
Dominion Statistics Tracker

Sam Newman

Joshua Boerma

Racyn Komata

Matthew Michal

Revised June 15, 2022

CSCI 370 Summer 2022

Dr. Jeffrey Paone

Table 1 - Revision history

Revision Date Comments
New 5-18-22 Completed Sections:

I. Introduction
a. Added complete introduction

II. Functional Requirements
a. Listed technical requirements about how the website should work once completed

III. Non-functional Requirements
a. Listed non-technical requirements about working on the website

IV. Risks
a. Listed some of the technical- and skill-based risks that will be faced while working on

the project
V. Definition of Done

a. Listed the requirements that demonstrate when the project is complete

Rev – 2 5-19-22 Updated Sections:
II. Functional Requirements

a. Added stretch goals (Numbers 6 and 7)
III. Non-functional Requirements

a. Added requirement that everything continues to work (Number 2)
b. Added requirement for deployment and version control (Number 5)

V. Definition of Done
a. Added requirement that everything that was previously working still works (Number

4)

Rev – 3 5-23-22 Completed Sections:
VI. System Architecture

a. Created blurb giving overview of how the system works from an external viewpoint,
and a supporting diagram

Rev – 4 5-24-22 Removed page breaks between sections

Updated Sections:
I. Introduction

a. Removed first person words like “we” and “the team”
II. Functional Requirements

a. Added context for functional requirements
b. Reformatted functional requirements to show main goals and parts of each of those

goals
III. Non-functional Requirements

a. Added context for non-functional requirements
IV. Risks

a. Removed first person words like “we” and “the team”
b. Added context for risks

V. Definition of Done
a. Added context for definition of done

VI. System Architecture
a. Changed architecture diagram to be more descriptive and to group like elements

together
b. Added UI wireframes demonstrating the endpoint of the user interface
c. Added Bulk Data Insertion flowchart to demonstrate how data travels from the

textbox to database
d. Added GameResultForm diagram to demonstrate how the API receives and sends

data

Added Sections:
Appendix B - Tables

a. Added appendix area for tables
Appendix C - Figures

a. Added appendix area for figures
b. Updated all entries for figure values

Rev – 5 5-28-22 Updated Sections:
II. Functional Requirements

a. Reworded introduction paragraph

1 | Page

III. Non-functional Requirements
a. Reworded introduction paragraph

IV. Risks
a. Changed “DominionStats” to “Dominion Statistics Tracker”

V. Definition of Done
a. Reworded introduction paragraph

VI. System Architecture
a. Updated introduction paragraph to more accurately represent the figures, instead of

just saying “below”
Appendix A - Key Terms

a. Added a multitude of key terms, have not yet added definitions
Appendix B - Tables

a. Added revision history
Appendix C - Figures

a. Reformatted tables to remove redundant description

Rev – 6 5-30-22 Updated Sections:
VI. System Architecture

a. Added a figure representing the handling of log data
b. Converted GameResultsForm figure to just show the JSON instead of a visualization
c. Added a figure representing the storage of log data

Appendix A - Key Terms
a. Added definitions for all key terms so far

Appendix C - Figures
a. Added rows for added/updated figures above

Rev – 7 5-31-22 Completed Sections:
VII. Software Test and Quality

a. Added table detailing testing done
VIII. Project Ethical Considerations

a. Added some ethical considerations to keep in mind

Updated Sections:
VI. SystemArchitecture

a. Updated system architecture diagram and wireframes for better coloring
b. Removed figure descriptions below figures
c. Added more text introducing figures

Appendix B - Tables
a. Added Software Testing table

Rev – 8 6-6-22 Completed Sections:
X. Future Work

a. Added a paragraph detailing features that could be added in the future
XI. Lessons Learned

a. Added a paragraph describing lessons learned

Updated Sections:
VII. Software Test and Quality

a. Updated table 2 with a results column

Rev – 9 6-13-22 Completed Sections:
IX. Project Completion Status

a. Added project completion status
XII. Team Profile

a. Added each individual profile

Updated Sections:
IV. Risks

a. Converted risks elements into tables
VI. System Architecture

a. Updated/converted Figures 9 and 10 to Tables 4 and 5
VII. Software Test and Quality

a. Added description of quality assurance
b. Added code review section

Appendix B - Tables
a. Added rows for Tables 2, 3, 4, and 5

2 | Page

Appendix C - Figures
a. Removed rows for Figures 9 and 10

Rev – 10 6-14-22 Completed Sections:
VII. Technical Design

a. Pulled elements from System Architecture down into Technical Design
b. Updated wireframes to accurately represent the website
c. Updated description of wireframes to accurately represent the figures.
d. Added example of data input format under Bulk Data Insertion
e. Completely redesigned flowcharts to rely less on function names and more on

descriptions of what is happening

Updated Sections:
II. Functional Requirements

a. Changed requirements to be more descriptive
VI. System Architecture

a. Split into additional Technical Design section

Rev - 11 6-15-22 Updated Sections:
I. Introduction

a. Added further description about how Dominion is played
b. Updated description of the existing infrastructure from the last field session

