COLORADOSCHOOLOFMINES

EARTH &« ENERGY & ENVIRONMENT

CSCI 370 Final Report

CSM EDNS 2: CS@Mines Oral Presentations 2.0
Team: One (1) Ramblin’ Wreck

Michael Kormishkin
Thomas Lowery
Alexandra Cooke

Gabriel Del Castillo

Revised June 15, 2022

CSCI 370 Summer 2022

Dr. Rob Thompson

Table 1: Revision History

Revision Date Comments
New May 20, 2022 Completed Sections:
I Introduction
1. Functional Requirements
M. Non-functional Requirements
IV. Risks
V. Definition of Done
VI. XI. Team Profile
References
Appendix A - Key Terms
Rev -2 May 26, 2022 Updated Sections:
I Introduction
1. Functional Requirements
Il Non-functional Requirements
IV. Risks
V. Definition of Done
Completed Sections:
VI. System Architecture
Rev-3 June 3, 2022 Updated Sections:
VI. System Architecture
Completed Sections:
VII. Software Test and Quality
VIII. Ethical Considerations
Rev -4 June 10, 2022 Updated Sections:
I Introduction
VII. Software Test and Quality
Rev -5 June 15, 2022 Completed Sections:
VILI. Technical Design
X. Project Completion Status
Xl. Future Work
XIl. Lessons Learned
Updated Sections:
1. Functional Requirements
. Non-Functional Requirements
IV. Risks
V. Definition of Done
VL. System Architecture
VIII. Software Test and Quality
IX. Project Ethical Considerations

1| Page

Table of Contents

. Introduction 2
Il. Functional Requirements 2-3
[ll. Non-Functional Requirements 3
IV. Risks 3
V. Definition of Done 4
VI. System Architecture 4-8
VII. Technical Design 8-9
VIII. Software Test and Quality 9-10
IX. Project Ethical Considerations 10-11
X. Project Completion Status 12
XI. Future Work 12-13
XIl. Lessons Learned 13-14
XlIl. Team Profile 14-15
Appendix A — Key Terms 15

l. Introduction

The goal of our project was to build upon the already-implemented website processes for an oral presentation evaluation
website for the Colorado School of Mines. It is to be used throughout all of Mines’ courses/projects, serving as a more
viable alternative to current services such as Google Forms or CATME. Google Forms, though intuitive and inexpensive,
has the major issue of being heavily time-consuming, along with not being compliant with the Family Educational Rights
and Privacy Act, or FERPA. FERPA specifies that any feedback data among students should not be viewed by any
uninvolved third parties, which Google Forms does not abide by. Similarly, CATME presents two major issues. Firstly, if a
student makes an inappropriate or offensive comment, the instructor is not able to withhold that singular comment and
instead must block all comments from the class, preventing other constructive feedback from ever reaching the students.
Secondly, CATME is an expensive service that does not allow for the tracking of usage by department. Being able to keep
track of the survey/user count by the department would help with proper cost distribution. We were tasked to finish the
functionality of this website. Some of the requirements for this were a page where the instructor can view all comments
(sorted by who made the comment to whom/what group) with the ability to withhold singular comments, a function to
tally up and average a person’s score, and a CSV file-export function that allows an instructor to input grades into Canvas
with ease. Additionally, the current program did not contain a view for department administrators to edit/manage the
list of superusers for that department — a superuser defined as either an instructor/professor or an authorized TA. Lastly,
the superuser should have the option to release comments anonymously or with personal identifiers (first name/last
initial).

ll. Functional Requirements

This project took the previous EDNS Oral Presentations project and continued its development to add functionality and
features. As far as additions to the current code base, we added the front-end portion of the feature for administrators to
keep track of the number of surveys taken in their department. This is so that the billed admin can charge each
department based on usage of the site. Further development is needed on the back-end/database side. Another feature
that was added is the ability for superusers to view all comments given to and by each student on an intuitive page that
minimizes the need to click through several times. This page also allows the superuser to redact single comments that
may be inappropriate to keep them from being released to the student while allowing all other comments to still be
released and viewed. Along with this, the superuser can choose whether or not the comments are released to students

2 | Page

anonymously. The website currently has the ability for the instructor to export a CSV file containing all the data for each
student’s grade, comments, etc... to allow it to be easily viewed and transferred to canvas. This CSV file was modified to
fit closer to the client’s needs, though future editing must be done to include the history of comments for any one
survey.

