

CSM Hildreth: Furnace Controller

Team Members:

Colton Meyers

Josh Mendelsohn

Nathaniel Bujarski
Preston Yates

Revised June 17th, 2022

CSCI 370 Summer 2022

Client: Dr. Owen Hildreth

1 | P a g e

Advisor: Ms. Donna Bodeau

2 | P a g e

Table 1: Revision History

Revision Date Comments

New May 16, 2022 Requirements section of final report created.

Rev – 2 May 17, 2022 Completed requirements section and team profile.

Rev – 3 May 18, 2022 Updated functional requirements based on newly discovered means of
communicating with sensors. Added more key terms to Appendix A.

Rev – 4 May 19, 2022 Finalized requirements section before submitting current revision to advisor.

Rev - 5 May 27, 2022 Added system architecture diagram, wireframe, state diagram, and circuit
diagram.

Rev - 6 June 3, 2022 Added software quality and ethics considerations. Update functional
requirements and non-functional requirements. Added brief description
before each architecture diagram.

Rev - 7 June 6, 2022 Updated functional requirements and definition of done.

Rev - 8 June 9, 2022 Began working on the results section.

Rev - 9 June 10, 2022 Completed software testing and updated test table. Added additional terms
to Appendix A.

Rev - 10 June 13, 2022 Updated Introduction and Functional requirements. Started on Project
Completion Status, Future Work, Lessons Learned, and Technical Design
sections.

Rev - 11 June 14, 2022 Completed Completion Status, Future Work, Lessons Learned, and Technical
Design sections.

Rev - 12 June 17, 2022 Final revisions

3 | P a g e

Table of Contents

I. Introduction...5

II. Functional Requirement ..5

III. Non-Functional Requirements ...6

IV. Risks...6

V. Definition of Done ..7

VI. System Architecture...7

VII. Technical Design: Sensor Communications...8

Introduction ..8

Hardware Implementation ..9

Arduino Language ..10

Arduino State Machine...12

Technical Design Conclusion...12

VIII. Software Test and Quality...12

User Interface Testing ..13

Functional Testing ..14

Load Testing...16

Code Quality ..16

User acceptance testing ..17

Unit Testing Note ...16

IX. Project Ethical Considerations...17

ACM/IEEE Principles Applicable to the Project ...17

ACM/IEEE Principles Most in Danger of Being Violated ..17

Harm Test ...17

Reversibility Test ...17

Ethical Considerations for a Failed Quality Assurance Plan ...18

X. Project Completion Status...18

XI. Future Work ...18

More implementations..18

XII. Lessons Learned ...19

Key project successes ...19

Key project shortcomings and solutions ..19

Key lessons...20

XIII. Team Profile..21

4 | P a g e

Nathan Bujarski ..21

Josh Mendelsohn ..21

Colton Meyers ..21

Preston Yates ..22

References ..23

Appendix A – Key Terms ..25

Appendix B – Additional Design Documents ...26

Appendix C – Parts Used ...27

5 | P a g e

I. Introduction
Our client, Dr. Owen Hildreth, is an Assistant Professor in the Mechanical Engineering Department at Colorado

School of Mines. Dr. Hildreth’s research focuses on nanometer to centimeter-scale additive manufacturing technologies
and involves many mechanical and materials engineering principles such as mass transport, heat transfer, chemical
kinetics, electrohydrodynamics, and corrosion [1]. For the variety of concepts that are applicable to Dr. Hildreth’s
research, there is an equally large variety of equipment in his lab that he uses to support his research. To simplify the
handling of this equipment, Dr. Hildreth has designed and commissioned many custom MacOS applications to assist in
the data collection and control for his lab equipment. However, there are still multiple pieces of equipment in his lab
that use antiquated methods of control and data collection.

The goal of this project is to create a MacOS/iOS application to handle the operation and data collection for the
furnace in Dr. Hildreth’s lab. More specifically, there exist two mass flow meters, one for Argon gas and one for Nitrogen
gas, and an overall furnace control box that we need to get values from and send commands to via our MacOS
application. Up until now, Dr. Hildreth and his lab assistants have been manually updating each of the flow meters when
they want to change gas flow rates, and they have been using a video camera to record the temperature values
displayed on the furnace control box throughout their experiments. Since this method is very time consuming, Dr.
Hildreth wants a Mac application that he and his lab assistants can use and maintain which will automate the process of
data collection while also providing a simple user interface through which the flow meters can be updated. By utilizing
an Arduino, it should be possible to communicate between the various sensors and the Mac app lication. The application
should then be able to handle the processing, storage, and visual presentation of that data while also having logic for
sending commands to the sensors. Overall, this application should help in streamlining communication between t he
furnace and the person who is using it.

II. Functional Requirement
• Arduino Setup

o Communicate with two Gas Flow Meters simultaneously using 8-Pin Mini DIN cables and serial
communication protocol RS232

▪ Poll sensors for flowrate data
▪ Send commands to update each sensor’s flowrate

o Read temperature values, expressed as analog voltages, from furnace’s thermocouple
o Conduct a status check to make sure that all sensors are connected
o Send data received from the sensors to the Swift application using a USB cable

▪ Stretch Goal: Send data via Bluetooth instead of USB

• MacOS Application
o Communicate with the Arduino unit using one of the computer’s serial ports

▪ Detect, record, and parse data packets sent by the Arduino
▪ Send commands of a specific format to the Arduino

• Poll Argon flow meter

• Poll Nitrogen flow meter

• Set flowrate setpoint of Argon flow meter
• Set flowrate setpoint of Nitrogen flow meter

• Read temperature value

• Check status of connection with sensors
o Display data

▪ Display current connection status
▪ Display current values of temperature and flowrate
▪ Graph data from sensors over time according to a preset rate

o Save sensor data

6 | P a g e

▪ Save temperature and flowrate data as a CSV file
o Provide user interface for updating flowrates
o Provide user interface for starting and stopping data recording

III. Non-Functional Requirements
• The MacOS application must be written using the XCode development environment

o SwiftUI must be used to create the user interface as a MacOS application

• The Arduino program must be written using the Arduino development environment

• The DataGraph API must be used to implement the graphs on the GUI

• The GUI should not have any intrusive elements, such as alerts

IV. Risks
Table 2: Potential Risks

Risk Type Impact Resolution Probability of
Occurrence (1-5)
5 = very likely

Sensor
Malfunction

Hardware The Arduino will
not be able to
get accurate
values.