IV. Risks
a. Added more risks
b. Updated descriptive text

VII. Technical Design
a. Added Database section, describing how the database is structured

XI. Future Work
a. Updated text

Appendix A - Key Terms
a. Added PostgreSQL

3 | Page

Table of Contents
I. Introduction 5

II. Functional Requirements 5

III. Non-Functional Requirements 6

IV. Risks 6

V. Definition of Done 8

Features 8

Tests 8

VI. System Architecture 8

VII. Technical Design 9

User Interface 9

Bulk Data Insert Logic 12

Log Data Insert Logic 13

Data Transfer 15

Database 16

VIII. Software Test and Quality 17

IX. Project Ethical Considerations 19

X. Project Completion Status 19

XI. Future Work 20

XII. Lessons Learned 20

XIII. Team Profile 21

References 22

Appendix A – Key Terms 23

Appendix B – Tables 24

Appendix C – Figures 25

4 | Page

I. Introduction

Dominion is a deck builder game, where several people play against each other to gain the most victory points by
expanding their deck continuously. There are many different types of cards, ranging from attack, action, treasure and
with even more added in the expansion packs. Each player starts with a basic deck, and gradually buys and gains cards
with effects, such as drawing more cards, allowing more actions to be played, or giving them victory points. Certain cards
can give tokens which can be redeemed at some point in your turn such as villagers, which will give an extra action to the
player that uses it. Whichever player has the most victory points in their deck at the end of the game wins.

Dominion Online is a more recent rendition of the game, hosted online and available to anyone to play for free. However,
it does not have strong stat-tracking capabilities. As such, a group of Salesforce employees have taken it upon themselves
– and their Colorado School of Mines counterparts – to create a website called Dominion Statistics Tracker, capable of
taking and processing data about different Dominion Online [1] games.

This project is an extension of a previous field session project. The goal is to build off of what was created by the previous
team, and increase functionality. The website takes in information about a session of the card game Dominion, stores it
in a database, and uses that information to generate a series of statistics about each player. It also leaves the raw data
available for viewing.

The client is a small group of Salesforce employees who enjoy playing Dominion Online together. They want a website
where, after each game that they play, they can report who played, how they did, and a log of the game. They would also
like several other statistics, such as the number of attacks. The team would like this so that they can compare amongst
themselves, and so that they can tell who the strongest of their players are.

At the beginning of the project, the website was fairly basic, but completely functional. In order to insert into the
database, a user had to insert one game at a time, row by row. The game’s data would be inserted in a table with each
player, their place, and their number of victory points. Once the data was uploaded, it would go into the database and be
displayed in various tables and graphs on the Dominion Stats Tracker website. Uploading data easily became a tedious
process when the user needs to report multiple games at once. It was also not able to store the game’s log; only the
placement of each player and how many points they got. The goal of this project is to be able to bulk upload multiple
games at the same time, and expand so that the game log can directly be sent to the website, which extracts relevant
data about points and attacks, and use that to update the statistics demonstrated.

II. Functional Requirements

There are several functional requirements for this project. While they are broken down in many small requirements,
there are two main goals for the completion of the project: the website can handle bulk insertion of data, and the
website can store game logs and use them to generate more data. There are also several stretch goals, which are tasks
either for future iterations of the project or for the completion of this iteration.

The specific functional requirements are listed below, in order of descending priority.

1. Bulk Insertion:
○ The website can update its database without the user having to upload games individually through one

of the following:
i. Update the insert functionality to support the bulk insertion of multiple games.

ii. Update the website to be able to accept copy/paste from the corresponding Google Sheet.
2. Log Tracking:

○ Update the schema of the website’s database.
○ Update the database to keep track of new statistics.

i. Allow for the upload of JSON files from LogDog [2] to update the database with game logs.
ii. Parse through each log to pull out important/interesting statistics.