The complexity of the current existing code base made it necessary to update/further detail the current documentation
of the project. Though the previous documentation proved extremely useful when starting out fresh, it lacks the level of
specificity needed for a person with no prior knowledge to be able to excel at it. Therefore, we reviewed all of the
documentation left by the previous group and edited it to make it easier for the next group to begin working on the
project more efficiently. We also communicated with our client expressing willingness to meet with the incoming group
to make it as smooth of a transition as possible.

lll. Non-Functional Requirements

In order to successfully implement our functional requirements into the end product, we considered how we wanted the
system to behave and what limits we needed on its functionality. Our non-functional requirements focused on the
behavior, features, and general characteristics of the system’s functions. The end goal of our project was to create a
website that is compliant with the Family Educational Rights and Privacy Act (FERPA). This is a federal law that protects
the privacy of students and education records. This required the system to manage the information each user has access
to. Full functionality also required the system to authorize different users and correctly determine different roles and
which administrative functions (if any) they could perform. We implemented different roles with different levels of
authorization: administrator, superuser (also called instructor), and student. Each department has one administrator
(department admin) and super-users can be instructors or TAs of classes within that department. The department admin
sets the categories and types of questions superusers can add to their surveys. They also decide the scale of grading
criteria (e.g. pass/fail, excellent/needs improvement/poor) and their respective weights (e.g. 100% / 85% / 70% / 50%).
These determine the rating values of the Harvey balls used in the surveys under that department. Additionally, the
department admin has the ability to add superuser accounts and, in future work, will have access to a count of total
surveys taken in each department for billing purposes. Superusers are able to create surveys, set start/end times and
dates, export data to a CSV for grades and records, and review, withhold, and release comments.

Another non-functional requirement was to make the website easy to use and enhance the user's experience. The
website has the general characteristics that met user requirements and increased usability. Specifically, the buttons
include both text and color and the website keeps a consistent color scheme. Both of these additions improved
readability. Furthermore, we edited the website to allow superusers to review and withhold comments on a single page.
We also condensed the data displayed on this page so they are only viewing the necessary information needed for the
purposes of withholding and releasing comments and grading. Lastly, to improve the flow of the website for students, we
modified a page that gives students easier access to review the results of their surveys.

IV. Risks

Some risks of this project include maintenance and control of the website. The website also needed to fulfill all the needs
of the professor regarding readability and understanding of the data. This also means that the professor needs to
understand how to use the website to the best of its capabilities and for their needs. Only one team member had
experience with SQL databases, which required the rest of the team to learn the program and language to use with the
website. The current plan for who maintains the website and the admin lists are the department heads, which will be
considered admins themselves. The admins will be the ones to add or remove admins, which means they will be
controlling the website together. Admins will need to know who and how to add to the admin. list and how to add
professors as superusers.

3| Page

V. Definition of Done

The website is operational and usable (on a locally hosted level) by any Mines professors, department heads, and
students efficiently. The data from the surveys is presented in a precise and useful manner. A CSV file contains all useful
information about each student as well as all comments made and if they were retracted for records. Comments can be
held back individually and the rest of the comments can be released to the rest of the students. The data that is taken
from the survey is readable on a large scale — the professor can scroll through all comments and decide to withhold a
specific comment without issues. The previous website was modified to be more user-friendly and intuitive, which
included renaming some titles and adding mouse listeners to increase usability. Finally, a lot of testing was done to make
sure the front-end has no errors, the backend has no errors, the API correctly moves data, and all action requests are
properly executed.

VI. System Architecture

This application has a three-tiered system where each tier has different roles and permissions. The top role is that of
Administrator, below that is a Superuser (from now on Superuser will be referred to as Instructor), and finally the
Student role. Administrators have the most permissions out of all the roles and have the ability to add/create Instructor
users, among many other actions. Instructors hold the ability to create evaluations from the questions provided by the
Admin. Students hold minimal permission as their main role is to take the evaluations assigned by the Instructor.

