
SalesForce One
AC Draft App

Team Members:
Parker Egan, Curry Gardner, Michael DeVries, Kayden von Grosse

Client Name:
Matt Buland

Date:
June 18, 2021

Introduction 3

Requirements 3

Minimum Viable Product 3

Delivery Method 3

Functional Requirements 3

Non-Functional Requirements 4

System Architecture 4

Design Diagram(Figure 1): 4

Design Descriptions: 5

Users 5

Web Application 5

Technical Design 5

Quality Assurance 8

Pair Programming: 8

Daily Scrum Meetings: 8

Client Input Meetings: 8

Test-Driven Development: 9

Unit Testing: 9

User Testing: 9

End-to-End Testing: 9

Results 10

Unimplemented Features: 10

Summary of Testing: 10

Lessons Learned: 10

Future Work 10

Appendix 11

Dependencies: 11

2

Introduction
Our client for this project is Matt Buland, an internal developer for

SalesForce. SalesForce is a multi-billion dollar company that specializes in software

applications for the public and private sectors. As such, Matt proposed that user

stories should be somewhat standardized regarding the wording of acceptance

criteria. Streamlining the story creation process would help increase the efficiency

of agile dev ops, as user stories are the beginning and basis of agile development.

The project goal is to create a web application that encourages users to

create more thorough and informative user stories. The app encourages the user

to write with ‘harder’ or more definitive language so that their stories are more

concise and easier to understand. ‘Harder’ language describes the content of

internet standard RFC 2119, which outlines what language such as ‘should’ and

‘should not’ should be used instead of ‘could’ to definitively state what a program

must do and what must be done for the criteria to result in a feature rather than

an idea.

Requirements

Minimum Viable Product

● Draft story saved to database with subject and description fields

● Includes language suggestions/language linting

● Open/edit existing story drafts from database

● Utilizes Lightning Web Components (LWC)

● Abides by Salesforce UI/UX standards

Delivery Method

Source code uploaded to client’s github

Functional Requirements

● Language linter for real-time suggestions

3

● User management: different users can login and access their drafts or

comments

● Merge similar story criteria together

● Peer review and commenting, users able to view, edit, delete their

comments and resolve comments of others (akin to google docs)

● Integrates with SalesForce Agile Accelerator

● Customizable rules for creating stories

Non-Functional Requirements

● Is easy to use

● Lightweight

● Intuitive

● Promotes more specific user story creation with hard language

● Streamlines user story creation process

● Integrates visually and functionally with existing salesforce LWCs

System Architecture

Design Diagram(Figure 1):

Figure 1

4

Design Descriptions:

Users
Users of our product are those who interact with the web application in

order to write a user story, likely a SalesForce developer.

Web Application
The front end of the app consists of a basic login page followed by a menu

page that allows the user to navigate the web application, from this navigation

page the user may either access the new story interface or the edit story interface.

The new story interface allows the user to type a new subject and story

description with their own rules. Additionally, the user will receive

recommendations throughout their writing on how they can make their story

more thorough.

The back end handles html updates for the front end page such as

communication between components and navigation between the different pages

The ‘Language Linter’ checks contents of text field and applies filters for soft

language. An API server is started to show the app’s html content and for

connection to the Postgres database so that the web application can remotely

save, edit, and delete user stories.

Technical Design
By far the most interesting and unique aspect of this project is the English

linter. The English linter takes in user input word by word as the user types into

the text box and in real time recommends replacement words that would make

the user story more official and easier to understand. The words that are replaced

are soft words such as might, could, ought to, etc. and they are changed into more

definitive words such as must, should and may (Table 1). This forces the user to

use a standard language throughout all user stories that is simple and concise.

Additionally, the linter also checks for user acceptance criteria, which is the basis

for how the web application establishes customizable writing rules.