5 | Page

○ Update the website to display new metrics based on the new statistics.
i. Main desired metric is the number of attacks used in a game.

ii. Use the number of attacks to calculate the % chance of playing an attack.
iii. Track the most played card by each player.

3. Stretch Goals:
○ More advanced statistics based on log data
○ Feature to filter games by year

III. Non-Functional Requirements

There are also a variety of non-functional requirements to keep in mind. The top priority is that the website continues to
work as well as it did at the beginning of the project. That is to say, all features that were previously implemented must
continue to function. Furthermore, it is important that all new features run on the existing infrastructure of the website,
with only minor changes.

All version tracking and code changes must be handled through GitHub. The client’s deployment is constantly updated
from a GitHub repository, and as such, all changes to the website must be pushed to said repository. It is important that
each push is carefully being tested before being sent to deployment.

Finally, it is a necessity that all code is written in TypeScript, HTML, CSS, and SQL. These are the languages that the
website is built in, and they are the languages that it should remain in.

The specific non-functional requirements are listed below.

1. Everything that is currently working, remains working.
2. Leave existing infrastructure in place with only minor changes.
3. Use GitHub repository for version control.
4. Use branches on local environments to test new features. Once confident, push to the team fork to test. Once

confident in that, pull request main repo.
5. Code is written in CSS/TypeScript.
6. Use Lightning Web Components [3] to design the user interface.

IV. Risks

The Dominion Statistics Tracker project is fairly low-stakes. There are few stakeholders, all of whom are programmers
themselves. However, as with any project, there are still risks associated with it. These include both technology- and
skill-based risks, including but not limited to breaking the currently functional website and damaging development
machines.

As the website is currently functional, it is a necessity that it continues to be. All additions to the website should build on
functionality, without damaging previous functionality. There is a fairly likely risk of this happening, as no members of the
team are experienced in web development. The features that are most at risk are the database, which will continue to
store live data as work is done on the website, and the UI.

The most significant risks faced while working on the Dominion Statistics Tracker website are listed below.

6 | Page

Table 2 - Technology Risks

Risk Likelihood Impact Mitigation

Initiating a Pull Request that crashes or
otherwise breaks the current website.

Somewhat
Likely

Major, relative
to the website
itself

Be completely confident in each PR;
have it reviewed by at least two team
members before merging.

Breaking development machines while
learning to use certain technologies.

Unlikely Major Be cautious while using new
technologies, make sure their
functionality is understood, ask the
client if uncertain.

Damaging the existing database by
altering the database creation and
migration scripts.

Somewhat
Likely

Major Ensure that no previous database files
are altered, and that all changes to the
database are made in subsequent
scripts. Also ensure that all
modifications to the database move
data if necessary, or preserve data in
some other way.

Breaking the existing UI while
attempting to add or alter an element.

Likely Minor If anything breaks the UI, the team can
always revert to the previous change. It
is important that commits are made
with every major change, so that reverts
can be made without too much lost
time.

Table 3 - Skill Risks

Risk Likelihood Impact Mitigation

Spending too much time learning or
familiarizing with a new language.

Likely Minor, may
spend too
much time
learning

When running into problems, instead
of trying to individually devise a new
solution, communicate with other
teammates and ask if they have a
solution or can help with devising one.

Not meeting client’s requirements due
to lack of communication or
understanding.

Somewhat
Likely

Major Communicating with the client
frequently both through bi-weekly
meetings and slack.

Not meeting time constraints due to
inexperience budgeting time with large
software projects.

Somewhat
Likely

Major Plan out work in a schedule and
review the schedule weekly, making
adjustments as needed.

7 | Page

V. Definition of Done

The clients are very fluid in what they would like, and understand that things are apt to change often. With that said, it is
still important that there are some milestones that denote whether or not the project was a success. Most of these
milestones are features, listed above in the requirements. There are also the basic standards that the website continues
to work at least as well as before, and that it can pass functionality tests. Therefore, the definition of done for the
Dominion Statistics Tracker app states that the website meets the requirements listed below.

Features
1. Ability to bulk insert data from a Google Sheet into the website.
2. Ability to insert game logs from LogDog into the website.
3. Update website UI to display more metrics per player:

a. Number of attacks made in a game.
b. Likelihood of making an attack in a turn.
c. Percentage of cards bought that are attack cards.
d. Most played cards across all games.

4. Everything that was working previously still works.

Tests
1. Unit tests for basic metrics using preset logs:

a. Number of attacks made in a game.
b. Likelihood of making an attack in a turn.
c. Percentage of cards bought that are attack cards.
d. Most played cards across all games.