Administrator

When an administrator logs into the website they are brought to the administrator home page, where they will have the
ability to do three things: create/modify the question pool from which Instructors will create surveys, create/modify user
authorizations for new Admins or Instructors, and adjust the weights for each level of Harvey Balls to be used in surveys.

Admin Home Page View

Team Oral Presentation Evaluation

Administrator Home Paul Gardner (Admin) ¥

Question Pool

=} Add Question
Question Type Eval Count Action
Audience Engagement Individual 7
Didn't use notecards Individual 1
Flow, Team 4
Graphics Team 6
Hands out of pockets Individual 2
Professionalism Team 1
Professionalism Individual 1
Spoke fourth Individual 3
Subject Knowledge Individual 6
Timing Team 6
Volume Individual 1

Usage Data

Department Surveys Taken % Usage

4 | Page

Admin Home Page View (cont.)

Misc Settings

Rating Values

Active Instructors
&, import User Authorization

Name CWID Email Action

Jacob Travers 12345678 jtravers@mines.edu
Paul Gardner 34567890 pgardner@mines.edu

Jane Powers 77091123 jPowers@mines.edu

Inactive Instructors

Name CWID Email Action

Per request from our client, all Admin will have the authorization to act as a “Global Administrator” as opposed to having
one Global Admin. Additionally, an admin, once it is implemented by the incoming team, will be able to view department
usage data. This feature will keep track of survey/submission count and percentage of use based on the total time that
the website is hosted on AWS per billing period, to allow for departments to be billed accordingly.

Instructor

When an Instructor logs in, they are brought to the Instructor's home page which currently holds three sections. The first
section shows the list of classes that the Instructor oversees and has the ability for them to import new classes via a CSV
file containing all information for the class and its students. The instructor can manually add/remove students from a
class from here. The next section shows all evaluations created by the instructor and all pertinent information such as
open/close date, CRN, and the number of survey submissions. Each evaluation can be modified until after the close date.
The instructor can also create new surveys using the pool of questions provided by their department administrator, as
well as select questions for the team presenting or individual students.

5| Page

Instructor Home Page View

Team Oral Presentation Evaluation

Instructor Home Paul Gardner (Instructor) ¥

Classes

2, import Class Configuration

Class CRN Term Action
sa-101-C 34567 Fall 2021 e
cse1-101:8 23456 Fall 2021
CSCL101-A 12345 Fall 2021

Evaluations

| create New Evaluation

Evaluation Status. Class Submissions Action
Test L Closed 6-8-2022, Not Released 34567 2

Newest L} Closed 6-8-2022, Released 34567 2

Eval s s Closed 11-25-2021, Released 34567 [

Eval4 [Closed 11-22-2021, Not Released 34567 4 e
Eval3 s Closed 11-20-2021, Not Released 34567 [

Eval2 [Closed 11-15-2021, Not Released 34567 4 e
Evall |4 Closed 10-15-2021, Not Released 34567 o

Awaiting Review

The final section the instructor has access to is the awaiting review section. This is where the instructor can view the

results of the surveys and all of the comments given to/from students. From here the instructor can choose to redact
certain comments if they are too vulgar or inappropriate to be released. There is also the option for the instructor to

choose to release the comments anonymously or not depending on the class.

Instructor feedback view

Student Feedback

¥, Downloag Faadback

Evaluator: Jacob Travers (12345678)

Individual

Evaluatee: Mary Sue

icay
Audienc Engagament 100w & Withhold
4
Evaluatee: Sammie Crystal
icay
Audience Fngagement | 95% & withhold
Z
Team
Team Evaluated: Project 2
icay
Flow 95% & Wwithhold
4
Evaluator: Mary Sue (59612461)
Individual
Evaluatee: Jacob Travers
oK
Audience Engagement 100% © withhold
A,
Evaluatee: Random Dude
ox
RiieneelEngazementilFo0% © withhold
i

