
CSCI 370 Final Report

Team: RMS-AAPG

Nicholas Herbic
Raymundo Corona Nunez

Mikayla Sherwood
Josue Milenga
Alexa Nelson

Revised June 15, 2022

CSCI 370 Summer 2022

Dr. Paone

Table 1: Revision History

Revision Date Comments

Rev – 1 5/20 Completed Sections:
I. Introduction
II. Functional Requirements
III. Non-Functional Requirements
IV. Risks
V. Definition of Done

Rev – 2 5/25 Updated Sections:
II. Functional Requirements: Reformatted to be a subheading section rather than a
bulleted list.
III. Non-Functional Requirements: Reformatted to be a list section.
IV. Risks: Added likelihood, impact and migration aspects.
V. Definition of Done: Added to clarifying features from our client.

Completed Sections:
VI. System Architecture
XII. Team Profile
Appendix A
Index

Rev – 3 6/1 Updated Sections:
II. Functional Requirements: reformatted to make clear the 3 separate sections
III. Non-Functional Requirements: reformatted to fit advisor’s criteria
VI. System Architecture: Renamed figures and added one more.
Appendix A: Adding more terminology.
Index: Fixed so the figures have the corresponding page.

Completed Sections:
VII. Software Test and Quality
VIII. Project Ethical Considerations

Rev – 4 6/6 Updated Sections:

Completed Sections:
XI. Project Completion Status
X. Future Work
XI. Lessons Learned

Rev – 5 6/10 *Updated the style of formatting.
Updated Sections:

IV. Risks: Changed from list format to a table
VI. System Architecture: Updated figure layout and captions. Also added a leading
text.
VII. Software Test and Quality: Added a leading text.
X. Future Work: More information was added.
Index: Was changed to Appendix B and updated.

Completed Sections:
Appendix B
Appendix C

Rev – 6 6/15 Updated Sections
II. Functional Requirements: updated the layout and added to the user info page.
VI. System Architecture: moved where our website images were placed (spaced them
out)
VII. Software Test and Quality: Elaborated upon the opening paragraph
X. Future Work: Added elaboration on future works.

1 | Page

Table of Contents
I. Introduction 3

II. Functional Requirements 3

II.A Website 3

II.B Database 4

II.C Retrieval of Scores 4

III. Non-Functional Requirements 4

IV. Risks 5

V. Definition of Done 6

VI. System Architecture 6

VI.A Technical Design Issues 6

VI.B System Design 6

VI.C Page Flow 10

VI.D Database Schema 11

VI.E Database and Page Relation 12

VI.F Interaction between Systems 13

VII. Software Test and Quality 14

VIII. Project Ethical Considerations 15

VIII.A Active Principles 16

VIII.B High Concern Principles 16

IX. Project Completion Status 16

X. Future Work 17

XI. Lessons Learned 18

XII. Team Profile 19

References 20

Appendix A – Key Terms 21

Appendix B – Figures 22

Appendix C – Tables 23

2 | Page

I. Introduction
The American Association of Petroleum Geologists (AAPG) is a massive organization with thousands of professionals.

Every year, AAPG hosts a nation-wide conference that gives many different people the opportunity to showcase their

interesting breakthroughs in research and technology via oral or poster presentation. This year, the annual conference is

being hosted by the Rocky Mountain Section (RMS) here in Denver.

In years past, AAPG has always used a printed Excel sheet that is handed out for each session (typically 8 total sessions

throughout the conference) to each judge. These sheets would then be turned in and tallied up by hand. This is a tedious

and outdated process that is subject to human error over the course of 8 sessions for both oral and poster presentations.

To transition to a more modern method of judging, RMS-AAPG wants to develop a web-based application that allows not

only designated judges, but any attendee of the annual conference to submit peer reviews of any presentation. It must

be simple for users to navigate to encourage this transition and allow for admin access to view the final average scores.

II. Functional Requirements
The three main components needed for this project include the following:

(1) A website that interfaces with the customers; (2) a database that stores all the user information, presentations, and

QR codes; and (3) a script that pulls all the scores that are stored for each presentation in order to provide accurate

results. The scores are determined by crowd voting, and the judges determine the best presentation from the result of

the presentation with the highest score.