2. Overall functionality tests
a. Is a user able to bulk upload and see new games added?
b. Is a user able to upload a log file and see new games added?

Delivery

● Product is delivered through pull requests to the existing GitHub repository which is automatically uploaded to

the live website.

VI. System Architecture

The architecture of the system is fairly straightforward. All data is generated by games played on Dominion Online. Some
data from Dominion Online is read by LogDog, which parses it into a JSON file. The user then manually inserts the JSON
file, along with the results of the game itself, into the Dominion Statistics Tracker UI. Once submitted, the UI takes the
data in on the client side and formats it appropriately to be sent to the server, through the Dominion Statistics Tracker
API. Once in the server, the data is formatted to fit into the Postgres database, and is inserted.

When the user requests data from the Dominion Statistics Tracker User Interface, a request is sent through the client to
the API and the server, which then extracts the relevant data from the database. That data is then sent back to the client,
which formats it to be displayed on the UI. A visualization of the architecture of this project can be seen in Figure 1.

8 | Page

Figure 1 - System Architecture Diagram

VII. Technical Design

User Interface
Figures 2 - 5 are models of the website’s UI, demonstrating how it looks in the finished product. The home page of the
website is modeled in Figure 2 and displays generic game information. This includes a button that leads to another page
that displays the raw data generated by the game logs, demonstrated in Figure 4. From all pages of the website, the user
can open the menu and navigate to the data upload screen, as seen in Figure 3. From this page, the user can enter data
for bulk insert into the textbox, or they can upload a log file to be parsed and stored. In both Fig. 2 and Fig. 4, clicking on
a player’s name redirects the user to that player’s corresponding page which displays all of their statistics, seen in Figure
5.

9 | Page

Figure 2 - Non-Log Based Data Wireframe

Figure 3 - Data Upload Wireframe

10 | Page

Figure 4 - Log Based Data Wireframe

Figure 5 - User Information Wireframe

11 | Page

Bulk Data Insert Logic
In order to use the bulk insert functionality, a user inserts a list of game results into the UI box seen in Figure 3, using the
format seen directly below. The user can insert as many lines as they would like, as long as they all follow the expected
format and as long as the placement logic makes sense.

Bulk Data Insert Format

game_id player_place player_name player_points

20220614a 1 Matt 11
20220614a 2 Troy 10

That data is then collected by the client, and processed. In order to process, the client first splits up the input by a new
line. It then checks to see if there is another line of input. If there is, it extracts the player’s name, place, and victory
points and inserts it into a PlayerData object, demonstrated in Table 4. The input line’s game ID is then checked. If it is
the same as the previous one, or if there is no previous one, then the entire PlayerData object is added to a list . If it is
not the same game ID, then the PlayerData list is added to a GameData object, as seen in Table 4. The game ID is also
added. That GameData is then validated, and if it passes, it is added to a list of GameData. The process repeats until
there are no more lines of input.

Once all input has been sorted through, the list of GameData is sent via POST to the Dominion Statistics Tracker API,
which is stored on the server. The API then transfers all of the received data to the server-side code. There, the server
queries the database for any of the game IDs. If any exist, an error is returned to the UI, telling the user to verify that
their game IDs are correct and to try again. Otherwise, all of the data is pushed into the database. The entire process can
be seen in Figure 6.

12 | Page

Figure 6 - Bulk Data Insertion Flowchart

Log Data Insert Logic
The log tracking functionality of the website begins at the log insert page of the UI, seen in Figure 3. The uploaded log
must be a JSON file. That file is accepted by the UI and is brought into the client. The client reads all of the data out of
the file. For each log in the JSON file, it extracts the list of player usernames for that log and sends it via POST to the API.
From there, the server creates a mapping for each username from username to the actual name of the player. Any
username that does not have a database entry is left with an empty player name mapping. That map is then sent back to
the client.

On the client side, the user is prompted to enter the player name corresponding to each username that was left with an
empty mapping. Those inputs are accepted and added to the mapping. Once each empty player name has been filled,
the client generates a table representing the file, where each row corresponds to a log. This table can be seen in Figure 3.

13 | Page

Each row contains the Dominion Online ID of the game, the Dominion Statistics Tracker ID of the game, and the players
who played in that game. The user is allowed to edit the Dominion Statistics Tracker ID for each log. Once all IDs are
correct, the user can hit the Confirm button. At this point, a list of all of the logs is sent via POST to the server.

