
diagnosis altogether. The overall goal, as described by Chris, is to eventually have doctors and users pay for a subscription
to the web app and upload their data over time so it can be tracked and monitored.

The source of the data we collect comes from each user uploading their own individual test results in JSON form to our
web app, which will in turn make the interactive graph for the user. This makes not only the user a stakeholder in their
own data, but doctors and insurance companies as well who may want to interact and study a user's data over time, as
long as that is granted through permissions given by the user. The software will be maintained over time through Table
Mountain Innovation’s software engineers and will follow industry standards closely.

II. Functional Requirements
The user must be able to upload many files into the website that contain the results from a blood test. After this the
website will parse through the data file and collect all of the necessary data to display the blood test results in a line
graph. The user will then have the ability to choose what components of the blood test they would like to display on the
graph. The graph will display the components relative to the healthy range in a normalized value as opposed to in their
respective units so we can fit them all on a singular logical y-axis. There will also need to be a hyperlink that is embedded
for each test that takes you to the loinc.org webpage explaining the test results.

III. Non-Functional Requirements
The client was very adamant on having a clean presentation of the final design. Also the graph needs to be very
customizable. The client wants to be able to look through his own blood test results so he needs many different features
that alter the graph and change the data to be able to find trends/problems.

IV. Risks
The process of manipulating, analyzing, and visualizing an individual's medical data introduces several risks. Many of
these risks emphasize the importance of the blood test data to be read and displayed accurately and precisely. In order
to do this, our progressive web application (PWA) [Appendix A] will require each blood data file to be the supported file
type, have the supported formatting, display an accurate graph, and be visually pleasing to the user.

Since our solution may eventually assist an individual in identifying or predicting medical patterns and conditions, it is
extremely important for our tool to display accurate results to the user. Otherwise, among other things, the graphical
display may suggest inaccurate medical implications. On the other hand, it is possible that certain blood test results were
measured or recorded inaccurately. Although showing a user incorrect medical data can be detrimental, the lab that
performed the incorrect test is responsible for the consequences that may come from this circumstance.

Ending with an accurate graphical representation of the data begins by having an effective method for reading in the data
from laboratory-distributed blood test result files. To ensure that our application will not crash at the data-import stage,
only JavaScript Object Notation (JSON) files will be accepted as input. For more details regarding JSON and JSON files,
refer to Appendix A. Additionally, because the standard text format for laboratory blood test results is HL7/FHIR format,
this is the format that our application will require and initially check the data files for [4].

3 | Page

The program will then check that the JSON file is in the format that our graphing algorithm can handle. Without this
check, we risk the formatting of the input file not being properly supported by the program. This would result in the data
being read incorrectly from the file, and the graphical representation of the blood test results to be inaccurate.

Although we realize that it is possible that the format considered as standard for blood test results will change in the
future, we have no way of knowing what the differences will be compared to the current standard format. Despite this
concern, we think refactoring our application to support new formatting types would be manageable, if necessary.

Also, as with any medical result data, we have to comply with the Health Insurance Portability and Accountability Act
(HIPAA) [Appendix A], which requires national standards to protect sensitive patient health information [3]. For this
project, the user’s medical data will not be stored in memory. Although this means that the user will have to reupload all
of their blood result files every time they want to reload the graph, it also means that we do not risk incompliance with
the HIPAA. Users may be given the option to store their results locally, but the website will retain any user information in
order to coincide with the policy.

V. Definition of Done
Our task is to create a PWA that takes blood test data files from the user as input and returns a visually-pleasing,
interactive graph to the user. This tool will allow the user to compare data from their complete blood count test results in
a way that is convenient and user friendly. Specifically, the graphing tool will allow users to select the individual results
that they would like to compare against one another, plot these results on a singular graph, and see a visual
representation of the corresponding normal ranges for each result. Additionally, the graphing tool will display doctor’s
comments for each test result if there are any present.

VI. System Architecture
To accomplish our task we will be using a couple different 3rd party elements to make a graph. In order to display a graph
on our website it is necessary to import a JavaScript library. For this we choose ChartJS because it is free and intuitive to
use. Also, our client suggested that we use Replit for our IDE. Replit is a fantastic online IDE that has real time
multi-person editing like google drive which is ideal for a group project. Replit also features an interactive preview page
for the website we are building so that the changes we make can be inspected and tested without leaving the browser
tab. Since this is more of a proof of concept than a profitable product, Replit is perfect because of the features it offers,
and we don’t have to worry about sharing any profits.