II.A Website

The website must allow the creation of users in order to properly keep track of judging scores as well as display a

schedule when needed. The goal when it comes to judging speakers in particular is that attendees can “sit in” for entire

blocks of time in order to judge a section's individual speakers and not individual people alone. Finally, the website must

also have a way to keep track of scores per event since presenters can present at multiple sections and have multiple

posters.

Home Page:

The home page contains a menu screen with options to access the schedule or proceed to the judging form. This

space is mainly to establish that this website belongs to the client and that its sole purpose is to judge the

RMS-AAPG conferences for this year and years to come. The schedule option redirects the user to another

website containing the schedule pdf, per the client’s request, and the judging form option leads the user to the

user info page.

User Info Page:

This page is used to create users in the database’s users table based on gathered data. Here, information such as

first name, last name, email, and company name are entered by the user and stored in order to create unique

users within the database. Because each email is unique, the user’s email is used as the primary key in the users

table in the database.

3 | Page

Selecting the Conference Time Section:

Here the user selects the time section they are currently attending in order to display relevant information only.

This means that once the user selects the section they want to grade, the next page for picking a presentation

displays only the presentations that are within the time frame they selected.

Evaluation Selection:

This page allows the user to further narrow down their options based on their previous selection and what

presentation or poster they plan on judging. Here the user can judge a poster or individual speaker based on

predetermined criteria. The rating system allows for 100 points total and a section for comments. It consists of

four separate sections for overall presentation; content; overall impression; and comments/suggestions. This

page also confirms a score is submitted, and inputs the information into the database. Using the composite key

of the user’s email and the title of the presentation they are evaluating, ensures that a user does not judge a

presentation more than once.

II.B Database

The database has 3 important functions: storing user information after it is input into the user information page; storing

presentation information after admins enter the presentation csv; and storing the presentation scores that the users

input.

II.C Retrieval of Scores

The conference runners require a way to retrieve users’ evaluation scores of each presentation, as they will announce

which presentations received the highest scores. In years past, AAPG calculated the average score for each presentation

and used that as their final score. The webapp handles the calculation of presentation score averages and sends them to

the database. The clients are then able to access the SQL database through Azure Data Studio and download the scores

table as an Excel or CSV file.

III. Non-Functional Requirements
In systems engineering and requirements engineering, a non-functional requirement is a requirement that specifies
criteria that can be used to judge the operation of a system, rather than specific behaviors. The non-functional
requirements of the project, based on the functional requirements, are as follows:

● The program must be a web application.

● The program must be accessible from any web application (including mobile).

● The program must be easy for new users to understand.

● The program must use the client’s cloud database, Azure, but does not need to connect to existing 3rd party host

websites.

● The results of the judging must only be made known to the main clients (Ellen and Topher).

● The RMS logo must be present on the home page.

4 | Page

IV. Risks
There are several technology risks that had to be considered during the development of the web app. Most of the risks

for this project involved dangers within the database. The database is something that should only be supplied with

accurate data, and must not be accessed by unauthorized users. The technology and skill risks for this project are

included in Table 2 below.

Table 2: Technology and Skill Risks

Risk Description Type Likely to
Occur

Impact Risk Mitigation Plan

User-interface
Problems

Website component
functionality might fail
(e.g. buttons, page
errors, etc.).

Technology
Risk

Very Likely Moderate Make the application as simple
as possible and use an intuitive
design.

Database Leak The database could leak
sensitive information
about users (e.g. names
and email).

Technology
Risk

Unlikely Minor Microsoft Azure has built-in
security protections, such as
encryption.

Flawed Data The database could
encounter flawed or
skewed data.

Technology
Risk

Very Likely Major Create an application that
prevents the users from
submitting multiple forms for
one presentation or entering
scores out of range.

Dropped
Tables

The database could
experience a dropped
table, or deleted table,
accidentally.

Technology
Risk

Somewhat
Likely

Major Include a SQL command “if it
exists” which is a clause that
prevents a table from
accidentally being deleted. It
also prevents the making of an
extra table if it already exists.

Azure Cloud
Issues

Azure cloud is a specific
type of cloud that the
client uses, and has
different syntax and tools
that need to be learned.

Technology
Risk

Very Likely Major Familiarize ourselves with the
software by doing research.

JavaScript and
Website
Management

Not all team members
have a background in
website management
and using JavaScript.

Skill Risk Very Likely Major Familiarize ourselves with the
language and application by
doing research.

Database
Management

Not all team members
have a background in
database management.