6 | Page

Student

When a student logs in, they are brought to the student home page. There are four sections shown on the home page.
The first section contains the list of evaluations that they need to take. The student clicks on the evaluation that they
need to take, and it brings them into the evaluation. Here, they select which team they are evaluating, and the
evaluation is populated with the students that are on that team. The student then selects which Harvey Ball rating they
feel the student/team deserved. The ratings for each ball are displayed at the top of the evaluation to ensure that the
student indubitably knows which grade they are giving. At the bottom of each section, there are boxes to provide a
comment for each student. These are set to be required or optional by the instructor that created the survey, or any of
the TAs who may modify it afterward. When they have filled out the entire evaluation, they can submit the feedback. If
they do not correctly fill out the form, they are given an error and the form is not submitted. The next section shows the
upcoming evaluations that they eventually need to take. These are then moved into the first section when they open.
The third section contains past evaluations that they have taken for other students. The evaluation moves to this section
once it has closed. The fourth section contains the feedback from other students that the student received. It has a
breakdown of their individual score and comments along with their team score and comments. They are only able to see
their team score, and their personalized comments. This calculates the total score they received on that presentation
based on how the professor set the weight for each section.

Student Feedback View: Evaluator Released

Team Oral Presentation Evaluation

Feedback for Evaluation "Test" Jacob Travers (Student) ¥

Feedback

Grade Breakdown

Individual = 100%
Team = 100%

Total = 100%

Individual

Comments:
Evaluator: Mary Sue oK

Audience Engagement | 100%

Team

Comments:
Evaluator: Mary Sue oka

Flow 100%

7 | Page

Student Feedback View: Evaluator Released Anonymously

Feedback

Grade Breakdown

Individual = 100%
Team = 100%

Total = 100%
Individual
Comments:
Evaluator: Anonymous asd
Audience Engagement 100%
Team
Comments:
Evaluator: Anonymous asd

Flow 100%

VII. Technical Design

Our website was implemented using JavaScript React on the front end and Python with a Flask API on the back
end. We used MySQL for our database and localhost for our server. The purpose of the back end allows communication
between the front end and the database. In order to optimize this communication, our back-end code uses several
auto-generated Data Transfer Objects (DTOs) as well as several hand-written partial DTOs. This enabled us to send very
specific requests to the database whenever necessary rather than having to write specific SQL requests each time
information from the database is needed. There is a DTO for each table in the database. For example, table User_T has a
file UserDTO.py that creates the UserDTO class. Each DTO class handles SQL queries for fetching, updating, inserting and
deleting data along with a function that attaches custom data to a DTO object. The figure Back-End Code DTO
Implementation below shows the definition of UpdateFeedbackReiviewBylID for EvaluationDTO.py

Back-End Code DTO Implementation

~ BACK_END OPartial.py > @ upda

@staticmethod
BubbleDTOPartial.py

EvaluationDTOParti...

EvaluationQuestio... from DTO.EvaluationDTO import EvaluationDTO

FeedbackDTOParti...
ProjectDTOPartial.py
@ UserClassRelationD...

try:

def updateFeedbackReviewedByID(db, evaluationID, feedbackReviewed, commit=Fals

evaluation = EvaluationDTO.fetchSingleByID(db, evaluationID)

UserDTOPartial.py

UserProjectRelatio...

UserSessionDTOPa... updateEvaluation = EvaluationDTO.updateByID(db=db,

BubbleDTO.py
ClassDTO.py
DTOBase.py
DTOList.py
EvaluationDTO.py
EvaluationQuestionR...
FeedbackDTO.py
ProjectDTO.py
QuestionDTO.py

@ UserActivityStatusDT...
UserClassRelationDT...
UserDTO.py
UserProjectRelation... 27

UserSessionDTO.py

8 | Page

id=evaluation.ID,

classID=evaluation.ClassID,

name=evaluation.Name,

openDate=evaluation.OpenDate,

closeDate=evaluation.CloseDate,
includesIndividualQuestions=evaluation.IncludesIndividualQuestions,
individualWeight=evaluation.IndividualWeight,
individualCommentsRequired=evaluation.IndividualCommentsRequired,
includesTeamQuestions=evaluation.IncludesTeamQuestions,
teamWeight=evaluation.TeamWeight,
teamCommentsRequired=evaluation.TeamCommentsRequired,
points=evaluation.Points,

feedbackReviewed=feedbackReviewed,
releasedAnonymous=evaluation.ReleasedAnonymous,

commit=False

1 project_T v
ID BIGINT

ProjectID VARCHAR(225)