We will be building a website so naturally we will be programming in HTML, CSS and most significantly JavaScript. When
files are uploaded they will be passed from HTML into a JavaScript function where they will be parsed for the data that
we care about. The data from every test will be put into a testResult object that stores the name of the molecule being
tested for and all the numbers needed to put it on the graph. Since one blood draw is often tested for many different
things, we will have an array of the testResults mapping to the date it was collected on. This is a very intuitive design
because the x-axis will be the dates of every blood collection, or the key in our map, and the y-axis will be the results
from that day, or the corresponding value in our map. All of the data manipulation will be happening in JavaScript where
we will then create a graph and bind it into HTML. CSS will be used to make the website look pretty and put the ever so
important background on the graph which conveys what test results are good and which ones were bad.

Figure 1 shows the fundamental wire frames for the website.

4 | Page

Figure 1: Wireframes for online WebApp

VII. Software Test and Quality
We will use the Unit.js library to import assertions to create unit tests for our backend. The parsing algorithm will be
what is tested in most of our unit tests. This collection of tests will be used to ensure that the files a user uploads are
parsed correctly and the data is stored into the data structure correctly. These tests will run the parsing algorithm with a
collection of files that include all of our edge cases in an attempt to break the algorithm and also some regular files
included to make sure we are generating the correct normalized graph value. The following are some examples of the
tests we will use to test the edge cases of our parsing algorithm. This will include files with not enough information to
ensure that no testResult object is created. It will also include numerous files that have abnormal ranges to certify that
our code has the ability to create a normalized graph value for an assortment of different ranges and distinguish those
from nonsense ranges. These ranges will include less than/greater than, positive/negative, and nonsense ranges, and the
test will assert that all of these graph values are generated and stored correctly. We will also have a test that includes
multiple files from the same day to see if the algorithm is able to store these values in the correct spot in the data
structure. All of these tests will ensure that the parsing algorithm and the rest of the backend works as intended.

The front end will be much more difficult to have tangible tests for. Instead, we will rely heavily on manual tests that we
as a group will perform to ensure that the website has good formatting and clean presentation. We want the graph and
the rest of the elements on the page to look neat and professional. This will include testing the website on an assortment
of devices to ensure that the alignment and styling looks good on different screen sizes. Also, there are many different
ways to navigate through the website. We will make sure that navigating pages and pushing buttons in any order will not
affect the underlying data structures holding all of the important information. Testing the front end will be difficult and
mostly consist of using the website in ways that we know it should not be used to see if the back end is negatively
impacted in any way.

Tables 2 and 3 display the results from unit testing and testing the UI WebApp.

5 | Page

Table 2: Results from UI WebApp Testing

Test Result Comments

UI manual tests N/A Everything works well except for the tooltip. Could be a problem with the way we
override the tooltip or just a problem with ChartJS. This isn’t a huge problem because
the correct data is displayed and is easily fixable but definitely something to look into
for future work.

Different browsers Passed We tested the website on most common up-to-date browsers and everything worked
as intended. Browsers tested include: Safari, Firefox, Chrome, Edge.

UI testing Failed:

Bug found
and fixed

When files are uploaded multiple times the website generates new checkboxes for
every test that has been uploaded. This was fixed by deleting all current checkboxes
when the generate checkboxes button is clicked. This way the website will generate
checkboxes for every dataset included every time the button is clicked.

Tooltip Failed Occasionally when there has been multiple assortments of datasets previously
selected, and certain tooltips are activated the graph will revert to previous datasets.
This has really weird circumstances when it happens and must be related to the
ChartJS library but we were not able to fix it. The graph can be fixed by clicking the
graph again or will revert back if the first tooltip in a given dataset is hovered. Tooltip
does display correct information but has weird interactions occasionally.

No data stored Passed When the website is closed or refreshed the data is erased and the website starts
from fresh.

Multiple users Passed As long as there are not too many people using it at the same time, multiple users can
be using the website locally simultaneously with no crossover of data.