Skill Risk Very Likely Major Familiarize ourselves with using
databases and implementing
them on the Azure cloud by
doing research.

5 | Page

V. Definition of Done
In order to make the expectations of both the clients and the developers clear, a set of criteria were created to outline
exactly what needed to be accomplished for the project.

● The website’s functional/non-functional requirements are met in a way that is efficient and user friendly.

○ Efficiency would refer to minimizing the amount of clicks a user needs to make in order to submit an

evaluation.

○ User friendly would refer to making the design of the application intuitive for users to use correctly.

○ The information is stored properly in the database the developers created.

● Create an environment where this evaluation process and website can be repeatable for future conferences,

different companies, and events.

● Software demonstrations for the clients satisfy the client’s wants/needs.

○ Tests display accurate results in a digestible matter and can be exported if needed for future analysis.

○ Tests would include setting up a “conference”, judging the “presentations”, and displaying the results.

● A final URL/working product is provided to the clients.

○ There is no need for technical documentation describing the website’s functionality, but source code

may be included.

● Documentation for potential new admins in the form of code comments, and a final copy of the code to give to

the clients.

○ The final copy of the code will be on the Azure server that the clients and the developers both have

access to.

VI. System Architecture
The importance of the system’s architecture is very high since many users will be interfacing with the web app. The web
app should ensure an easy flow for the users to comprehend and minimize the use of clicks. The system architecture
should also ensure that the frontend, the web app, and the backend are communicating properly. Therefore, the system
architecture plays an important role in the project.

VI.A Technical Design Issues

● SQL server knowledge problems

○ Problems creating an initial SQL server for our database.

○ Partially linked to the communication issues.

● Non-specific testing issues

○ Testing is done visually by looking at the local website instead of creating dedicated testing scripts.

● Communication issues with our client’s technical staff member

○ Delayed information on how to gain server access.

● Problems with knowledge about React

○ Coding is more difficult due to the lack of experience for most of our group.

○ Figuring out what the developers need to do is time-consuming.

VI.B System Design

Figure 1 is an introductory page that functions to signal to the user that they are currently on the evaluation website

owned by our client. From here, they have the option to move forward to the evaluation process or see a schedule of

presentations.

6 | Page

Figure 2 is a page that gathers the user’s data in order to create and populate the entries in the SQL database. These

entries are used to keep track of users, which help keep track of evaluation forms and ultimately calculate scores.

Figure 1: Home Page Display
Figure 2: Evaluation Form Page Display

Figure 3: Time Selection Page Display

Figure 4: Sessions Page Display

7 | Page

Figure 3 is the Time Selection page that comes after the user is created and presents the options of a time to select from.

Once the user picks a time, they are moved to the Sessions page, Figure 4. From here, the user decides what session to
select.

Once the user has selected a time, they are prompted with various presentation panels. Figure 5 is the Presentation page

that layouts each presentation in panels for a single session. The developers also suggested that our client use a panel

format when listing the presentation to make it more appealing to users.

Figure 5: Presentation Page Display

8 | Page

Figure 6.a: Presentation Page Figure 6.b: Content Page

Figure 6.c: Impression Page Figure 6.d: Comments Page

Figure 6: Evaluation Multi-Step Form Page

Figure 6 shows the pages that make up the entire process of the Evaluation form. Once the time, the session, and

presentation are selected then the user can access these forms. Per the client's request, the same flow and information

were kept; the developers simply made it a bit more sleek as well as suggested adding a small “information” button,

shown in Figure 6.a and Figure 6.b, which displays a short description of what is evaluated for each category.

9 | Page

VI.C Page Flow

Figure 7: Website Flowchart

Figure 7 shows the web flow from one page to another. Essentially, the user starts at the home page where they have the

option to move to the Evaluation Form or see the Schedule. Clicking on the Evaluation Form button takes them to the

next page where the user enters their information. Once the user is finished, they submit and move on to the Time

Selection page. This page gives the user the option to choose what time they are evaluating or the option to look back at

the schedule. The user then selects a session on the Session page where they are still able to look back at the schedule if

need be. Next, the user selects a presentation on the Presentation page and proceeds to the Evaluation Form. From the

Evaluation Form, the user is guided through a series of evaluations for the presentation they selected, and once they fill

everything out, they are returned back to the Session page.