Re-write the
Arduino with a
new sensor

2

Wiring Short Hardware The Arduino will
not be able to
get any values
from the sensor

Find the short
and replace the
wire with a new
one

3

Arduino Failure Hardware Whole system
will cease to
function

Flash the Arduino
with the code
again. Re-write
the new Arduino
to sensors

1

Learning Swift Software Our code will not
run correctly and
get our desired
outcome

Run tests and
debug to make
sure our code is
semantically
correct

5

MacOS
Communication
Error

Software MacOS
communication
with Arduino
devices fails

Gracefully handle
the error in the
software and
indicate to the
user to re-
establish
communication

3

7 | P a g e

V. Definition of Done

Our definition of done is that the MacOS application successfully records and graphs data coming from the
Arduino, and that the application can communicate with the flow meters to set their flowrates. This requires the
following items to be completed:

• The Arduino can communicate with and send data to the MacOS application
• The Arduino can read temperatures using a thermocouple

• The Arduino can read signals from the flow meter and send commands to it

• The MacOS application can send string commands to the Arduino
• The MacOS application must display graphs of measurements versus time

• The MacOS application must have a timer displaying experiment runtime

• The MacOS application must have fields which allow the user to update flowrate

• The MacOS application must be able to save all recorded data to a CSV file

VI. System Architecture
With regards to the hardware, both Apex Flow Meters, which measure and control flowrate, communicate using

RS-232 serial. Since the Arduino uses a different voltage range than the flow meters, it is necessary to convert the RS -
232 signals from the flow meters into TTL signals by using a MAX3232 converter. The thermocouple outputs analog
voltages on the order of milli-volts, so it is necessary to amplify those signals using a MAX38155 thermocouple amplifier
for K-type thermocouples. This amplifier outputs the information using SPI (Serial Peripheral Interface) to the Arduino. A
USB connection is used to communicate between the Arduino and the MacOS application.

On the MacOS side of the project, the ArduinoController class acts as the interface between the Arduino and the
application. This class communicates with the AppController class which handles most of the backend logic that exists
within the application. AppController contains the timer object for creating the stopwatch object in the GUI and the
timer object for determining when to send a data poll request to the Arduino. In addition to communicating with
ArduinoController, AppController also communicates with the DataController and GraphController classes to interface
with the file memory and DataGraph application, respectively. The DataGraph application is used to generate and
format graphs which are displayed on the GUI. Finally, the GUI communicates with the AppController to convert user
inputs into sensor commands and to retrieve and display data that is received from the sensors.

The overall system architecture on both the hardware and software sides is visually represented in Figure 1. The
arrows indicate how various parts of the system communicate with each other. Edges without labels indicate that the
connection is internal to the program, whereas edges with labels indicate the protocol which is utilized for
communication.

8 | P a g e

Figure 1: Furnace Controller Architecture Diagram

Figure 2 is the finalized graphical user interface developed in SwiftUI. It includes interfaces to start and stop the
experiment and to control the temperature and flow rates of the mass flow sensors. Additionally, there is functionality
to graph the gas flow rates and temperatures as a function of time. In the lower left corner, the “Minutes/Sample” text
field allows the user to control polling rate of the sensors.

Figure 2: Furnace Controller Wireframe

VII. Technical Design: Sensor Communications
Introduction

The hardware of this project is crucial to our ability to communicate with the different kinds of sensors and get
usable data to the MacOS application. The idea is that an Arduino UNO acts as a communications bridge between the

9 | P a g e

MacOS and the furnace sensors. The application talks to the Arduino over USB using a command response language, and
the Arduino interprets those commands and sends back the requested sensor data. This simplifies connectivity on the
Mac side of the project as only a singular USB port is needed while allowing the Arduino to do the job of controlling
multiple sensors with its powerful GPIO.

Hardware Implementation

At its core, the Arduino interfaces with three sensor devices: thermocouple for reading temperature values
inside the furnace and two Apex mass flow meters for collecting data about and controlling gas flow into the fu rnace.
The Apex mass flow meter is a smart controller which can communicate using serial, collect gas flow data, and control
gas flow. It has its own built-in language for commands and data responses and communicates using RS-232, a type of
serial communication protocol. This serial communication protocol allows for the exchange of bytes which can be
formed into ASCII text and interpreted by the Arduino program. RS-232 communication with the Apex flow sensors is
achieved via a MAX3232 board which converts between TTL [0-5 volts] level voltages and RS-232 [-15 to +15] level
voltages. Using this converter board, it is possible to communicate with the Apex flow devices and send arbitrary string
commands for both fetching flow data and setting desired flow rates.

