

CSCI370 Final Report

moonbees?

Julia Harvey
Derek Suzumoto

Ethan Brucker
Philip Belous

Revised December 6, 2022

CSCI 370 Fall 2022

Prof. Kelly

1 | P a g e

Table 1: Revision history

Revision Date Comments

First Draft 11/27/2022

Peer Reviewed 12/5/22

Polished 12/6/22

2 | P a g e

Table of Contents
I. Introduction .. 3

II. Functional Requirements... 4

III. Non-Functional Requirements .. 4

IV. Risks ... 4

V. Definition of Done .. 4

VI. System Architecture... 5

Figure 2: Original UML Overview ... 6

Figure 3: Final System-Wide UML/Architecture Overview ... 6

VII. Technical Design ... 6

Figure 4: ORB Pose Extractor Visualization ... 7

Figure 5: Reprojection Visualization ... 7

VIII. Software Test and Quality .. 9

IX. Project Ethical Considerations... 10

X. Results ... 11

XI. Future Work .. 11

XII. Lessons Learned.. 12

XIII. Team Profile .. 12

References ... 14

Appendix A – Key Terms.. 14

3 | P a g e

I. Introduction
Lunar Outpost Inc. is a company that focuses on developing and deploying advanced technologies that have both
terrestrial and space applications. The company is comprised of engineers with experience working with NASA,
defense, and commercial programs, and it is engaged in contracts with the U.S. Department of Defense, NASA, local
and state government organizations, and leading research institutions. They have a few ongoing projects including
MAPP, a prospector rover, Canary, an environmental monitoring system in the energy sector and municipalities
across the continent, and contributions to MOXIE, the Mars Oxygen In-Situ Resource Utilization Experiment onboard
the Perserverance rover.

The most relevant technology for our given project is the MAPP rover, designed to map resources and carry payloads
on the lunar surface in tandem with other MAPP rovers. These rovers will work together to make mapping and
payload delivery as efficient as possible. Especially in mapping, it is important to know where each rover is at every
increment of time because they will be attempting to make a single complete map between all of them. This means
accuracy and precision of its positioning as well as its knowledge of the other rover’s positions is crucial.

While each rover will already be equipped with a positioning system, our goal was to implement robot-swarm co-
localization, an additional positioning system that would be used to improve the accuracy of their location data. The
idea behind this approach is that by using the video feed from the rover, we can use image processing to identify
other rovers in the camera frame. After identifying them, we can then extract their 3-dimensional orientation and
coordinates relative to the camera. This location data can then be used to accept, reject, or fuse with the location
data of the rover swarm.

This project was passed on to us from a previous field session. Our tasks were to improve the previous team’s
solution, expanding their program’s ability to visually identify the body panels of Lunar Outpost’s rovers to handle
any angle, excluding from below. We were also to work to improve the efficiency of their code so that it would run on
a live-captured video stream and use the data extracted from the feed to update the robot transformation tree.

4 | P a g e

II. Functional Requirements
The program must be adapted from the previous team’s field session code--which relied on ArUco markers to
identify a rover and its orientation--to identify multiple rovers without said markers. Instead, the rovers will be
identified via physical structure, using either a classical computer vision approach, a machine learning approach, or
some combination of both.

Software must be able to:

• Identify the rover without the use of ArUco markers.
• Identify any panel of the rover from any orientation, excluding upside-down.
• Run on a live video stream, maintaining at least 7 FPS.
• Use camera information to update the ROS Transformation Tree of the robot and update its relative position.

III. Non-Functional Requirements
Software will:

• Be written in Python but maintain the ability to be translated to a C-language later.
• Use Python’s OpenCV to handle image processing.
• Be ROS-compatible, for possible future integration from Lunar Outpost.

IV. Risks
This project has certain risks due to the existing technology and our skills prior to the project. The existing codebase
may require extensive modification to make it more reliable and modular. Since our access to the rover is limited, it
may be difficult to test code without a remote bench setup. However, we will be provided with datasets from the
company, and we may be able to come in to work with the rover occasionally. In addition, we are relatively unfamiliar
with the Microsoft development suite, and only 1 member of our team fully completed the Mines computer vision
course before taking on the project. The rest of the team is taking the CV course concurrently. Learning computer
vision concepts and getting used to the Microsoft suite will require additional time. Regarding the project’s solution,
we have 2 routes: traditional computer vision and machine learning. The last team on this project attempted to use
machine learning and ended up down a time-consuming rabbit hole.