10 | Page

VI.D Database Schema

Figure 8: Database Schema

Figure 8 is an ERD the developers created of the final database schema. It includes tables for users, scores, presentations,

and individual_score. Each one of these tables is added to or queried from at some point during the use of the app. users

contains all users, and the email is later used in conjunction with presentation_number to create a composite key for

individual_scores. This composite key is queried whenever the user is viewing the list of presentations, as its

existence/non-existence determines if the user has already submitted an evaluation for a particular presentation. This is

vital to know, as the developers don’t want users submitting multiple evaluations of a single presentation. The

individual_scores table keeps track of each single review every user leaves; it is the largest table by far. The scores table

tracks the total scores, number of reviews, and score averages for every presentation. This is what is used at the end of

the conference when the “best presentation” for each category is announced.

11 | Page

VI.E Database and Page Relation

Figure 9: User Table and Judge Form Correlation

When the user fills out the judging form, each entry is used to populate the users table with the appropriate attribute.

This is the table in the database that houses our user’s information. Figure 9 shows how the two components interacting

help the frontend communicate with the backend.

Figure 10: Individual Scores Table and Evaluation Multi-Step Form Correlation

Figure 10 shows the individual_scores table that gets data from the evaluation page. The users give a score for each

category. Each score is entered, and when the evaluation form is submitted, each attribute is populated with the

individual scores for that presentation. Since each presentation has unique numbers, the developers decided to make

this our primary key as each individual score is linked to that number.

12 | Page

Figure 11: Presentations Table and Session Correlation

On the Presentation page for each time/presentation type combination. First, the type is queried to filter out only

presentations of the matching type (oral/poster). Then, the day and time are queried to filter out only presentations in

that specific session (Monday/Tuesday and AM/PM). The page is occupied with a separate button for each presentation,

ordered by time. Within each button, the time, presenter_name, and title are queried to display to the user. Figure 11

shows the page and table that communicate with each other.

VI.F Interaction between Systems

Figure 12: System Interaction Diagram

Figure 12 shows that the web app and database live within an Azure server provided by the clients. It also displayed how

the frontend and backend interact with each other, as well as how different types of users interact with the web app

differently.

13 | Page

VII. Software Test and Quality
Software tests help determine the reliability of a piece of software. The testing process is crucial to ensure the web app is
able to flow correctly and users are able to use the web app without a problem or error. Users are not always going to act
perfectly; therefore, the testing phase ensures that they are able to communicate with the web app even if
complications were to occur. Table 3 lists our testing methods and results. There are two main testing environments that
were utilized in order to ensure correct results: manual/visual testing and the Postman API.

Manual testing consists of console logging, browser alerts, and the web app itself. The browser console allows the
developer to check that the frontend is running properly and in the way that is expected. Visual testing was used
primarily to check the style and the flow of data through the webpage. Also, using browser alerts and the inspection tool
within the Chrome browser, we checked accessibility and user interaction to further nail down our goal of making this
web application user-friendly.

The second testing method utilized was the Postman API. This platform provides a simulated browser environment and
only requires the localhost URL on which the React app runs in order to connect to the app itself. From there, the
developer can take the APIs they have created in the React app and test them to see if those APIs work as intended. One
way to test the API is to see if the HTTP request is processed by the server successfully. The expected result should return
an instance with a 200 series message saying whether the request is "OK" or if there was an error. "200 OK" means that
the server processed the request successfully and can now fetch or post the required data. An error message means that
the request was not processed and that the API may need to be re-worked in order to make sure it works. Fetched data
will be returned as raw JSON data, in which the developer can "beautify" that raw JSON data into a more readable
version.

14 | Page

Table 3: Software Tests

Test Name Purpose Description Environment Expected Result Actual Result

Buttons
(e.g. Back,
Next,
Schedule,
and
Return to
Session
buttons)

Test the functionality of
the buttons and redirect
the user to the correct
spot.

When a user clicks a
button, they are
redirected to the
appropriate page.

Manual Visual
Testing

The component
links to the
correct page or
pdf.

Components were
linked correctly.

UserInfo
Form

Tests the user is entering
the correct data.

Checks that the user
supplies enough and valid
information.

Manual Visual
Testing

Doesn’t let the
user continue if
the information
is invalid or not
provided.

Submit button is
disabled and doesn’t
allow the user to
continue if the
information provided
is invalid.

UserInfo
Database

Tests that the user’s data
is being entered into the
database.