The other sensor is a type K thermocouple, which is a very simple sensor that uses the Seebeck effect to
generate specific voltages at specific temperatures. These voltages can be read and converted into a temperature value.
One limitation of the Arduino is that its analog to digital converter is too inaccurate to handle reading the voltage values
generated by the thermocouple natively. To handle this issue, we employed a MAX31855, a thermocouple amplifier.
This board amplifies the voltage generated by the thermocouple, converts that voltage to a temperature value in
Celsius, and communicates that temperature back to the Arduino using Serial Peripheral Interface (SPI). SPI is yet
another flavor of serial communication like TTL and RS-232 serial, however this protocol is synchronous meaning both
devices share a common clock signal which dictates when bits are transferred. The result is still the same, a serial
protocol which allows for the exchange of bytes which are formed into ASCII text and interpreted b y the Arduino
program.

Figure 3 is the circuit diagram for the Arduino and connected sensor components. It shows the aforementioned
connection with the two Apex Mass Flow controllers through a TTL to RS-232 converter. It also specifically shows the
pins utilized for the T1 (transmit line 1) and R1 (receive line 1) which are the specific hardware pins utilized to achieve
communication with the Apex Flow Sensor devices. Since there are two pins utilized, communication is full duplex
allowing for two-way communication at the same time. Another important observation is the Apex Flow Sensors are
wired in parallel with one another. This is because both devices receive the command and then decide for themselves if
they are the intended recipient of the command. This ambiguity is resolved by having each flow sensor device have a
unit id which can be any alphabet letter A-Z. Figure 3 also shows the thermocouple amplifier and the external
connection to the furnace thermocouple. It shows the three pins (CLK, CS, DO) which are essential to achieving SPI
communication between the Arduino and the amplifier. Only one data pin is listed (DO) which indicates that this is a
read only relationship between the Arduino and the amplifier. Finally, for clarity the USB connection with the Mac
computer is not pictured, but pins D1 and D0 are reserved for hardware supported TTL serial communication with the
connected Mac.

10 | P a g e

Figure 3: Arduino Control Board Circuit

Arduino Language

The Arduino has a command-based API which was created to allow for both manual testing and communication
with the Swift Application. Communication is first achieved by connecting the Arduino to a USB port on a computer.
Manual testing is conducted by utilizing a Serial monitor set to a BAUD rate of 9600. The following tables document the
possibilities for commands sent as well as the expected responses in each circumstance. The API has proved extremely
valuable as it allows for extensible control to be programmed into the Arduino with no concerns about regressing
functionality due to the presence of a maintained format.

Command Format:

Each command has the 4 main components listed below. UID and DATA vary as described below. The command is
always space delimited unless otherwise specified.

$ <UID> <DATA> ;

• UID is a positive 32-bit integer value
o Every response to a command is given the same UID as the request had. This helps to map responses to

requests and provide a mechanism for catching commands which have failed.

• DATA is a variable length string
o It can either be an Immediate command or an Apex Flow Sensor command

Table 3: Immediate Commands

Command Description

TEMP Polls the thermocouple for the temperature in Celsius

11 | P a g e

STATUS Prints status information about sensors.

Table 4: Apex Flow Sensor Commands

Command Description

<Unit ID> Polls the Apex Flow Device for a data frame about current flow values.

<Unit ID>s<floating point
value>

Sets the setpoint (L/min target for gas flow) of the device to the value
described.

• $ is the beginning of transmission signal (BOT)
o The BOT signal causes the Arduino code to transition to the read command state. In this state the

Arduino fills an internal input data buffer with the received characters over the serial communication
line with the MacOS application or serial monitor application (for testing).

• ; is the end of transmission signal (EOT)
o The EOT signal causes the Arduino code to transition to the execute command state. This concluded the

filling of the buffer and allows for the parsing of the command now stored in the buffer. The resultant
command then determines the next state transition. Further details on the state transitions can be
viewed in figure 4.

Response Format:

$ <UID> <DATA> ;

• UID is a positive 32-bit integer value
o This will take on the same value specified in the initial command

• Data a variable length string now containing the Data response from the initial command sent

Table 5: Response Data

Command Sent Response Type <DATA>

a Flow sensor data frame [Unit ID] [Absolute Pressure] [Temperature]

[Volumetric Flow] [Mass Flow] [Setpoint] [Gas]

as<floating point
value>

Flow sensor data frame with updated

information about the setpoint

[Unit ID] [Absolute Pressure] [Temperature]

[Volumetric Flow] [Mass Flow] [Setpoint] [Gas]

If the change was successful, the setpoint will now

reflect the floating-point value provided.

TEMP Temperature value <Temp in ºC>

STATUS Debug info on current sensor

connectivity status

OK – all sensors are connected and responding

BAD <message> - one or more sensors are not

responding

Error Response Format:

12 | P a g e

$ <UID> ERROR <explanation> ;

In many cases, communication cannot be established with a hardware sensor, or a malformed command is sent.
The Arduino will respond with an error message describing the current issue encountered. Every response will conform
to the pattern described above with explanation being a variable length string explaining the issue that was
encountered. If a malformed command is sent without a UID then –1 will be assigned to the UID in the response helping
to indicate this issue.

Arduino State Machine

The communication between the Arduino, the Apex Fow devices, and the MacOS application is all asynchronous.
This means that the Arduino will receive bytes of data intermittently and over many clock cycles. This requires the ability
to stay in a specific state for an undetermined amount of time while data buffers are filled. Previously in the Arduino
language section the BOT and EOT characters were discussed which are the key components the Arduino waits for to
signal the transition of states. Below is Figure 4, a finite automaton which visually describes these transitions of the
Arduino code. The state machine proved to be an elegant way to handle the Arduino code as it allowed for the
complexity of Asynchronous communication to be delegated to different states and helped add direction to the
development of the microcontroller code.