V. Definition of Done
The software should be able to identify the lunar rover on a live video stream and extract useful information about
the relative positions of identical rovers. Specifically, for each frame in a video stream input rated at ~7 FPS, the
system should be able to identify any of the rover’s side panels or top face (if indeed one or more of these are in the
frame) and use this detection to craft pose data (3D translation and rotation in relation to the camera used for the
video stream) and intermediary development data (such as a bounding box for the most prevalent side panel and its
distortion relative to complete perpendicular) for the detected rover, as well as integrate this data into an existing

5 | P a g e

robotics transformation tree that can be used to digitally model the detected rover within Lunar Outpost’s existing
systems.

VI. System Architecture
From our highest level, our system architecture is very simple. Originally, the idea was to have the camera provide each
frame of a live video feed to our OpenCV system, which would use template matching to identify the corners of the
rover and extract geometry from those locations, crafting object pose from the developed coordinates. This final pose
was then prepped to be fed directly into ROS. Our original system broke the pipeline into 4 small pieces, outlined in
Figure 2 below. Our final version ended up being much simpler (with additional functionality), and is outlined in its
entirety in Figure 3. The whole system ended up comprising two stages: an optional MaskRCNN and an OpenCV-based
PoseExtractor. Both are described in Section VII.

Figure 1: Original System Architecture

6 | P a g e

Figure 2: Original UML Overview

Figure 3: Final System-Wide UML/Architecture Overview

VII. Technical Design
Our system is composed of two main elements: An ORB-based feature/template matcher with pose extraction, and
an intelligent image segmentation model known as MaskRCNN.

The ORB-based feature detector saw many, many versions before the team settled into the final approach as it
exists today. First, images of the rover’s side panels are taken, warped to be perfectly orthogonal, and the real -world
distances and rotations (offsets) between the center of the rover and the image are measured. Then, when the
PoseExtractor is presented with a query image, it performs the following for each side panel image and offset:

First, the template and the query image are both scanned with an ORB feature detector tuned for this specific
application. ORB was chosen as it was open-source and consistently faster than either SIFT or SURF, the leading
competitor (and proprietary) algorithms. In addition to a built-in image pyramid that compares smaller image
sections before larger ones, ORB makes use of scale-invariant features that bear binary descriptors that can be used
with a Hamming matcher, further increasing its speed over the brute-force matching all but necessitated by the
other algorithms.

Once these features are found for both the template and the query image, they are fed into a Hamming matcher. This
reads the information accompanying each marker and matches specific rover parts to each other across the two
images, discarding outliers. This is also where an image without a rover will be flagged and aborted, returning a null
pose. While this is a very robust and reliable process, there is ordinarily no way of determining where these features
land on the 3D rover itself. Thus, the team needed to create our own solution.

The final approach used in the system projected the 2-dimensional rover template features into 3-dimensions on a
flat plane, making full use of the list of rover template images and offsets mentioned above. This allowed the
detected points on the query image to be similarly projected into 3D space by simply matching the texture of the
cube-like structure created by arranging the side panel images in 3D space according to their offsets.

7 | P a g e

Figure 4: ORB Pose Extractor Visualization

This process worked by itself, but it was fairly inaccurate. In particular, even if a rover was detected successfully,
slightly incorrectly-positioned feature matches would sometimes cause immense positional or rotational error. To
help remedy this, the query image is re-projected as a plane into 3D space according to the detected transformation,
rendered, and the entire pose extraction process begins once again on this new query image. This is iterated
recursively until the new pose is sufficiently close to the last pose, resulting in the most accurate transformation the
system can currently detect. Finally, this pose is cleaned, the offsets for the correct detected panel are applied, and
the pose is fed into ROS.

Figure 5: Reprojection Visualization

While this works by itself, MaskRCNN makes the process a lot faster and increases its accuracy.

MaskRCNN is a mask segmentation model with a backbone made of Feature Pyramid Network (FPN) and
RESNet101. The idea behind this is a model which can identify the pixels of an image which are part of an object of
interest, in our case a rover, and isolate it from non-rover pixels, generating a segmentation mask. Doing so allows
us to reduce the size of the image our feature detector needs to inspect for possible features.

8 | P a g e

RCNN (Region-Based Convolutional Neural Network) is a neural network which modifies the older CNN model for
image segmentation tasks. An RCNN breaks an image into region which it then attempts to classify as different
objects. This new model lends itself better to object detection, whereas CNN is better for general image
classification.
The Faster RCNN model, a modification of the older Fast RCNN, is comprised of two stages. In the first stage, the
Region Proposal Network (RPN) proposes candidate bounding boxes, which essentially means it generates bounding
boxes it thinks could contain the requested object. The second stage is essentially Fast RCNN. It extracts features
using a RoI pool from each candidate bounding box, then performs classification and bounding-box regression. To
increase the speed of the model from Fast RCNN, the features, which are used by both the first and second stage are
shared, rather than being kept separate as they are in Fast RCNN.