Mobile Passed This test passed much better than expected. Website looks great on mobile and works
perfectly. The tooltip didn’t mess up the dataset and the graph and checkboxes were
all generated correctly. We tested on iPhone and Android.

>5 components selected Passed To prevent a cluttered graph we made a limit to the amount of datasets that are
allowed to be included in the graph. When more than 5 tests are clicked a popup is
brought up and no graph is generated. If more color values are added we are able to
generate more datasets onto the graph but this will become cluttered and hard to
interpret.

Miscellaneous Passed This is here to say that many other small things were tested such as random button
clicking that don’t have formal ways of reporting. The UI has been thoroughly
manually tested.

6 | Page

Table 3: Results from Simulated Unit Testing

Unit Test Result Comments

Standard Range Passed This tested a given range in the format “xx-XX unit”. All tests from Chris’s data and the
files we generated passed. The unit test tested the normalized graph value and the lower
and upper bounds, and everything was generated and stored correctly.

Less than Passed This tested a given range in the format “< xx unit”. All tests from Chris’s data and the files
we generated passed. The unit test tested the normalized graph value and the lower and
upper bounds, and everything was generated and stored correctly.

Greater than Passed This tested a given range in the format “> xx unit”. All tests from Chris’s data and the files
we generated passed. The unit test tested the normalized graph value and the lower and
upper bounds, and everything was generated and stored correctly.

Less than or equal to Passed This tested a given range in the format “> OR = xx unit”. All tests from Chris’s data and
the files we generated passed. The unit test tested the normalized graph value and the
lower and upper bounds, and everything was generated and stored correctly.

Positive/Negative Passed This tested a given range in the format “POSITIVE” or “NEGATIVE”. All tests from Chris’s
data and the files we generated passed. The unit test tested the normalized graph value
and the lower and upper bounds, and everything was generated and stored correctly,
and everything was generated and stored correctly.

Multiple ranges Passed This tested one dataset with multiple different ranges in it. To try and edge case test this,
the dataset included ranges from 0.00-1.00 to 100-1000. The normalized values were all
generated correctly and without hovering over the tooltip there would be no way to tell
that these values were as different as they are.

Upper bound = 0 Failed This tested a range in which the upper bound is equal to zero. This included “< 0 unit”
and “0.0-0.0 unit”. It failed because of a divide by 0 exception, however in practice this is
highly impractical. If a blood test were to test for any concentration higher than 0 in a
patient’s blood, this would most likely be performed as a positive/negative test and not a
given range. If this were to be a problem in the future, we could simply treat it as a
positive/negative test for graphing purposes.

Incomplete test Passed This tested many files that did not have sufficient data to create a testResult object.
These files were parsed but did not include one or more of the necessary data needed

Incorrect file format Passed Files that are completely wrong (.txt/.pdf/wrong format) will not be interpreted correctly
by the parsing algorithm at all and won’t generate a testResult object. These files are
basically disregarded like insurance files that don’t include a test.

Unit testing was particularly difficult because we wanted to test our parsing algorithm with many edge cases, however
our code is based on the data we were given and do not know what other ranges or file formats could be possible.
Sufficient testing on the parsing algorithm will be possible when more data is provided, and when HIPAA is less of a
concern.

7 | Page

VIII. Project Ethical Considerations
The process of handling, manipulating, and analyzing medical data introduces ethical concerns that should be addressed.

Firstly, a tool that is intended for medical analysis and/or predictions requires a high level of accuracy, it is particularly
important to ensure that extra attention to detail is being paid wherever necessary. Association for Computing
Machinery (ACM) [Appendix A] Software Engineering Principle 1.03 states that software must not diminish quality of life.
If this product were to fail to report and graph the data accurately, the user could be harmed. This product could
potentially become a tool that users and doctors rely on for medical diagnosis and treatment; it is imperative that the
output data is entirely correct. As an end product, there should be proper disclaimers in place to ensure that the
graphing software data is cross-checked with the original lab tests.

Furthermore, since the client hopes to eventually possess a complete and monetizable product, it is possible that
additional ethical questions will be raised with succeeding projects. In general, the act of monetizing a product that may
be used for medical analysis and/or predictions should be carefully considered. Because this tool specifically may be able
to predict and/or explain an individual’s health history, it is imperative that the target audience for the product is

carefully selected. ACM [Appendix A] Software Engineering Principle 1.03 states that software should not
diminish privacy. A product dealing with medical data needs to be strictly regulated so that confidentiality is
maintained. The only people with access to one's medical data should be themselves and the doctor. The team
developing this product should not be able to view the data either.