Figure 4: Arduino State Diagram

Technical Design Conclusion

Taken together, the hardware control boards, the Arduino state machine, and the Arduino command-based API allows
for the simple control of sensors from the MacOS application and a useful implementation of the command response
control format. Developing the command-based API proved extremely useful as it allowed for the decoupling of the
Swift application from the Arduino microcontroller which simplified coordination, development, and testing.

VIII. Software Test and Quality
Software testing is essential to ensuring quality and usability of the designed application. The following tables

detail the wide spectrum of tests that we covered in order to ensure usability and functionality for our program. It is
important to note that due to time constraints, most of these tests are manual tests. User Interface tests are focused on
UI functionality throughout the application and making sure intended functionality occurs when the application is in a
specific state. Following that is functional testing which focuses entirely on the command-response API that we created

13 | P a g e

for the Arduino and verifying that the Arduino acts as expected when interfacing with the external sensors of the
project. Finally, we have load testing which focuses on stressing the application and ensuring that the Arduino can
handle high pooling rates, and the UI responds well to a user who is spamming buttons or otherwise stressing its
interfaces.

User Interface Testing

Table 6: UI Tests

Test
Name/Description

Action Expected Result
Test

Passed?

Buttons Disable
When Bad Port
Connection

Visually inspect the MacOS
application when no Arduino is
plugged in

Flowrate buttons and textfields are disabled
(grayed out). Timer start button is also
disabled.

YES

Connection Status
Display Updates
When Port is
Connected and
Disconnected

Select port with connected Arduino
from dropdown menu and push
open button in the MacOS
application. Then visually inspect
the connection status text.

Push close button and visually
inspect connection status text

When a port has been selected and the open
button is pressed, the connection status
should change from “Not Connected” to
“Connected”.

When the close button is pressed, the
connection status should change from
“Connected” to “Not Connected”.

When the USB is unplugged, the connection
status should change from “Connected” to
“Not Connected”.

Edge Case: Status should remain as “Not
Connected” and error message is given if
Arduino is not connected to sensors.

YES

Port Selection
Dropdown and
Close Button
Disable When
Recording Data

Press start recording button in the
MacOS application and visually
inspect port selection dropdown
and “Close” button

Port selection dropdown and close button
disabled (grayed out) while recording.

YES

Flow Rate Values
Automatically
Update When
Values are Out of
Range

Enter numeric values greater than 1
and less than 0 into the flowrate
textfields of the MacOS application
and visually inspect resulting value
in textfield.

If a value greater than 1 is entered (by
pressing enter on keyboard or button on UI),
the flowrate displayed in the textfield
becomes 1.

If a value less than 0 is entered (by pressing
enter on keyboard or button on UI), the
flowrate displayed in the textfield becomes
0.

YES

14 | P a g e

Flow Rate Does
Not Update When
Non-Numeric
Values Entered

Enter non-numeric values into the
flowrate textfields of the MacOS
application and visually inspect
values in textfield.

On entering a value, the textfield should not
be updated. YES

Minutes Per
Sample Textfield
Automatically
Updates When
Values are Below
Minimum

Enter value below 0.1 into the
textfield of the MacOS application
and visually inspect state.

Upon pressing the start recording button,
the value in the Minutes per Sample textfield
is updated to 0.1 YES

Graphs Autoscale
and Add Data
According to
Sample Rate

Start timer in the MacOS
application.

Curve should be created on graph, and graph
should auto scale as time goes on. YES

Save Dialog
Appears When
Timer is Stopped

Stop timer in MacOS application. Save dialog should appear

YES

Functional Testing

Table 7: Functional Tests

Test Name Description Action Expected Result
Test

Passed?

Flow Sensor Data
Polling #1

Test if the
Arduino can
successfully get
flow data from
the Apex Flow
Sensor with ID A.

Connect to Arduino with
USB cable. Utilize a
serial monitor with a
9600 Baud rate

Send the command:

$ 1 a ;

A data packet in the form

$ 1 A +011.93 +038.53 -0.0000 -0.0000
+0.0250 Ar ;

The values will vary, but there should
be 8 fields. Including a unit ID (A in this
ex), and a gas (Ar in this ex).

YES

Flow Sensor Data
Polling #2

Test if the
Arduino can
successfully get
flow data from
the Apex Flow
Sensor with ID B.

Connect to Arduino with
USB cable. Utilize a
serial monitor with a
9600 Baud rate.

Send the command

$ 1 b ;

A data packet in the form

$ 1 B +011.93 +038.53 -0.0000 -0.0000
+0.0250 N ;

Note this is device #2 The unit ID and
gas vary accordingly.

YES

Thermocouple
Data Polling #1

Test if the
Arduino can
successfully get

Connect to Arduino with
USB cable. Utilize a

A data packet in the form
YES

15 | P a g e

temperature
data from the
Thermocouple
chip.

serial monitor with a
9600 Baud rate.

Send the command

$ 1 TEMP ;

$ 1 5 ;

Where the second number, 5, indicates
the degrees Celsius the thermocouple
is reading.

Flow Sensor Set
Flow # 1

Set the flow rate
for device A. This
is to make sure
the application
can modify the
flow rate.

Connect to Arduino with
USB cable. Utilize a
serial monitor with a
9600 Baud rate.

Send the command

$ 1 as0.025 ;

A data packet in the form

$ 1 A +011.91 +037.50 -0.0000 -0.0000
+0.0250 N ;

The bolded number above confirms
that the setpoint was set to +0.0250

YES

Serial
Communications
Timeout

Verify the
Arduino will
timeout if there
is no response
from the flow
device. Within 3
seconds.

Connect to Arduino with
USB cable. Utilize a
serial monitor with a
9600 Baud rate.