MaskRCNN behaves in a very similar way to Faster RCNN. The first stage is the same, but the second stage has the
mask output added. This branches off and runs in parallel to the portion of the model that generates the
classification and bounding box. There are a few other additions needed for this to work as well as it does. One of
these aspects is to modify the loss function to take into account the accuracy of the segmentation mask. To
calculate loss for the MaskRCNN model, we use the equation Loss = Loss cls+ L box + L mask. In this case, L cls is
classification loss, L box is loss related to the bounding box, and L mask is loss related to the mask. L mask is defined using
average binary cross entropy loss, which avoids competition between various masks in the image by decoupling
mask and classification.

In MaskRCNN, the masks are a spatial representation of our object, the rover. This is extracted using our pixel-to-
pixel correspondence and prevents the loss of spatial dimensions that happens when a representation is collapsed
into vector, which typically happens with bounding boxes and class labels. The RoIAlign layer was created by the
creators of MaskRCNN to avoid this misalignment between RoI and the extracted features. RoIPool extracts a small
feature map from RoI extracted during the first stage via quantization which introduces some misalignment which
researchers found to have a major impact on mask accuracy. To avoid the misalignment that occurs as a side effect
of RoIPool, the creators of MaskRCNN instead introduce a layer they call RoIAlign. RoIAlign avoids misalignment by
removing the quantization stage, instead using bi-linear interpolation, where four regularly sampled locations in the
current RoI bin are used to divide more accurately into bins while still keeping the alignment.

The two major sections of the model are the models used in the head and backbone. The backbone for the
MaskRCNN model is a combination of FPN and RESNet101, which the researchers found had an increase in speed
and accuracy. The head of the model is an extension of the head from Faster RCNN. The main difference being the
addition of a branch which works in parallel with the existing outputs of class and bounding box to output a mask as
seen in figure 6.

9 | P a g e

Figure 6: Architecture of the head used in MaskRCNN

In our project we incorporated a prewritten version of this model (license allowed use) with some modifications
to correct a few errors and make it easier to run. The dataset was an annotated version of one provided to our
team by Lunar Outpost. The annotations required a relatively tight outline of the rover, which was created
using VGG Image Annotator and resulted in images similar to that seen in figure 7. The source code required
to load and run the trained model was then added to the repository and the model was added to our main file.

Figure 7: Annotated image of Lunar Outpost rover

VIII. Software Test and Quality
• Unit tests from the ground up, including tests for the matrix and pose math, rover 2D detected position

within the frame, extracted affine transformation (no longer used), etc.
• Also built a 3D visualization suite to see and sanity-check these results in real-time.
• Once the systems were built, we also tested features and developed robust math that was double-checked

through creation of an ArUco-covered rover analogue (actually just a small cardboard box).

10 | P a g e

• Human-based sanity checks and double-checks of all systems, as we’re working a lot on the R&D side of
things and have tried a lot of different approaches throughout the semester.

Everything in our system was extensively unit tested from the bottom up during development, and the team made sure
to only add working, tested, and well-documented code to the final pipeline.

IX. Project Ethical Considerations
As with all engineering projects, the ethics of our project and its ramifications had to be considered thoroughly. The
three main considerations we had to keep in mind throughout the development process of our pipeline are the
stability of our code, the rigor of our test suite, and the royalties of the algorithms implemented in our code.

The stability of our product was the most important of the ethical considerations for us to uphold. Our pipeline , and
the information extracted from it, would be used to make autonomous decisions for a rover navigating the surface of
the moon. Due to the extreme inaccessibility of the surface of the moon, we had to ensure our software would
always be outputting true, useful information. If not, we run the risk of losing a rover, sending it far off course. Not
only would that be a huge financial loss to Lunar Outpost, but it would mean losing expensive payloads provided by
other organizations and risking the accuracy of every experiment onboard. To prevent situations like this from
happening, we implemented several minimum thresholds for valid data extraction, and worked to ensure either data
was verifiable and redundant enough to be used, or not returned at all. We also designed our entire pipeline around
expecting data not to be returned by default. This was a sensible design choice, as a rover is very unlikely to be in
frame every second while navigating the surface of the moon. Reflecting this in our pipeline made for a stable design
choice.