2 ProjectName VARCHAR(225)

! ClassID BIGINT

Database Schema

] userProjectRelatio... ¥
ID BIGINT

¥ UserID BIGINT

! ProjectID BIGINT

“Juser T v
ID BIGINT

| UserActivityStatus_T ¥
ID INT

! UserID BIGINT
UserActivityStatus TINYINT

> 2 Firsthlame VARCHAR(255) UserRole ENUM{...)
> 2 LastMame VARCHAR (255)
1, | CWID VARCHAR(8) L4
2 Email VARCHAR(255)
"] userclassRelation_T v >
1d BIGINT E +
I UserID BIGINT] UserSession T ¥
! ClassID BIGINT IO BIGINT
_ Class_T v * UserRale ENUM(...) Token VARCHAR(36)
ID BIGINT " ! UserID BIGINT

InstructorUserID BIGINT
% CourselD VARCHAR(255)
Section VARCHAR(255) s

"] Feedback_T v

ExpirationD ate DATETIME
>

2 CRN VARCHAR(255) 1D BIGINT
2 Term VARCHAR(255) ! EvaluatorserID BIGINT
2 Department V ARCHAR{ 255) ! EvauatesUserlD BIGINT
> I EvaluationID BIGINT
! QuestonID BIGINT "] Bubble T ¥
t< 1 BubbleID BIGINT 1D BIGINT
Comment TEXT 2 BubbleMumber BIGINT
CommentType ENUM(..) ‘ GradeVdue FLOAT
ResponselD VARCHAR({36) >
.
Released TINYINT .
] Question. T ¥
>
ID BIGINT
"] Evaluation_T v
Type ENUM(...)
1D BLGINT u
Mame VARCHAR(255)
! ClassID BIGINT)
RatingDescl TEXT
Name VARCHAR(255)

4 RatingDesc2 TEXT
m EvaluationQuestionRelation_ T ¥

1D BIGINT

OpenDate DATETIME
CloseDate DATETIME

RatingDesc3 TEXT

RatingDesc4 TEXT
IncludesIndividualQuestons TINY INT

IndividualWeight FLOAT
IndividualCommentsRequired TINYINT

¥ EvauationID BIGINT RatingDescs TEXT +

¥ QuestionID BIGINT > Gl =
rades_
QuestionOrder BIGINT

ID BIGINT

IndudesTeam Questions TINYINT 3
! UserID BIGINT
TeamWeight FLOAT
) ! EvaluationID BIGINT
TeamCommentsRequired TINYINT ¥
. 2 IndividualGrade ALOAT

Points BIGINT

TeamGrade FLOAT
FeedbackReviewed TINYINT

TotalGrade ALOAT

ReleasedAnonymous TINYINT

VIII. Software Test and Quality

Testing Software:

- Postman:

The Postman software allows for testing the communication between the front-end and the database by sending
specific queries through the database. This is particularly useful for backend coding/debugging by eliminating
the need to have the website and front-end code running while still being able to send requests through the
back-end to the database and ensure proper security/privacy and properly formatted information.

- Google Chrome in-browser debugger:

The chrome extension added for this project allows us to have both the website and front-end code pulled up in
the same window. This means that we can quickly make small edits and changes to the code and instantaneously
reload the page to see how these changes affect the website. This helps us be able to quickly revert code back in
case the modifications negatively affect the website.

9 | Page

- Website:

Since a lot of the functionality requirements and changes we will be making directly affect the usability of the
website a lot of our software quality tests will simply be loading up the website after making changes to the
codebase. There we can then step through the appropriate pages and buttons in order to assure the changes
made are functioning as intended without breaking other aspects of the site.