IX. Project Completion Status
The deliverable for this project was a Progressive Web Application that takes blood test data files as input and displays a
visually-pleasing, interactive graph to the user. This tool is made up primarily by a parsing algorithm that extracts values
from each blood test and normalizes them relative to the given healthy range for that test. By normalizing the data, the
graph is able to accurately portray the trends of more than one test at a time. In addition, the graphing tool allows the
user to hover over each data point on the graph and see the date, actual range, and results of that specific test. Because
the graphing tool satisfies the requirements made by the client, the project is considered complete.

Figure 2: Final PWA Graphical Tool

8 | Page

X. Future Work
Future contributors to this project will have to be cognizant of HIPAA privacy and security rules. The current state of the
project is a proof of concept. HIPAA rules have been considered, but have not been closely followed. The web application
is currently hosted by a third party website, so a new host will have to be chosen to responsibly handle user data. An end
goal for the client is to have user-made accounts so that users can revisit their data without having to re-upload blood
test files. This implementation will require the design of a login interface. Additionally, the project currently features a
basic, but functional, user interface. A future implementation may include improving the existing interface to add more
functionality or otherwise make it more visually-pleasing. Future work may also involve adding features to make the
application more user friendly. Adding tool-tips or intuitive buttons that are easy to spot may be a positive inclusion.

XI. Lessons Learned
This project was much more open ended than classwork that we have done at Mines in the past. This gave us an
opportunity to work in a much different way than we typically do and thus had a fair amount of problems as we went
through the project. Specifically, we learned the importance of team dynamics. We did not have too many problems in
our team dynamic, however the reason we had success and were able to have fun throughout the project was due to our
dynamic. Communication amongst the team is necessary. This had a little bit of a learning curve towards the beginning
as our team had never worked together before and we had to get to know each other. However, once we delegated a
project manager this conversation became much more targeted towards the project and we began to work better
together. Having a good manager, keeping everyone on track while still embracing the fun aspect, is essential to having a
group that communicates and works well.

It is also of utmost importance that the client is satisfied. This means creating a product that satisfies the clients
requirements and vision for the product. It can be hard for a client to portray their vision accurately, so it is necessary to
ask many questions that clarify what the client actually wants to see in the product. We asked these questions and put
forth a product that our client liked, however this was after producing code that did not work well with the vision he had
in mind. As a computer scientist, it is imperative that you understand every detail the client wants before you begin to
code or you will end up redoing that code. Rewriting code that you already implemented incorrectly is a waste of time,
and minimizing this optimizes the time that you are able to write code that performs as intended. In order to catch these
mistakes early, sufficient testing is required. Testing allows a programmer to efficiently find out what edge cases are not
implemented correctly and saves loads of time debugging. We tested our website for quality assurance before handing
the product back to the client, however having the unit tests that we made while programming the product would have
saved us a lot of time. The unit tests would have streamlined testing the parsing algorithm. In the future we will
definitely make sure to have unit tests for any large software feature before jumping into the implementation. Our group
worked well, but we definitely had weak spots that will be addressed in our future endea

9 | Page

XII. Team Profile

James Garrison (jgarrison@mines.edu)

Project Manager

James is a Senior at Colorado Mines studying Computer Science with a concentration in

Business. Originally from Cave Creek, AZ, he came to Mines to be a member of the Colorado

Mines Football Team and receive an excellent education. While he does not have prior work

experience in the Computer Science field, he worked full-time at the Golden Mill located in

downtown Golden, CO. He is passionate about making the CS industry ethical and innovative,

and shares these passions with his group members and fellow colleagues.

Jacob Wienecke (jacobwienecke@mines.edu)

Advisor POC

Jacob is a Senior at Colorado School of Mines pursuing a degree in computer science with a

focus area in robotics and intelligent systems. He was drawn to Mines by the prestigiousness of

the school and an offer to play for the Mines Football Team. The chance to play sports and

pursue a STEM degree proved to be an offer he could not pass up. He does not have work

experience corresponding to the Computer Science field, but he worked two Summers

managing a team of lifeguards for a state park in the Austin, Texas area. As a type 1 diabetic,

he hopes to use his degree to make life easier for those with disabilities through medical

technology.