The server loops through each log in the list individually. For each log, the parser first removes all of the HTML in the file,
leaving a string of sentences. The parser then splits that string up by the keyword “Turn”, so that the log becomes a list of
strings, each representing a single player’s turn. The server then proceeds to loop through each turn. For each turn, a
PlayerTurn object is created, containing the game ID, the turn number, the player’s name, a list of the cards played, and a
list of the cards gained. Both the cards played and gained are formed of a list of PlayedCard objects. The PlayerTurn
object and the PlayedCard object can both be seen in Table 5. Once every turn in a single log has been processed, the
server checks if any errors occurred. If there were errors, it sends a message back to the UI, informing the user of exactly
what went wrong and how to fix it. If there were no errors, each turn in the list is added to the database. The entire
process can be seen in Figure 7.

Figure 7 - Log Data Insertion Flowchart

14 | Page

Data Transfer
Table 4 depicts how data from bulk data insertion is packaged to be sent over the API on the website. A GameData object
is sent, containing the game ID along with a list of PlayerData objects, each of which contain relevant information about
the player, such as player name, place, and how many victory points they finished with. That data is then individually
extracted and added to the database.

Table 4 - Bulk Data Insertion Objects

GameData PlayerData

gameId: string;
playerData: PlayerData[];

playerName: string;
playerPlace: number;
victoryPoints: number;

Table 5 depicts how data from a log is split apart to store in the log database. The PlayerTurn models a player’s full turn.
All cards that the player used during their turn are stored in the PlayedCards array, and all cards that the player
purchased or gained during their turn are stored in the PurchasedCards array. The PlayedCard interface models a card by
tracking its effects, played phase, whether it was the result of a card played on a previous turn, and if villagers are used
to play it. The effects of a card are stored as a list of PlayerEffects, which are broken down into type and the name of the
player that they impacted.

Table 5 - Log Insertion Objects

PlayerTurn: PlayedCard: PlayerEffect:

gameId: string;
playerTurn: number;
playerName: string;
playedCards: PlayedCard[];
purchasedCards: PlayedCard[];

card: string;
effect: PlayerEffect[];
phase: ‘action’ | ‘buy’ | ‘night’ |
‘attack’ | ‘reaction’;
durationResolve: boolean;
usedVillagers: boolean;

type: string;
player: string;

15 | Page

Database

The database is built in PostgreSQL, and contains three tables relevant to the website. One table, the game_results table,
stores all information relevant to the bulk insertion. However, this table was not altered at all during this iteration of the
project, and as such is not modeled below.

Table 6 describes how data from each turn pulled from a log is stored within the database. The primary key for this table
is a compound of id (not pictured) and game_label and player_name. It also has the unique attribute of storing several
JSON objects, in order to be accessed later. This raw data is displayed on the UI, and is easily accessible for later use in
visualization statistics.

Table 6 - log_game_round Database Table

log_game_round

Column
Name:

game_label player_turn turn_index player_name cards_played cards_purchas
ed

Column Data
Type:

VARCHAR INT INT VARCHAR JSON JSON

Purpose: Stores the
Dominion
Statistics
Tracker unique
ID for each
turn

Stores turn
number

Stores the the
order that the
turn was
played in

Stores the
player whose
turn it is

Stores a JSON
object that is a
list of every
card that the
player played,
and their
effects

Stores a JSON
object that is a
list of every
card that the
player
purchased,
and their
effects

Table 7 describes the known_usernames data table which holds the username data for the website. The username is the
primary key of the data table which describes a username on the dominion.games website. The player_name stores a
string for a player’s name on the dominion statistics tracker website. The purpose of this data table is to track existing
users and automatically map their dominion.games username to a player name on the website.

Table 7 - known_usernames Database Table

known_usernames

Column Name: username player_name

Column Data Type: VARCHAR VARCHAR

Purpose: Stores all known usernames of users
that have played

Stores corresponding name to each
username

16 | Page

VIII. Software Test and Quality

With so many moving parts in this software, thorough testing and quality assurance is essential. Many aspects, such as
the several functions of the log parser, can be tested via unit testing. By feeding some input into a function and ensuring
the output is exactly what it should be, much of the website’s parsing functionality can be tested. However, some more
in-depth features – like data transfer and database access – are not as simple to test. Functional testing can help solve
this: by physically uploading accurate data and ensuring that the website responds as expected, the website’s
functionality as a single unit can be checked.

Table 8 - Software Testing

Test method Description Results

Unit Testing
(Existing Tests)

The existing code on the website has some built
in unit tests which test the functionality of the
methods to verify input data and process it.
These existing tests are used to make sure that
any new code added on does not break the
existing system which is one of the project goals.
With the existing tests implemented already they
can be used to verify that previous methods still
function even with the new code added on.