Once the user submits
their data, the application
ensures the data is input
correctly into the
database.

Postman
Testing

Raw JSON data
with the
appropriate
values.

Appropriate values
were present in the
JSON data.

Panels Tests the functionality of
the sessions and
presentation panels
when a user clicks on
them.

When the user clicks a
panel, they are taken to
the corresponding
presentation list for that
session or judge form for
that presentation.

Manual Visual
Testing

The panel links
to the correct
presentation or
judge form.

Session panels are
correctly linked to
presentations and
presentation panels
are correctly linked to
the judge form.

Judge
Form

Tests that the user is
entering the correct
format for scoring.

Checks the user supplies
all and valid scores.

Manual Visual
Testing

Check the scores
before moving
through the
multi-step form
to ensure scores
are valid.

Throws errors when a
user enters an invalid
score and doesn’t let
them continue.

Judge
Database

Tests that the user’s
scores are uploaded to
the database.

Upon clicking submit, the
scores entered by the user
are pushed into the
database

Postman
Testing

Raw JSON data
with the
appropriate
values.

Appropriate values
were present in the
JSON data.

Schedule Tests that a schedule
(pdf) is shown when the
user clicks on that
button.

When clicked, the button
redirects the user to a link
that contains the
schedule.

Manual Visual
Testing

Schedule is
displayed in the
application.

Schedule is linked
correctly.

VIII. Project Ethical Considerations
When creating software, some important aspects to think about before putting your code out into the world are the
ethical implications that it may have associated with it. This is because code has the ability to be misused or created for
the wrong purposes, resulting in events that could negatively affect the public interest. To help address these issues, the
Association for Computing Machinery (ACM) and the Institute for Electrical and Electronics Engineers (IEEE) have

15 | Page

developed the Software Engineering Code of Ethics and Professional Practice. This section discusses a few of these
codes; how the project relates to them; and how they are addressed.

VIII.A Active Principles

2.01. Provide service in their areas of competence, being honest and forthright about any limitations of their experience
and education.

When working with a client who may not be familiar with any software development, it is important to be as
transparent as possible in order to keep them well informed and updated with any major decisions,
technologies, resources, and limitations regarding their desired product and the process of its creation. In order
to keep a transparent development process, weekly meetings were held with the client where topics such as
current status, future plans, and foreseeable obstacles were discussed. This allowed for the client to ask as many
questions regarding the development process as needed as well as provide immediate feedback on anything the
client may have changed their mind on.

7.05. Give a fair hearing to the opinions, concerns, or complaints of a colleague.

When developing software, it is important that the opinions, concerns, or complaints of colleagues are heard.
The core of any good development team is that every developer can give their input on the direction that the
project is going towards. A good way to maintain a checks and balances type of system in the development cycle
of a project is if each developer can voice their opinion, concern, or complaint if necessary. It is critical that the
development team gives a fair hearing to that developer’s opinions, concerns, or complaints as this could either
benefit or hinder the project. The developers for this project recognize that this principle 7, section 7.05,
completely applies to this project. Violating this principle can have grave ramifications for both the team and the
project. To prevent the violation of this principle, each developer recognizes that at some point they will have an
opinion, concern, or complaint about the project. It is the job of the other developers to make sure that they
allow that person to voice their complaints, concerns, or opinions to the team in order to adhere to this
principle.

VIII.B High Concern Principles

3.14. Maintain the integrity of data, being sensitive to outdated or flawed occurrences.

This is an ethical standard that the developers must be very cautious about. Having only minimal experience with
databases, particularly ones with a large number of simultaneous queries, could lead to an unstable product
when active. There has to be no flaws with the SQL database and the queries written in React to ensure that the
data is not flawed or outdated. After every conference, the database must be wiped so that there is no
accidental overlap when the next conference comes around. There also have to be security checks in place to
prevent users from entering numbers beyond the range of the highest/lowest possible score, as well as to
prevent a single user from evaluating the same presentation more than once.

IX. Project Completion Status
The goal of the project, RMS-AAPG 2022, was to create a full-stack application that would allow users to score

presentations and have those scores aggregated in order to determine the best presentation. All the front-end features

have been implemented and work to the client’s specifications. The routes to the pages work correctly, moving from one

page to the next seamlessly. All buttons are implemented and fleshed out, resulting in the desired effect, i.e. submissions

or continuing on to the next page. The user information form is fully functional in that it allows the user to enter their

information into the form and results in the data being sent to the database when submitted. The visual aspect of the

application is successful; the CSS elements are laid out correctly in both Chrome and Firefox, and Microsoft Edge.