Send the command

$ 1 c ;

An error packet in the form

$ 1 ERROR serial communication with
flow sensor timeout ;

This is because there is no flow sensor
device #3

YES

Malformed
Command Error
Handling

Verify the
Arduino can
identify that a
malformed
command is sent
to it.

Connect to Arduino with
USB cable. Utilize a
serial monitor with a
9600 Baud rate

Send one of the
following commands:

$ c ;

$ 1 ;

An error packet in the form

$ -1 ERROR malformed input ;

This is because there is not a UID and
Command element in the command. YES

Sensor Status Arduino Send the command

$ 1 STATUS ;

To test the sensor status
command, disconnect 0
or more sensors from
the Arduino and re-run
the command to verify a
change In the status.

For example,
disconnecting sensor A
will throw the sensor A
relevant polling error.

A data packet in the form

$ 1 BAD <INFO> ;

<INFO> is a string identifying the issue

It can be one of the following strings:

Apex Flow sensor A did not respond
when polled

Apex Flow sensor B did not respond
when polled

Thermocouple amplifier or wire may
not be connected

YES

16 | P a g e

Otherwise, if all sensors are connected
and can be communicated with a data
packet in the form will be returned:

$ 1 OK ;

Load Testing

Table 8: Load Tests

Test Name Action Expected Result
Test

Passed?

Record
Button Spam
Testing

Click “Start Recording” button many times in a
row in the MacOS application.

Program should output save file dialog
once the “Stop Recording” button has
been hit and timer stops

 YES

Set Flow
Button Spam
Testing

Click set flow rate numerous times in the
MacOS application to test the response of the
Arduino and its runtime of commands

Program should continue smoothly and
should not freeze or bug out YES

Minimum
Minutes Per
Sample
Testing

Enter the minimum value into the minutes per
sample textbox

Click “Start Recording” in the MacOS
application

Program UI should not run any slower,
and all commands expecting responses
sent to the Arduino are responded to YES

High Arduino
Data Query

Initialize test script with correct serial port and
with baud rate of 9600

Send numerous polling, setpoint, and
temperature request commands per second to
the Arduino device

The Arduino should be able to return the
expected result (see functional testing)
for at least 6 commands / second YES

Code Quality

In order to ensure code quality and future expandability. All Swift code utilized docC a documentation markup engine
for documenting the code for future projects. This includes comments for each class, and major method. Methods
should have descriptions of their parameters, function action description, and a description of the data retu rned. Classes
should have descriptions of their major functionality and what the class is responsible for. The Arduino C code includes
standard inline comments describing major functionality of methods and the intent for each block of code. Wrapping
the project together in a cohesive element is the overall project ReadMe which describes how to build the application
from scratch, the wiring of the Arduino, and a full specification of the Arduino command API.

Unit Testing Note

Near the end of the project, it was discovered that the AppController should have been implemented using
dependency injection instead of as a Singleton class for the sake of testing. Since this change would have required a

17 | P a g e

significant amount of code rewriting, it was decided that the unit tests would be replaced with corresponding functional
and UI tests. This implementation does not affect the functionality of our program negatively, just the implementation
of unit tests.

IX. Project Ethical Considerations

ACM/IEEE Principles Applicable to the Project

The main ethical principles that apply to this project are the appropriate handling and communication of risks
that could be created by malfunctions in the system and providing high quality products. Since the system created will
handle the control of potentially dangerous equipment, it is important for this to be considered in the development of
both the software and hardware systems. Additionally, the risks associated with a malfunction should be clearly
communicated with the client and any others who may use the system in the future so that they may take any additional
steps that they believe are necessary for assuring safety when using our system and the equipment that our system will
be controlling. Finally, we should seek high quality with regards to both the product and the processes in compliance
with our responsibilities as computer scientists.

ACM/IEEE Principles Most in Danger of Being Violated

ACM principle 2.6, performing work only in areas of competence, is the most likely principle to be violated as
this is the first time that any of our members are working in Swift, the language that our application is written in [2]. Due
to the time constraint on this project, it is difficult to learn the language to a decent level of competence before
completing the software. One of the consequences of this is that the User Interface may not look as professional as it
could if our competency level with Swift were higher. Another principle that is likely to be violated is ACM principle 2.9,
designing systems that are robust and usably secure [2]. Again, due to the time constraint of the proje ct, it is challenging
to implement functionalities other than the core functionalities. Therefore, it is possible that some safety and security
measures that should be implemented are not being implemented. At worst, a malfunction in our system could result in
a physical hazard relating to the equipment that our system is managing.

Harm Test

Technology has a way of not always working as planned, but this furnace controller is no more hazardous than
the previous option. Working in a laboratory with equipment like furnaces that get up to thousands of degrees can be
dangerous, so it is necessary to take all precautions when dealing with this technology. Our option will help to automate
data collection and provide a more seamless way to control various components of the furnace. There is inherent
danger when dealing with these tools, but our controller is just a way to control these devices easier and more safely. In
areas of user feedback, the application does less harm as it can error check user inputs and prev ent setting flow rates
outside of their safe range. Instead, it can issue an alert and prevent the user action.

Reversibility Test

Trading places in the context of this project means taking the place of Dr.Hildreth and the other researchers
which utilize the MacOS application to control the furnace. If we were to utilize this application, we would want user
errors to be viewed as user errors, and not confusing UI design choices. To ensure this, we enhanced the usability of the
application by adding error message dialogs and restrictions on what components of the UI are accessible depending on
if an Arduino is connected to the hosting Mac application. For example, the UI textboxes for changing flow rates are not
accessible if the Flow Sensor cannot be communicated with. Another important observation for trading places is that lab
environments, especially Dr.Hildreth’s, are especially dangerous and minimizing the time spent in that environment

18 | P a g e

through the ability to automate data collection significantly helps those are going to use the software conduct their
research in a safer manner.