- Using active/inactive variables on all questions and users:

Giving each user and question a variable determining if they are active or inactive makes it so that even once
“deleted” through the website they remain in the database with the “inactive” setting. This helps assure that
errors stemming from deleted users or questions could easily be reversed as well as giving Administrators the
ability to look through the database and still see past questions and users.

- Code Reviews:

After finishing changes to the code, the written code is reviewed and tested through the website by another
programmer to ensure no errors slip through to the final push of the code.

Testing Results:

Heavy user testing was done on several different machines to make sure that the locally-hosted website worked
properly in different settings. The current program set-up works on Windows 10/11, as we ran into issues
installing necessary programs (MySQL in particular) on both a Linux machine and MacOS. Based on the results of
our test, error handling has been done exceptionally well and the website runs smoothly. Users are able to be
added/removed from a class, as well as take/review feedback surveys. Additionally, instructors (superusers) are
able to view all feedback given across the class, along with what student made what comment to whom/what
team, with identifiers of First/Last name. On the administrator side of things, instructors can be added/removed
to/from a class, and all instructors in that department can be seen from the administrator home page. Testing for
these user-related features was done through the usage of MySQL, a Flask server API for the backend (using
Python), and JavaScript React for the front-end.

IX. Project Ethical Considerations

The project was created with the Mines campus in mind. It was meant to benefit the department heads, professors, and
students. As we developed our project, we must also consider whether we were adhering to the ACM/IEEE ethical
expectations for software engineers. For our specific project, there were four pertinent principles: Client and Employer,
Product, Management, and Self.

l. Client and Employer - Software engineers shall act in a manner that is in the best interests of their client

We made sure to communicate with our client any limitations that made a feature out of our scope to
implement (Principle 2.01 and 2.06)
- 2.01: Let our client know what a realistic timeline is for completion of certain features.
- 2.06: Kept our client updated on the progress made on the project in case the client wanted us
to go a different route.

Il. Product - Software engineers shall ensure that their products and related modifications meet the highest
professional standards possible

We strived for high-quality software on a reasonable schedule (Principle 3.01), set and document
achievable requirements and specifications (Principle 3.02, 3.07, and 3.08), performed documentation
and testing to ensure software quality (Principle 3.10 and 3.11), and developed secure software with the
privacy of users in mind (Principle 3.12 and 3.14).

10 | Page

- 3.01: All new features were added using a template to keep the software as high quality as we
could.

- 3.02: Everyone created goals that were achievable in a certain timeline and didn't overload
themselves.

- 3.07: We scheduled multiple client meetings a week to keep the client updated on our work. We
also made sure that the features that were added to the project were correct and the way that
the client wanted them to be.

- 3.08: Each change was pushed into the Github repository with a clear description of what the
change was and why it was done.

- 3.10: Every time a change was implemented on the project, the modification was tested with
general use and edge cases. Also, with every change, each group member had a chance to
review the code and functionality before moving on to the next feature.

- 3.11: Confluence continues to be used to document how the project is put together and how it
works. It also covers how to install all the software required to start working on the project and
what problems the project has or may have that need to be addressed in future work.

- 3.12: The project was created with privacy in mind. All features have been implemented to make
it easier for the instructors to keep information private and released to the correct people.

- 3.14: All data that is being used for testing is dummy data, it isn't tied to any real person and is
solely used for testing current code to make sure real code doesn't appear where it doesn't
belong.

Il Management - Software engineering managers and leaders shall subscribe to and promote an ethical
approach to the management of software development and maintenance

We understood the clients' needs for protecting sensitive information (Principle 5.03), including but not
limited to grades and login information such as usernames and passwords.

IV. Self - Software engineers shall participate in lifelong learning regarding the practice of their profession
and shall promote an ethical approach to the practice of the profession.

We must further our knowledge, ability, and understanding of developing safe, reliable software
(Principle 8.01 and 8.02), creating solid documentation (Principle 8.03), the environments and
documents which we will be working with (Principle 8.04), the standards and laws related (Principle
8.05), and the ethical principles themselves (Principle 8.06).

- 8.01: Engaged in an agile development method to tie all the code together and prevent anything
hardcoded.