Scott Ruckel (scottruckel@mines.edu)

Client Liaison

Scott is an upcoming senior at Colorado School of Mines studying computer science. His

journey to Mines started when he was just a little boy as he would frequently visit Golden and

the Mines geology museum with his alumni grandfather. Since then he has worked hard to not

just get to Mines but play football here as well. While in college he has held a couple of

different jobs, most notably a Millwork Associate at Home Depot. He is jumping at the bit to

get out into industry and start making a difference with his programming and engineering

abilities.

10 | Page

Eliot Edwards (eedwards@mines.edu)

Scrum Master

Eliot is a senior at Colorado School of Mines, where she is currently finishing up her Bachelors

degree in Computer Science. Inspired by her brothers, and in addition to her studies, Eliot

grew up playing soccer competitively. Originally from South Denver, she was eager to continue

her competitive soccer career at a high-quality STEM school not far from home. Moving

forward, Eliot is passionate about furthering her personal, technical, and professional

development through opportunities that will allow her to challenge herself emotionally,

academically, and athletically.

11 | Page

References

[1] “About the ACM organization,” Association for Computing Machinery. [Online]. Available:
https://www.acm.org/about-acm/about-the-acm-organization. [Accessed: 15-Jun-2022].

[2] Cleveland Clinic, “Complete Blood Count | Cleveland Clinic,” Cleveland Clinic, 2014. [Online]. Available:
https://my.clevelandclinic.org/health/diagnostics/4053-complete-blood-count. [Accessed: 20-May-2022].

 [3] “What Is a Progressive Web Application?,” Codecademy News, Sep. 17, 2021. [Online]. Available:
https://www.codecademy.com/resources/blog/what-is-a-progressive-web-application/. [Accessed:
20-May-2022].

[4] “Health Insurance Portability and accountability act of 1996 (HIPAA),” Centers for Disease Control and Prevention,
14-Sep-2018. [Online]. Available:
https://www.cdc.gov/phlp/publications/topic/hipaa.html#:~:text=The%20Health%20Insurance%20Portability%2
0and,the%20patient's%20consent%20or%20knowledge. [Accessed: 20-May-2022].

[5] “JSON File Extension - What is a .json file and how do I open it?,” Fileinfo.com, 2018. [Online]. Available:
https://fileinfo.com/extension/json. [Accessed: 20-May-2022].

 [6] ”What is HL7? Definition and Details,” www.paessler.com. [Online]. Available:
https://www.paessler.com/it-explained/hl7. [Accessed: 20-May-2022].

 [7] “What Is FHIR®?” [Online]. Available:
https://www.healthit.gov/sites/default/files/2019-08/ONCFHIRFSWhatIsFHIR.pdf. [Accessed: 20-May-2022].

12 | Page

Appendix A – Key Terms

Term Definition

Association for Computing Machinery
(ACM)

Group that outlines the requirements for ethical professional conduct [1].

Complete Blood Count (CBC) A blood test that measures and counts blood cells to detect a range of disorders and conditions [2].

Fast Healthcare Interoperability
Resources (FHIR)

A standard that defines how healthcare information can be exchanged between different computer
systems regardless of how it is stored in those systems [7].

Health Insurance Portability and
Accountability Act (HIPAA)

A federal law which required national standards to protect sensitive patient health information from
being disclosed without the patient's consent or knowledge [4].

Health Level 7 (HL7) A set of clinical standards and messaging formats that provide a framework for the management,
integration, exchange, and retrieval of electronic information across different healthcare systems
[6]. HL7 uses a collaborative approach to develop and upgrade FHIR [7].

JavaScript Object Notation (JSON) A standard data interchange format that is primarily used for transmitting data between a web
application and a server [5].

JavaScript Object Notation (JSON) File A file that stores simple data structures and objects in JavaScript Object Notation [5].

Progressive Web Application (PWA) A type of application software that is designed to work on standard web browsers [3].

User Interface (UI) The user interface (UI) is the point of human-computer interaction and communication in a device.

13 | Page