Ethical Considerations for a Failed Quality Assurance Plan

The most important quality assurance pieces that have ethical considerations are making sure that setpoints
have limits to them and making sure our UI is user friendly. It is possible to set a setpoint on the mass-flow controllers
that is outside of the range accepted by the flow controller, so testing that the user cannot input a number outside of
the range is essential for safety assurance. The consequences of this could potentially be dangerous, as the materials
inside the furnace could act differently based on how much gas is going into the furnace. Making sure that Dr. Hildreth
and the lab technicians are happy with the user interface and the user experience will ensure that the application is
usable and accessible.

X. Project Completion Status
According to our functional requirements and our definition of done described at the beginning of the project, we have
fully completed the furnace controller project for this field session. The only unimplemented features of our project are
what we listed as stretch goals, including setting the temperature on the furnace and adding Bluetooth communication
between the Arduino and the application. Also, we did not add a header to the saved CSV file. Following is a list of
features implemented.

• Arduino
o Created a working circuit which connects the Arduino to all the desired sensors.

▪ Successfully communicated between the Arduino and the Flow Meters by using a TTL to RS232
converter.

▪ Successfully communicated between the Arduino and the Thermocouple by using a
thermocouple amplifier which could communicate with the Arduino via SPI.

o Designed and implemented a request-response communication protocol to send commands and data
between the Arduino and MacOS application

• MacOS Application
o Created an Arduino controller to send commands to and receive data from an Arduino connected via

USB
o Designed and programmed a simple GUI to interact with the Arduino

▪ Created a view to configure the Arduino communications.
▪ Created text fields and buttons which could be used to update the setpoints of the flow meters.
▪ Created Text objects which would update according to the temperature and flowrate values

read from the sensors.
o Implemented functionality to record an experiment and collect data on a timer
o Used DataGraph to graph furnace sensor values versus time over the course of an experiment
o Wrote all recorded values to a CSV file which can be saved to a location on disk selected by the user

XI. Future Work

 More implementations

While we did complete all our functional requirements for this project, there were some stretch goals that our
client had in mind, but that our team did not have time to implement. One stretch goal was to add the ability to set the
temperature of the furnace, but we were never given the hardware specifications that were needed in order to
implement this functionality.

19 | P a g e

There are some improvements that could be made on the Arduino side, including adding Bluetooth and getting a
board with more RAM and more serial communication ports. It is possible that Bluetooth may already be supported on
the MacOS application side (ORSSerialPort has a Bluetooth port option), and all that is needed is to update hardware
and code to talk through Bluetooth through the Arduino. Bluetooth would greatly improve the safety of using the
furnace, as it allows there to be more distance between the lab technician and the furnace. Also, if someone wants to
expand the Arduino code or add more sensors to talk to, they may want a board with more capabilities because we
pushed the limits of the Arduino UNO in our project.

Future work with this project includes some of the previously mentioned stretch goals to create a furnace recipe
creator. With this future work, Dr. Hildreth or others who choose to use this program can automate every part of the
furnace's function, allowing the user to create schedules for temperature and gas flow fluctuation for whatever recipes
they run in the furnace. Because we have implemented close to all functionality of this program except setting
temperature, creating this recipe maker should not take long to implement and could work using user-created
downloadable scripts to run in the program. When all these possible new features are implemented, this will produce a
safer work environment for all furnace users and allow for true remote-control usage and monitoring of this technology.

XII. Lessons Learned
During this project we learned valuable lessons surrounding working together in a team environment, the importance of
clear communication, and the value in subscribing to an engineering workflow process like Agile development. Listed
below are some of the key project successes that we all are extremely proud to have accomplished, as well as
acknowledgment of some of the areas that we encountered adversity.

Key project successes
• Although Swift was a new language to all of us just a couple of weeks ago, having in-depth past coding

experience helped us learn the syntax, quickly develop a user interface, and complete much of the backend
coding.

• Spending consistent amounts of time on this project every weekday has allowed us to gauge the work we have
done very well and has allowed us to complete what we had planned.

• Near the start of the project, we discovered that the sensors we were working with could communicate data
using analog voltages, as was mentioned by our client, but they could also communicate data via RS232 Serial.
After presenting this discovery to our client, the entire scope of our project changed to communicating with the
sensors using RS232 instead of analog voltages in order to take advantage of the commands and logic that
already existed within the sensors. This was an important lesson as it revealed that sometimes a better solution
may exist outside of the client’s expectations for a project.

Key project shortcomings and solutions
• Trying to create a graphing interface within our UI was a challenge considering there was not any good built -in

graphing program in Swift until very recently (Swift charts was announced the day our project was due to the
client). Utilizing our client as a resource helped immensely to get past this hurdle and create a clean UI with a
graph which our client 100% approves of. This taught us a valuable lesson that sometimes it easier to admit you
are having issues and reach out for support rather than struggling individually.

• The thermocouple outputs very small voltages which would be unreadable in our current system, so we

purchased a MAX31855 Thermocouple Amplifier chip to boost the voltages up to a readable level. This was a

shortcoming as it was assumed that this would be the easiest hardware component to get working because it

just relied on the Arduino’s analog to digital converter (ADC). This was almost a critical mistake as this

assumption was incorrect and we needed additional hardware to read this device. The lesson. to be learned was

always check your assumptions and make sure you are not relying on false assumptions.