- 8.02: Utilized a template for all functions that checks authorization for every request.

- 8.03: Used Github to track all features added and a description of the feature. Confluence
documentation for descriptions of components and how they work together.

- 8.04: Scheduled meetings with a member of the previous group to explain how the code worked
in detail and how to edit it for the new features that we implemented.

- 8.05: Followed templates for how to name variables and create functions. Included in the
template, security checks for keeping unauthorized users from accessing private data.

- 8.06: Having no prior knowledge of the code, learning the new syntax and functionality of the
coding languages was a must.

Though we did not deal with concerns regarding the unethical use of this software (with a loose definition of “being used
for evil”), we had to ensure the security and clean protocol execution of the website, so no skilled unauthorized user is
able to freely do with the website as they wish. The concerns of an authorized user abusing the privilege they are given
are handled by the contracts staff have to sign when entering a new position at Mines.

11 | Page

X. Project Completion Status

We were the second group to work on this project. We were handed down a functional website that had flow and
components already created with some features already implemented. Most of our work surrounded implementing new
features and fixing bugs along the way.

Main features that were implemented:

Active/Inactive Users
o Each user now has an activity status that can be turned active/inactive to keep records but add/remove
access
Editing Instructors
o Admins now have new sections on their homepage to edit instructors
o Editing instructors includes editing their name, email, CWID, and what classes they have access to
o Activate or deactivate an instructor
Anonymous feature for returning feedback to students after it has been released.
o Option to display the name of who sent the comment to the evaluatee
Added the evaluator name next to feedback for the instructor to see when reviewing feedback
o Both names are included which gives the instructor the information of who said what to who.
Kept all backend checks with authorization and errors with each feature that was implemented
o If a user somehow got to the backend side past the front-end redirection, the backend still verifies that a
user has permission to use that function.
Fixed a bug for displaying classes that an instructor is included in
o If a student is made an instructor (TA), it would send all the classes that they are a student in as well.
Implemented a checker to make sure it only sends classes that they are an instructor for.

Xl. Future Work

Due to initial time constraints regarding the proper installation and set-up of the development environment, along with
difficulties parsing through existing code, not all of the intended features were implemented. In particular, we detail
below features that either were discussed with the client but were outside of our scope or ones that we ran into issues
with and could not complete.

There is not currently a proper login page set-up. Due to this project being hosted locally and not on an AWS
server, creating a drop-down menu with the different authorized/unauthorized users that were populated from
the database directly made the most sense.

The administrator of a department should not worry about class assignments. The current set-up of the webpage
makes it so that the administrator must manually edit each and every instructor/TA and assign them (or remove
them) from a class. This is a considerable amount of work put on the administrator that should be fixed for a
better alternative at a later date.

Administrators need to see the campus-wide by-department usage of the website. There is currently progress
done on the front-end portion of the website towards the completion of this feature, but the current back-end
implementation needs work.

Instructors must be able to take their own surveys. The implementation of this feature is so that instructors/TAs
of a class are able to evaluate students presenting, in a similar manner to what is done currently in the
CS@Miines Field Session, CSCI370.

Instructors should be able to create classes and add other admin-permitted instructors to their classes. This point
ties to the previous one, in that, by removing the necessity of an administrator to manually assign all
instructors/superusers to classes, we must implement an alternative. With this, an authorized instructor is able
to freely create and modify the parameters of a class, as well as its members/other instructors.

Questions from the question pool on the administrator home page should not be removed, but rather placed in
an inactive/active status section. This implementation is particularly similar to the current (implemented) feature

12 | Page

of inactive/active instructors. In particular, a question should only be able to be placed in the inactive portion if it
is currently not being used in a survey. It is already present within the database but needs to be added as an
actual feature to the website.

Within the grade-populated CSV on the instructor view of a survey, there should be a time stamp on each
person’s submission, so as to be able to sort through legitimate/tardy submissions for the survey in question.
Additionally, there is an error where the survey deadline is 6 hours off its actual closing time; however, this latter
issue was not addressed due to concerns with porting to AWS and how that might affect our potential,
hard-coded solution.