Existing unit tests have been slightly updated to
account for consistency errors with the new
insert method. All previous tests created still
pass with the new functionality.

Unit Testing
(Bulk Insert)

Unit testing is used with the bulk insert methods
to verify that the input is valid and can be safely
sent to the server. These tests verify that the
input into bulk insert is properly processed and
sent to the server. They also test against bad data
that should be rejected – rather than sent to the
server – resulting in an error being displayed to
the user.

Frontend: On the frontend, there are tests to
ensure that the data being uploaded to the text
area is properly formatted before the data is
parsed through. If the data is improperly
formatted, the data upload is rejected and an
error is returned. All tests pass.

Backend: On the backend, there are a few unit
tests to ensure that when the data is being
uploaded to the server, the data isn’t already in
the server (i.e. ensuring that duplicate data isn’t
being uploaded to the server). All tests pass.

Unit Testing
(Log Upload)

Unit testing is very important for managing and
checking the functionality of log uploads. Not
only is there huge variability in what the user can
actually upload, but there are tons of niche
details that could break the log parser. It is
important that there are a wide array of tests to
check all of the moving components, including
but not limited to the file upload, acceptance of
the data on the server side, and the parsing of
the JSON data.

Frontend: On the frontend, tests ensure that the
file uploader rejects any file that’s not a JSON
file. Tests also check that the file accepter can
check for unexpected elements within the file
itself. All tests pass.

Backend: On the backend, there are dozens of
unit tests that experiment on the parser using a
wide variety of potential mistakes made by the
log, along with all of the valid inputs that can be
expected. One of the important features to test
is that the parser is able to accept a list of names
or aliases for the players of the game, and can
attribute them to each action that they take. A
series of tests ensure that valid and invalid

17 | Page

usernames can be handled. There are also tests
that ensure that each line of a log is properly
processed, ranging from card creation to effects
creation to the accumulation of all of that into a
player turn. All tests pass.

Functional
Testing
(Bulk Insert)

In order to verify that the bulk insert methods
handle all inputs correctly, it cross-references the
input with the server to ensure that the input is
valid. To test this functionality, a variety of data is
inserted to verify that valid inputs were uploaded
to the server and invalid inputs returned an error.

The functional testing for bulk insert involves
uploading some example data to the bulk insert
both in the form of a single game as well as
multiple games at once. The games are sourced
from created games and existing data in the
client’s google sheet. With the functional testing
the bulk insert feature works as desired, adding
to the database and throwing errors when
necessary. All game data tested pass.

Functional
Testing
(Game Log
Upload)

With the log upload, logs from existing and
known games are uploaded to verify that the
database has the expected results from the logs.
These tests also verify that the database is
storing and processing the data correctly to yield
the expected result of the log file. In addition bad
log files are uploaded to verify that the server
rejects the bad data.

The system is tested with multiple existing logs
provided from the client as well as being tested
with logs that the group generates. The purpose
of the client’s logs is to test general functionality
of the system on a wide variety of cards. The logs
that the group creates are mainly for testing the
edge cases of the dominion game logs. All logs
tested pass.

Code Reviews Even after extensive functional and unit testing,
the physical quality of code still must be checked.
This is where code reviews come in. By checking
each other’s code, the team is able to look for
any flaws or minor bugs. Furthermore, the
team’s code is reviewed by the client himself
upon PR. This ensures that the code is up to the
client’s standards, and allows the client to
provide insight on how to improve the logic of
the code.

The client was able to identify many areas of
code that could be improved in terms of
simplicity and efficiency. By providing feedback
directly to the Pull Request, the team was able to
implement several more efficient methods of
database access and insertion.

18 | Page

IX. Project Ethical Considerations

Unlike many projects, the Dominion Statistics Tracker does not have a wide impact on people. It is only used by a small
team of software engineers to track the statistics of one of their freetime hobbies. With that said, it is still important to
take into consideration the ethical implications of this project. It is the duty of the Dominion Statistics Tracker to
accurately and efficiently store, preserve, and handle the data of the client. Failure to do so would violate the client’s
trust in the website, and could result in the loss of years of game data.

One of the main ethical considerations for the Dominion Statistics Tracker is the preservation of existing data. No updates
to the website should be allowed to damage or delete any of the data that is already stored in the database.
Furthermore, no updates should remove any of the statistical views that are currently visible. None of the website’s
functionality from the beginning of the project should stop existing; it should only be improved. While failure to comply
with this would not have impacts on a large number of people, it could be devastating for those who enjoy this as their
hobby.