Testing was also a massive consideration for our code. Because we won’t be able to deploy full systems tests on the
moon, we had to ensure our pipeline could withstand all the conditions of space, as well as perform accurately and
efficiently. To do this, we were provided with a few image sets, created by Lunar Outpost, to validate our program on.
We were also provided with scale-accurate 3D models and dimensioned panel schematics to help ensure the
accuracy of our detector and extractor. We broke much of our testing down into these two categories for detection
and extraction. First, we established an automatic test suite that would apply our detection algorithm to every image
in every dataset, and compile accuracy and timing information for each set. This allowed us to hig hlight parts of the
dataset that weren’t accurately registering as a rover, as well as find out which frames took the longest to identify
and gave us an idea of the general speed and accuracy our pipeline could achieve. Once we had the geometry
extractor done, we also began establishing a plan to generate accurate, simulated space photos using Blender.
Blender’s advanced camera rendering would allow us to mimic the exact type of camera onboard Lunar Outpost’s
rovers and would give us the ability to render frames with precise rotation and translation values, which could then
be compared to our extraction tool’s output for validation. We would even have been able to use textured sky and
ground models to simulate the surface of the moon and the stars above. Unfortunately, because so much of our
feature detection relied on the textures of the rover, and the provided model we had did not contain any textures, we
weren’t able to make this dataset. In the future, if Lunar Outpost ever does create a textured model of the MAPP
Rover, they themselves would be able to conduct full-scale simulated space tests easily.

11 | P a g e

Our final large consideration involved royalties. Much of the code in OpenCV’s Feature Detection Library is
copywritten, using algorithms that are patented by other professors and organizations. In particular, “Scale Invariant
Feature Transform” (SIFT), and “Speeded Up Robust Features” (SURF) were two feature detection algorithms we
were not able to make use of, as they require royalties to be paid to the developers of the algorithms. OpenCV Does
provide a patent-free alternative, known as “Oriented FAST, Rotated BRIEF” (ORB). We chose to use this feature
detection algorithm, as it was not only more optimized for handling RANSAC and brute-force matching, but it had no
copyright issues, and did not require us to build OpenCV from source to gain access to it.

X. Results
Full-stack testing so far has yielded existence proofs of the potential viability of the system but has not yet been
accurate enough to warrant deployment on the actual rover. Given the scope of the project, and the timescale we
developed it on, we are happy with the product overall , and believe that it would only take simple, if not time-
consuming, tweaks to get it into a perfect functioning state, most of which involve rebuilding OpenCV from source to
enable GPU acceleration and hand-annotating images of the rover for the masking software to be able to detect all
sides.

Our final product can generate image masks for a wide angle-range of the right-side panel. This was the easiest
panel to begin training the neural network on and was the most prominently featured panel in the dataset, which is
why we chose to prioritize it. This image mask can identify multiple instances of rovers in our image and is used to
significantly speed up the feature transformation/matching process.

Our extractor can calculate full Homographic Transformation Matrices indicating the rotation and translation of a
rover with respect to the camera, within an acceptable, floating-point error margin. It can also extract these values as
rotation and translation vectors, rather than a 4x4 matrix. The math is perfectly sound, having been extensively
tested on a simpler multi-ArUco-based system, and thus the only shortcomings here lie in the visual pose extraction
itself.

Our detector can reach 70% detection accuracy or greater, by implementing recursive image sha rpening to the
feature detector. This only includes having pure templates for the left and right panels, and does not include
templates for the front, top, and back. The performance for this model hovers at around 5fps, though this would be
massively increased by GPU acceleration, and with the time to build OpenCV from source, and optimizing it to take
advantage of the rover’s onboard GPU would scale this up by a factor of 10 or more. If utilizing a direct, high-
exposure time feed from the onboard camera, we would also be able to do away with the recursive image sharpening
part of the algorithm, as frames would be less blurry and more precise, which would allow for gre ater accuracy
scores and faster runtimes, as well. We also have yet to test the performance increase provided by the mask on a
large-scale dataset, so the true maximum performance and accuracy have yet to be established.

XI. Future Work
For future work on our project, we would suggest expansion in several areas. To begin, the overall program has
currently been developed for a limited number of the rover’s sides due to time constraints so the next step would be

12 | P a g e

to expand it to encompass all the requested angle from the client. In addition, signal smoothing across consecutive
frames and discarding or outlier poses would make the pose extraction more stable.