However, the application does encounter some sizing issues regarding mobile view. Some of the CSS elements do not lay

out correctly for the mobile view layout, specifically for the browser. This may require adding bits of a CSS framework

16 | Page

such as bootstrap in order to handle this issue, but for the most part, all functional and non-functional requirements

have been met. In addition to this, testing on the server side part of the project has yielded successful results. Testing the

current API in Postman has returned the expected results. A post request sends the correct data to the database and

results in a 200 series message and the raw JSON data. A "200 ok" message, lets us know that the request was processed

successfully and the raw JSON data was returned. These same results were also seen when testing directly from the

browser. However, additional APIs will require more testing to determine if they are successful or not. Even though the

current API being tested yields the correct result, the response time from the API call was above 1200ms when posting

data to the database. This could result in data being posted to and fetched from the database taking much more time

than expected.

X. Future Work

With such a short period of time to work on this project, it was to be expected that not all necessary requirements were

met in order to have a fully finished product. We managed to replicate the flow of the website that our clients were

looking for, as well as create the skeleton for other future implementations, but this still leaves some key work that needs

to be added for full website functionality. These mainly include: setting up an admin portal for easier access to the

results, implementing a search engine for presentation selection, and writing a script to display results using graphics.

The first goal to achieve if the project were to be expanded is to create a functioning admin page. This would require a

separate login for whoever needs to see the results of the conference or whenever a new set of presentations needs to

be added to the website. Theoretically, this would be implemented by adding a new table to the database that contains

admin information. This table would contain an email and a password key. From the home menu, a new dropdown menu

would be added in the top right corner that would link to an admin login. This page would require you to enter the two

admin credentials, namely the email and password. Upon submitting, a query would be run to verify that the email exists

in the admin page table, and ensure that the password corresponds to the password for that email. Once the proper

credentials are verified, it would take the user to the admin page, where they would be able to download an excel file

containing the tallied results, display the results on the webpage, or upload an excel file containing a new list of

presentations. The latter would be used to delete all the data in the database and replace the current presentations table

with presentations in the submitted excel file. This could be used to add more presentations to the conference by

including the current presentations and the new ones in the submitted excel file, or it could be used to submit a new

presentation schedule for a future conference.

Another idea to expand the project would be to implement a search bar that would allow the user to navigate the vast

list of presentations. This would enable the user to select a desired presentation faster in order to save them the hassle

of scrolling through all of the different presentations if they already know which one they want to attend. Something

extra that we could implement, which we briefly touched on with our clients, was the usage of QR codes. This would

allow mobile users to quickly access the evaluation form of a specific presentation without having to manually navigate

the web page. We originally thought of implementing this, but settled on making this a stretch goal. Fortunately, as it

stands, we do have the framework to possibly implement the usage of QR codes properly. It would just be a matter of

extra time to accomplish this.

The last goal that we have to achieve is to display the results, specifically in a way that is visually easy for the

administrators to read. We would most likely have the admin page display graphs that would categorize the

presentations by score, from least to greatest. We would also display other analytical data, such as pie charts showing

17 | Page

the sessions with the highest percentage of scores. Besides graphical representations of the results, results can also be

downloaded to a csv file in order to be used in a program like excel or spreadsheets.

XI. Lessons Learned
● React is a very useful tool for implementing web applications. Because it incorporates tools from both JavaScript

and HTML, it is very easy to learn and teach yourself.
● Node.js is an essential tool for connecting a React web application to a server/database. It allows for

communication between the JavaScript web code and an SQL database, giving the ability to send queries to the
database.

● Javascript is a great language to use for a project like this because of its ability to both create web applications
and run commands to communicate with connected databases.

● Microsoft Azure takes complicated processes, like creating a database or website, and helps to simplify them.
While it is not the easiest platform to navigate and learn on your own, with time and practice, it is a great skill to
have under your belt.

● Although this project was executed in under 5 weeks, something that proved to be helpful with team
organization was sprint planning. This allowed for clear expectations to be set and met by each member of the
group.