20 | P a g e

• The client, Dr. Hildreth, gave our team a great deal of freedom in designing the GUI and the sensor

communication system. Although this was helpful in that it allowed our team to adjust the project’s scope as we

learned more about the systems and languages that we were working with, this also made it difficult to finalize

certain aspects of the project that Dr. Hildreth wanted implemented. For example, it was only discovered later in

the project that Dr. Hildreth did not want any Swift alerts because he found them to be overly intrusive. As such,

we had to change how our program responded to unexpected inputs by disabling buttons instead of notifying

the user through an alert. Dr. Hildreth had previously mentioned that he did not like a different feature because

it was intrusive, which should have indicated to us that he disliked intrusive features. This made us realize the

importance of deliberate communication with our client about their preferences as well as the importance of

reading into the client’s preferences based on the information that they gave us.

Key lessons
• Clients are a great resource for getting assistance

• Take charge of getting something done
• When there is a problem ask questions to get to the solution

• Taking mental breaks is good for getting perspective to solve an issue

21 | P a g e

XIII. Team Profile

Nathan Bujarski
Year: Senior
Studying: Computer Science
Hometown: Highlands Ranch, CO
Bio: Nathan enjoys reading books, playing videogames, and
learning martial arts.

Josh Mendelsohn

Year: Junior
Studying: Computer Science major and Engineering Physics minor
Hometown: Baltimore, MD
Bio: Josh loves rock climbing, backpacking, and astronomy.

Colton Meyers

Year: Graduating Senior
Studying: Computer Science
Hometown: Conifer, CO.
Bio: Colton enjoys programming, skiing, and rock climbing.

22 | P a g e

Preston Yates
Year: Senior
Studying: Computer Science focus in Data Science
Hometown: San Antonio, TX
Bio: Preston enjoys spending time with friends, gaming, and
learning about Rubik’s cubes

23 | P a g e

References
[1] O. Hildreth, “Hildreth Research Group,” Colorado School of Mines. [Online]. Available: https://hildrethlab.mines.edu/.

[Accessed: 13-Jun-2022]

[2] “ACM Code of Ethics and Professional Conduct,” ACM. [Online]. Available: https://www.acm.org/code-of-ethics.
[Accessed: 17-Jun-2022]

[3] “IEEE Code of Ethics,” IEEE. [Online]. Available: https://www.ieee.org/about/corporate/governance/p7-8.html.
[Accessed: 17-Jun-2022]

[4] “What is Arduino?,” Arduino. [Online]. Available: https://www.arduino.cc/en/Guide/Introduction. [Accessed: 19-
May-2022]

[5] “Serial communication Basic Knowledge -RS-232C/RS-422/RS-485,” CONTEC. [Online]. Available:
https://www.contec.com/support/basic-knowledge/daq-control/serial-communicatin/. [Accessed: 19-May-2022]

[6] “Serial Communication Methods – Synchronous & Asynchronous,” PIJA Education, 15-Jul-2021. [Online]. Available:
https://pijaeducation.com/communication/serial-communication-methods-synchronous-asynchronous/.
[Accessed: 10-Jun-2022]

[7] “4.2 Synchronous Serial Communication,” Learn about the Serial Peripheral Interface (SPI) · VectorNav . [Online].
Available: https://www.vectornav.com/resources/inertial-navigation-
primer/hardware/synccomm#:~:text=One%20of%20the%20most%20common,bit%20rates%20exceeding%2010%
20MHz. [Accessed: 10-Jun-2022]

[8] “4.1 Asynchronous Serial Communication,” VectorNav. [Online]. Available:
https://www.vectornav.com/resources/inertial-navigation-
primer/hardware/asynccomm#:~:text=Asynchronous%20serial%20communication%20is%20a,end%20of%20a%20
data%20message. [Accessed: 07-Jun-2022]

[9] S. Campbell, “Basics of UART Communication,” Circuit Basics, 14-Nov-2021. [Online]. Available:
https://www.circuitbasics.com/basics-uart-
communication/#:~:text=UART%20stands%20for%20Universal%20Asynchronous,transmit%20and%20receive%20
serial%20data. [Accessed: 10-Jun-2022]

[10] T. Sharma, “RS232 Serial Communication Protocol: Basics, Working & Specifications,” What is RS232 Serial
Communication Protocol? RS232 Basics, Working & Specifications, 01-Jan-2018. [Online]. Available:
https://circuitdigest.com/article/rs232-serial-communication-protocol-basics-specifications. [Accessed: 19-May-
2022]

[11] jimblom, “RS-232 vs. TTL Serial Communication,” SparkFun, 23-Oct-2010. [Online]. Available:
https://www.sparkfun.com/tutorials/215#:~:text=This%20method%20of%20serial%20communication,'0')%20is%
200V. [Accessed: 19-May-2022]

[12] Anusha, “Basics of serial peripheral interface (SPI),” Electronics Hub, 06-Oct-2021. [Online]. Available:
https://www.electronicshub.org/basics-serial-peripheral-interface-
spi/#:~:text=Serial%20Peripheral%20Interface%20or%20SPI,a%20microcontroller%20and%20its%20peripherals .
[Accessed: 07-Jun-2022]

[13] “VCC and VSS Pins,” tutorialspoint. [Online]. Available: https://www.tutorialspoint.com/vcc-and-vss-
pins#:~:text=VCC%20(Voltage%20Common%20Collector)%20is,Supply)%20means%20ground%20or%20zero.
[Accessed: 19-May-2022]

24 | P a g e

[14] “Swift,” Apple Developer. [Online]. Available: https://developer.apple.com/swift/. [Accessed: 19-May-2022]