In terms of future work for the MaskRCNN section, the dataset for training needs to be created for all sides and a
new model trained based on that. In our current setup, the training was on a laptop with relatively low processing
power so training on 200 images took around 30 hours. However, research indicates that with a better system (8
GPU), the model can train in around 32 hours with 35 thousand images. Another aspect to the expansion of the
dataset includes modifying the training images to have different backgrounds, lighting conditions, examples without
a rover, along with many other modifications to make the model more robust.

The last major aspect for future work would be to improve the time required for the program to run. To do this, the
ideal solution to start would be to make use of the GPU, rather than running it on the CPU as we are doing now. This
requires recompiling OpenCV on compatible hardware, such as the Nvidia GPU, in addition to possibly using OpenCL
or OpenGL.

XII. Lessons Learned
We learned many lessons over the course of this project. Since the project was highly focused on researching
different methods and tools that we could combine into a functional solution, we learned how important it is to
leverage previously created tools to speed up and improve the creation process. To merge these different tools
(developed by us or by a 3rd party), we found it was important to keep a modular structure that would allow us to
inject and extract code segments simply and elegantly without having to redesign the structure. This allowed us to
easily test an idea, quickly evaluate its viability, and then either discard it for another approach or proceed with it as
part of the system. Such rapid-fire testing showed us how much can be accomplished in such a small amount of time
and how valuable modularity is. Finally, with so many modules coming in and out, you can easily get lost in the code,
and the solution is documentation. While the organization of the code makes it easy to figure out where you are in
the code, we found that documenting the code as it’s written adds clarity no amount of organization can give. Rather
than just giving the ‘what’, it can also give the developer the ‘why’, which is often lost over time. Having code that
doesn’t need documentation is great but having code that doesn’t need documentation yet does have
documentation is better.

XIII. Team Profile
Julia Harvey

Role: Snack Consumer

Julia Harvey is a senior at the Colorado School of Mines majoring in the Computer Science Robotics and Intelligent
Systems track.

13 | P a g e

Derek Suzumoto

Role: Meme Guy

Derek Suzumoto is a senior at Colorado School of Mines, majoring in General Computer Science Applications.

Ethan Brucker

Role: Long Hair

Ethan Brucker is a senior at the Colorado School of Mines, majoring in Computer Science with a focus on Robotics
and Intelligent Systems, minoring in Computational and Applied Mathematics, and pursuing a Master's in Computer

Science (Also RIS).

14 | P a g e

Philip Belous

Role: Emotional Support

Philip Belous is a senior at the Colorado School of Mines, majoring in Computer Science with a focus in Robotics and
Intelligent Systems and pursuing a Master’s in Quantum Engineering – Software.

References
Lunar Outpost Robot Swarm Co-Localization Project Proposal - https://cs-
courses.mines.edu/csci370/FS2022F/Proposals/LunarOutpost2.pdf

Definition of Average Binary Cross-Entropy Loss - https://insideaiml.com/blog/BinaryCross-Entropy-1038

Research paper on Mask RCNN - https://arxiv.org/abs/1703.06870

Real-Time Detection of Textured Objects - https://docs.opencv.org/3.4/dc/d2c/tutorial_real_time_pose.html

Dense 6D Pose Estimation - https://www.arxiv-vanity.com/papers/1902.11020/

Image Segmentation with Watershed Algorithm - https://docs.opencv.org/4.x/d3/db4/tutorial_py_watershed.html

Appendix A – Key Terms
Include descriptions of technical terms, abbreviations and acronyms

Term Definition

Mask Extracts a region of interest (ROI). In our case, the region which contains the

rover.

Mask Region-Based
Convolutional Neural Network

A model which uses region identification to place a mask over the desired object
in an image.

RoI Region of Interest. In our case, a section of the image which may contain the
object we are seeking.

ROS (Robot Operating System) Tool suite used to standardize robot software development

Average binary cross entropy
loss

Loss calculated using the negative average of the log of corrected probabilities
used for classification.

15 | P a g e

Backbone A term used to refer to the network used to extract features.

Head The portion of a network that accepts input data. In our case, the model accepts
RoIs.

Pixel-to-pixel alignment The alignment between the pixels of two images. In our case, typically between
RoI and its features.

Fast RCNN Model which improved upon RCNN by creating a convolutional feature map from

one iteration over the image.

Region Proposal Network (RPN) Convolutional network which predicts object bounds/regions.

Bounding Box Regression Technique to refine/predict bounding boxes.

Spatial representation Representation of object in relation to an image.

Quantization Process of mapping infinite, continuous values to a discrete set of values.