18 | Page

XII. Team Profile
Nicholas Herbic

Senior

Computer Science

Hometown: Centennial, CO

Work Experience: SUMMET Program Mentor, Generation Teach Math Teaching Fellow, DECTech Camp Teacher

Hobbies: Camping, Fishing, Guitar, and Video Games

Fool me once, shame on you. Teach a man to fool me, I’ll be fooled the rest of my life.

Josue Milenga

Junior

Computer Science

Hometown: Aurora, CO

Work Experience: Electronic Sales Associate at Costco

Hobbies: Drawing

A wise man once said, if you write a book, write it with no words.

Alexa Nelson

Junior

Computer Science

Hometown: Benicia, CA

Hobbies: Art, video games

Clubs: Sigma Kappa

Applications are my passion.

Raymundo Corona Nunez

Senior

Computer Science: Computer Engineering

Hometown: Thornton, CO

Work Experience: Encon Design Intern, Challenge Mentor

Hobbies: Reading, Cooking, Night Hikes

Clubs: Multicultural Engineering Program, Society of Hispanic Professional Engineers

I am Groot.

Mikayla Sherwood

Junior

Computer Science: Computer Engineering

Hometown: Aurora, CO

Work Experience: WORTH Xilinx Lead TA, Micro.Bit Lead TA and Course Development, Computer Science Department

Intern, Desk Assistant for Residence Life

Hobbies: Film Photography, Botany, Stationery, Cultural Embracement

Clubs: Multicultural Engineering Program, Women’s Opportunity to Redesign Technology and History, President of the

American Indian Science and Engineering Society

One day… I will make an onion cry.

19 | Page

References

“Getting started,” Getting Started | Axios Docs. [Online]. Available: https://axios-http.com/docs/intro. [Accessed:
15-Jun-2022].

“Getting Started,” React. [Online]. Available: https://reactjs.org/docs/getting-started.html. [Accessed:
15-Jun-2022].

“Installation - material,” UI. [Online]. Available: https://v4.mui.com/getting-started/installation/. [Accessed:
15-Jun-2022].

MashaMSFT, “Azure SQL documentation - azure SQL,” Azure SQL | Microsoft Docs. [Online]. Available:
https://docs.microsoft.com/en-us/azure/azure-sql/?view=azuresql. [Accessed: 15-Jun-2022].

Node.js, “Documentation,” Node.js. [Online]. Available: https://nodejs.org/en/docs/. [Accessed: 15-Jun-2022].

Postman, “Postman Documentation,” Postman Learning Center, 22-Apr-2022. [Online]. Available:
https://learning.postman.com/docs/. [Accessed: 15-Jun-2022].

“React-cookie,” npm. [Online]. Available: https://www.npmjs.com/package/react-cookie. [Accessed: 15-Jun-2022].

20 | Page

Appendix A – Key Terms
Term Definition

Azure Azure is a public cloud platform that provides software solutions
such as infrastructure as a service, software as a service, and
platform as a service.

React.js (React) A javascript based UI development library.

Node.js (Node) An open source, cross platform, back end javascript runtime
environment designed to build scalable network applications.

ERD (Entity Relational
Diagram)

A structural diagram used for designing a database that shows
the relationship of entity sets stored in a database.

JSON (JavaScript Object
Notation)

A type of file where data is stored in a readable format for
developers to look at and manipulate when creating their
software.

HTTP (Hypertext Transfer
Protocol)

A set of rules for transfering files over the web.

API (Application Program
Interface)

A set of definitions and protocols for building and integrating
application software

21 | Page

Appendix B – Figures
Figure 1: Home Page Display 7

Figure 2: Evaluation Form Page Display 7

Figure 3: Time Selection Page Display 7

Figure 4: Session Page Display 7

Figure 5: Presentation Page Display 8

Figure 6: Evaluation Multi-Step Form Page 9

Figure 6.a: Presentation Page 9

Figure 6.b: Content Page 9

Figure 6.c: Impression Page 9

Figure 6.d: Comments Page 9

Figure 7: Website Flowchart 10

Figure 8: Database Schema 11

Figure 9: User Table and Judge Form Correlation 12

Figure 10: Individual Scores Table and Evaluation Multi-Step Form Correlation 12

Figure 11: Presentation Table and Session Correlation 13

Figure 12: System Interaction Diagram 13

22 | Page

Appendix C – Tables
Table 1: Revision History 2

Table 2: Technology and Skill Risks 5

Table 3: Software Tests 15

23 | Page