[15] P. Hudson, “What is SwiftUI?,” Hacking with Swift, 09-Feb-2021. [Online]. Available:
https://www.hackingwithswift.com/quick-start/swiftui/what-is-swiftui. [Accessed: 10-Jun-2022]

[16] “DocC,” Apple Developer Documentation. [Online]. Available: https://developer.apple.com/documentation/docc.
[Accessed: 10-Jun-2022]

[17] The Editors of Encyclopaedia Britannica, “Thermocouple,” Encyclopædia Britannica. [Online]. Available:
https://www.britannica.com/technology/thermocouple. [Accessed: 19-May-2022]

[18] R. Awati, “What is the Seebeck effect?” SearchNetworking, 18-Oct-2021. [Online]. Available:
https://www.techtarget.com/searchnetworking/definition/Seebeck-
effect#:~:text=The%20Seebeck%20effect%20is%20a,difference%20between%20the%20two%20substances.
[Accessed: 16-Jun-2022]

[19] “Operating Manual For Mass Flow Controllers Models MC · MCD · MCE · MCQ · MCR · MCS · MCV · MCW,” Alicat
Scientific. [Online]. Available: https://documents.alicat.com/manuals/DOC-MANUAL-9V-MC.pdf. [Accessed: 19-
May-2022]

[20] “Operating Manual For Mass Flow Meters Models M · MQ · MS · MW · MB · MBQ · MBS · MWB,” Apex Vacuum.
[Online]. Available: https://apexvacuum.com/wp-content/uploads/2021/09/DOC-MANUAL-M-2021-Apex.pdf .
[Accessed: 19-May-2022]

[21] “Arduino® Uno R3,” Arduino. [Online]. Available: https://docs.arduino.cc/resources/datasheets/A000066-
datasheet.pdf. [Accessed: 17-Jun-2022]

[22] “SP3222EB/3232EB True +3.0V to +5.5v RS-232 Tranceivers,” SparkFun. [Online]. Available:
http://cdn.sparkfun.com/datasheets/Components/General%20IC/SP3232EBCA-L.pdf. [Accessed: 17-Jun-2022]

[23] “MAX31855 Cold-Junction Compensated Thermocouple-to-Digital Converter.” [Online]. Available:
https://datasheets.maximintegrated.com/en/ds/MAX31855.pdf. [Accessed: 17-Jun-2022]

25 | P a g e

Appendix A – Key Terms
Include descriptions of technical terms, abbreviations and acronyms

Term Definition

Arduino “...an open-source electronics platform based on easy-to-use
hardware and software” [4].

Mass Flow Meter A device which measures the volumetric and mass flow rate of a
gas flowing through the sensor

Serial Communication A method of communication between devices which involves
sending and receiving one bit at a time at a specified baud rate
[5].

Synchronous Serial
Communication

Serial data signals are synchronized using a common clock signal.
Faster than asynchronous serial communication but requires
more wires [7].

Asynchronous Serial
Communication

Serial data signals are not synchronized using a common clock
signal and instead use start and stop bits to indicate the
completed transfer of a data package [8].

UART A device which can commonly be found in microcontrollers and
other electronic devices that handles serial communication
between devices. UART stands for Universal Asynchronous
Receiver/Transmitter [9].

RS-232 Serial A serial communication protocol that can be used over medium
distances and can handle both synchronous and asynchronous
data signals. RS-232 stands for “Recommended Standard 232.” In
RS-232, a 1 is represented as a negative voltage and a 0 is
represented as a positive voltage [10].

TTL Serial A type of asynchronous serial communication which is used to
transmit data over short distances. TTL stands for “transistor-
transistor logic.” In TTL, a 1 is represented using the VCC and 0 is
represented with 0V [11].

SPI Serial A type of synchronous serial communication that uses a master-
slave configuration. Requires four different signals: MISO, MOSI,
Serial Clock, and Chip Select. SPI stands for “Serial Peripheral
Interface” [12].

VCC “VCC (Voltage Common Collector) is the higher voltage with
respect to GND (ground)” [13]. VCC is usually either 3.3V or 5V.

XCode A development environment to build MacOS and IOS applications
using Swift, SwiftUI, and Objective- C

26 | P a g e

Swift A general-purpose compiled programming language for iOS,
iPadOS, macOS, tvOS, and watchOS [14].

SwiftUI “...a user interface toolkit that lets us design apps in a declarative
way” [15].

DocC A documentation compiler created by Apple to turn markdown
comments in documentation for Swift and Objective-C projects
[16].

Thermocouple A thermocouple is an electrical device consisting of two dissimilar
electrical conductors forming an electrical junction. A
thermocouple produces a temperature-dependent voltage as a
result of the Seebeck effect, and this voltage can be interpreted
to measure temperature [17].

Seebeck effect The Seebeck effect is a phenomenon in which a temperature
difference between two dissimilar electrical conductors or
semiconductors produces a voltage difference between the two
substances [18].

Appendix B – Additional Design Documents

27 | P a g e

Appendix Figure 1: Mini-DIN pinout

Appendix C – Parts Used
Item Name: Amount: Data Sheet: Part Number:

ELEGOO UNO R3
Board ATmega328P

1
https://docs.arduino.cc/resources/datasheet
s/A000066-datasheet.pdf

EL-CB-001

Breadboard 1 N/A N/A

RS232 to TTL
Converter

1
http://cdn.sparkfun.com/datasheets/Compo
nents/General%20IC/SP3232EBCA-L.pdf

SP3232EB

MAX31855
(Thermocouple
Amplifier)

1
https://datasheets.maximintegrated.com/en
/ds/MAX31855.pdf

MAX31855K

USB to USB-C Dongle N/A N/A