On a similar note, it is important to keep security in mind. While this may not be a high-profile target for hacks or
cyberattacks, that doesn’t mean that the Dominion Statistics Tracker is immune. Allowing someone to gain access to the
UI without proper permission could result in them changing, adding to, or deleting data elements, resulting in the same
effects as the damage done above. It is the responsibility of the Dominion Statistics Tracker website to keep the
information given to it safe and secure, altered only by those authorized to do so.

In addition, the work on the project was done in compliance with the ACM/IEEE principles, specifically principles 3.10
and 3.15. Principle 3.10 states that the software and documentation produced is adequately tested, debugged and
reviewed. The code that was produced was tested extensively using a combination of unit tests and functional tests, as
well as code reviews performed within the team and with the client (refer back to Section VIII). Principle 3.15 states that
software maintenance and new development should be treated with the same level of professionalism. It’s important
that the existing code on the website is kept up to date with new code so that they work together as a one cohesive
entity rather than interfering with one another.

X. Project Completion Status

The current project website meets most of the stated requirements for the definition of done. The bulk upload feature is
fully implemented, which allows multiple games to be inserted at once. Verification is run on the input of the bulk insert
to verify that duplicate game ids aren’t being added to the database. The log upload feature is fully implemented with a
file upload option added to the upload page of the website. In the backend, the logs are parsed through to collect the
relevant data and break it into player turns. The log data display is also implemented, but it is only in the form of a basic
table which lacks some of the features that the client desired. Log metrics aren’t implemented; however, the necessary
data to generate the metrics is in the database. The stretch goals of tracking number of trashes in a game and filter by
year are not present in the current website.

19 | Page

XI. Future Work

No software engineering project is ever truly finished, as there are always more bugs to fix and features to add. Yet due
to the limited time frame of this project, there are bound to be additions that will be passed to future contributors. For
the Dominion Statistics Tracker, there are a number of things yet to be implemented, and multiple features that could be
added to improve the project overall. Things that were unable to be implemented in this field session include multiple of
the stretch goals from the functional requirements, such as the ability to filter by year, visualizing the log-based data and
a statistic to track the number of cards trashed. With the multitude of data read in from the log file, all of the information
and infrastructure needed to implement these features exists in the project, one would just need to add additional table
columns and graphs to show the new data.

The client was aware that these features would be difficult to include on top of the other requirements, and they will
likely be pushed back into the future. Some other implementations that were not a part of this project, but could still
work to improve the website such as: showing a representation of how the Dominion game actually was played in the
site, having a table of players for comparison purposes, and the ability to sort by any statistic to see specific statistics
from all games played.

XII. Lessons Learned

The team learned a variety of lessons from this project, both on the side of actual software development and on the
social and interpersonal side. Among these lessons, the most important lesson learned was the value of communication
and trust between the client and developers and between the team members. It became very apparent that the team
would struggle to make significant progress on the project without the assistance of the client. By reaching out to the
client and explaining in detail the struggles that were encountered, the team was able to gain the assistance necessary in
understanding the software and could make good progress. Even in situations where the client may not be as technically
skilled as the Salesforce employees that the team interacted with, it is necessary to communicate thoroughly with them.
In some situations, they may have insight into the project that no outsider could hope to have. The trust between team
members was also incredibly valuable: being able to reach out to another member of the team with a challenge and
walking through it together saved a lot of time in the long run.

To expand on the value of communication, the team learned the value of SCRUM and other software development
workflow tools. Being able to get together and know exactly what needed to be done – along with an estimate as to how
long it would take – enabled the team to prioritize features of the website. This, in turn, resulted in a higher quality
product all around.

Finally, the team discovered the significance of test-driven development and the value of tests in general. By the time the
project was nearing completion, there were so many moving parts that it was impossible to manually check each and
ensure that it was working to the fullest of its ability. A full suite of tests allowed for near-instantaneous verification of
functionality. This provided the team with a sound mind while pushing features, and allowed for more efficient
production.