Administrators of a department should be able to add other administrators to other departments. In particular,
this addresses the issue of “What happens if the sole administrator of a department loses access to their
account?”. This issue should be handled only once the website has been successfully ported to AWS.

When an instructor is viewing all feedback given for a particular survey, they should be able to sort the feedback
given by teams. This will make it easier for multiple-instructor classes to be able to grade their assigned teams
without the clutter of other teams.

Whenever a survey is created by an instructor, they should have the option to keep the survey at hand private
(limited to their account), or pass it onto the administrator for further review and the potential of making it
public (where all instructors are able to utilize this survey “template”). This is so that instructors do not have to
manually create extremely similar surveys from scratch over and over.

The website needs to be ported to AWS. Though initially, this was one of our goals for the field session, due to
time constraints and issues acquiring a Mines-affiliated AWS account this quickly became out of our scope.
Future students who invest time on this project should have this as their primary focus at the start, as this will
potentially create many issues that will need to be solved in a timely manner.

Finally, some of the skills that the next team to work on this project might benefit from are the following:

Database Management/MySQL
JavaScript React for the front-end
Python, Flask server API for the back-end

XIl. Lessons Learned
Here are some lessons we learned throughout our project and its testing procedures:

Though our initial intent with the project was to divide up the work by areas of expertise (i.e. a few of us working
on the back-end, some of the front-end, etc.), we quickly learned that this process would not set us up for
success. This is because features that we needed to implement required, for the most part, interaction from all
three portions of the project (database - back-end - front-end). It was a lot simpler to take a feature through all
of the processes necessary.

It became increasingly obvious that in order to be able to succeed at this field session, we had to appropriately
split up work. Had we not taken the time to discuss what needed to be done for the week along with who was
accomplishing what task and what help they might need, we would have come crashing down at an accelerated
rate.

The Google Chrome Developer Tools proved to be extremely useful when it came to minor editing of the
website. In particular, items such as changing all instances of “superuser” to “instructor” for easier accessibility,
and modification of the order of items displayed on the instructor page, among others.

Reusability of code was key in the implementation of many new features. In particular, the code for a checkbox
for instructors to be able to release feedback anonymously (or not), which was also used when the admin is to
choose what instructors are tied to what classes, came from the checkbox feature for instructors to make a
survey individual/team-based.

Being able to have administrator access to the machine where tests were run was necessary throughout this
project. There were a lot of co-dependencies when first installing the necessary programs that required the

13 | Page

setting of user permissions for scripts and other things which would have not been possible on a campus-hosted
machine.

e Meeting with the client and showing the working product, making the edits they want to be implemented, and
repeating this process was the most effective way we found of making a product the client was satisfied with.
This matches up with the recommended development process in the industry, where client consultation is
regularly done.

XIll. Team Profile

Gabriel Del Castillo:

My name is Gabriel Del Castillo. | am an incoming Junior in Computer Science with a focus on Robotics and Intelligent
Systems. | spend my free time hanging out with friends, playing video games, and looking for opportunities to get ahead
in my career.

Thomas Lowery:

| am Thomas Lowery, about to be a Senior in Computer Science with a focus in Computer Engineering. | enjoy breakfast
food and weightlifting.

14 | Page

Michael Kormishkin:

My name is Michael Kormishkin. | am a Junior in Computer Science on the general track. | am planning on obtaining a
Cyber Security certificate and an unofficial emphasis on Business. My hobbies include mountain biking, hiking, driving,
and some video games here and there.

Alexandra Cooke:

My name is Lexi Cooke and | am going to be a Senior in Computer Science this Fall. | enjoy skiing, boating, and my dogs
June and Mochi.

Appendix A — Key Terms

Term Definition

API - Application Programming Tools and resources that allow developers to create software applications

Interface (websites, apps, etc.)

AWS - Amazon Web Services An Amazon subsidiary that provides on-demand cloud computing platforms and
APIs

Family Educational Rights and This is a federal law that protects the privacy of students and education records

Privacy Act (FERPA)

DTO - Data Transfer Object Carries data between processes and facilitates communication between the API
and the server

15 | Page