20 | Page

XIII. Team Profile

Table 9 - Team Profiles

Photo Description

Racyn Komata
Senior
Computer Science
Hometown: Mililani, Hawaii
GitHub: https://github.com/rkomata

Role: Client-side user interface and data transfer

Matthew Michal
Junior
Computer Science
Hometown: Allen, Texas
GitHub: https://github.com/Matthew-Michal1

Role: Client-side user interface and data transfer

Joshua Boerma
Junior
Computer Science
Hometown: Highlands Ranch, Colorado
GitHub: https://github.com/JoshBoerma

Role: Server-side log parsing and database interaction

Sam Newman
Senior
Computer Science
Hometown: Aurora, Colorado
GitHub: https://github.com/snewman4

Role: Server-side log parsing and database interaction

21 | Page

https://github.com/rkomata
https://github.com/Matthew-Michal1
https://github.com/JoshBoerma
https://github.com/snewman4

References

[1] Dominion Online. 2016. dominion.games

[2] Goatze, Micheal. May 26, 2020. “LogDog”. https://www.github.com/michaelgoetze/LogDog

[3] Salesforce.com. 2019. https://lwc.dev/

22 | Page

http://dominion.games
https://www.github.com/michaelgoetze/LogDog
https://lwc.dev/

Appendix A – Key Terms

Term Definition

Dominion Online An online rendition of the card game Dominion. Dominion Online
is a website where players from across the world can play
Dominion against each other, competitively or casually.

LogDog A Chrome Extension designed to take and store log data from
Dominion Online. LogDog watches for when a Dominion Online
game ends and automatically saves the log as both a JSON and as
a .txt file.

TypeScript A superset of JavaScript, TypeScript adds static typing to the
functionality of JavaScript. Static typing means that the types of
variables are determined at compile time, and ambiguity in types
can be used to cause errors that would otherwise be runtime
errors.

HTML The abbreviated name of HyperText Markup Language, HTML is
the language used to design forms and pages that will show up on
a web browser. Most website front ends are written in HTML.

CSS The abbreviated name of Cascading Style Sheets, CSS is a
language used to describe the style of the above-mentioned
forms written in HTML. CSS allows for more precise and flexible
styling.

SQL SQL is a language designed for working with databases. SQL is
used to enter information into a database, extract information
from a database, and edit the database format.

PostgreSQL PostgreSQL is a database management system that utilizes SQL in
order to store data in a series of user-defined tables.

JSON JSON is a file format that makes the storage and transmission of
data simpler, in a human-readable format. Consisting of
attribute-value pairs, JSON is useful for condensing and
simplifying information to be sent.

Lightning Web
Components (LWC)

Lightning Web Components are CSS-styled template elements of
a website, built by Salesforce, to make website styling easier.

UI The abbreviated name for a user interface, a UI is the part of a
website or software that the average user will interact with. It
hides all of the behind-the-scenes data transfer and processing,
and aims to be simple and easy to understand.

API The abbreviated name for an application program interface, an
API is a type of software that goes between two other pieces of
software in terms of data transfer. It accepts data from one
software and reformats it to be accepted by the other software.

23 | Page

Appendix B – Tables

Table Title/Number Table Description Page Number

Table 1 - Revision History This table details each change that was made to this document, in
order of date and section.

1 - 3

Table 2 - Technology Risks This table details the technological risks that the team faces while
working on this project.

7

Table 3 - Skill Risks This table details the skill-based risks that the team faces while
working on this project.

7

Table 4 - Bulk Data Insertion
Objects

This table describes two of the objects used to transfer data
between client- and server-sides while processing a Bulk Data
Insertion. A GameData object transfers all relevant data, and
contains a list of PlayerData objects, which contain data pertaining
to each player.

15

Table 5 - Log Insertion
Objects

This table describes how log data is stored in the database. A list of
PlayerTurns contains all information, including several lists of
PlayedCards, each of which also has a list of PlayerEffects.

15

Table 6 - log_game_round
Database Table

This table represents how data from each log is stored in the
PostgreSQL database. It describes each column name, its data
type, and its purpose.

16

Table 7 - known_usernames
Database Table

This table represents how username data for every player is stored
in the database. It describes the column names, data types, and
purposes.

16

Table 8 - Software Testing This table goes into detail about what tests are run to insure that
the finished website works as intended.

17 - 18

Table 9 - Team Profiles This table gives an overview of the team members. 21

24 | Page

Appendix C – Figures

Figure Title/Number Figure Title Page Number

Figure 1 System Architecture Diagram 9

Figure 2 Non-Log Based Data Wireframe 10

Figure 3 Data Upload Wireframe 10

Figure 4 Log Based Data Wireframe 11

Figure 5 User Information Wireframe 11

Figure 6 Bulk Data Insertion Flowchart 13

Figure 7 Log Data Insertion Flowchart 14

25 | Page