Table 1: English Linter Recommendations

5

User inputs Recommended changes

Might Consider rewording into 'must' or 'may'

Try Consider rewording into 'do'

Ought to Consider rewording into ‘should’

Could Consider rewording into ‘should

Possible More definitive word choice

Possibly More definitive word choice

Required Consider rewording into ‘should’ or ‘must’

In figure 2, there is an example of a poorly written user story. In the orange

notifications, there are a few problems that exist. One problem a few times

throughout the user story is that soft language is used where definitive language

should be used. In addition, there are no listed acceptance criteria. In Figure 3,

there is a better example for a good user story with strong language and

acceptance criteria. Because of the english linter implemented, the user was able

to write a stronger, more understandable user story for whoever is going to be

working on it.

Figure 2: Bad User Story

6

Figure 3: Good User Story

Each front-end element is a separate html file with an associated javascript file to

control its functionality. Each set of these files is considered a component, which

can be easily included in a parent component or app. These components are

modular, and use SalesForce proprietary architecture called Lightning Web

Components. While all of our components are custom built, their framework is

the Lightning system.

As an additional part of our technical design, we also have included and

implemented a PSQL database into the back end of our system. The database is

hosted and maintained by Heroku, a cloud platform owned by SalesForce. The

database works with our product by allowing users to save the drafts of their

stories and then pull them from the database at a later time, whether that be in

days, months, or even years, and edit it if they think of improvements or

additional content for their story.

The database is accessed through an API server written in javascript. When

the app is launched, this API server starts and connects to the database. There are

a number of endpoints that allow users to interact with the app to push, pull, and

delete from the database, using INSERT, SELECT, and DELETE queries.

When it comes to the creation and maintenance of the schema that we use,

we had a simple design with a single table titled drafts. The creation of this table

itself is not built into the code and is instead done manually through a PSQL shell.

This was done in this way as our application does not alter the database itself but

instead pushes and fetches data to and from the database.

7

Quality Assurance
The team’s quality assurance plan is derived from good agile development

practices. These practices include pair programming, daily scrum meetings, client

input meetings and test-driven development.

Pair Programming:

The team has been split into two subgroups. Parker and Curry are the first

subgroup and Michael and Kayden the second subgroup. In the groups, different

elements of the project are developed simultaneously with constant peer reviews

during development. The first group works on and develops the front end,

including but not limited to, organization on the web application using HTML,

Styling using CSS, and handling logic and inputs with JavaScript. The second group

works on and develops the backend, including, but not limited to, PSQL database

management using Heroku, and linking it to the web application using JavaScript.

Daily Scrum Meetings:

Every weekday at 10am, the team got together, in-person and over

zoom/discord and discussed what was achieved since the previous scrum and

what the plan is for the day. This worked well for the team and made sure that

progress was being made at a decent and expected rate. After the short scrum

meeting was complete, the discussion moved to talking about any difficulties or

resources the team found to aid in each other’s efforts. Since this project was a

learning experience, we aimed to pool resources and time in order to maximize

learning and working efficiency.

Client Input Meetings:

The team meets with the client every Monday, Wednesday and Friday. At

the client meetings, the team then presents on what work was done since the

previous client meeting. This includes a live demo with the client and a

walkthrough of the coding done. The client would then give input for

8

amendments to the design or functionality along with any new features. This

allowed us to pivot quickly and

Test-Driven Development:

For test-driven development the team used a variety of different testing

methods to test the code. The different testing methods are as follows:

Unit Testing:
The unit testing for this project was very limited. The nature project did not

warrant many unit tests. One major test that was made and used is testing

pushing and pulling to the PSQL database. This can be done by manually sending

an item to the database and then retrieving the item and checking to see if the

items are identical.

User Testing:
User testing was the main source of testing done for this project. Since the

project is heavily dependent on user inputs that vary based on what the user

wants. This consists of tests such as inputting poorly written user stories into the

description box along with copying and pasting poorly written user stories into the

text box and in both cases, checking if all of the errors show up. A different test

included saving stories and reloading them into the text box.

End-to-End Testing:
This testing was another frequently used test, since the project deals directly with

front-end interfacing to back-end with a database. This was done by writing a new

story in the front end, HTML code and saving it to the database. This test can be

concluded by checking the data in the database to see if the story was saved.

Similarly, the test can also be done by pulling a story from the database in the edit

menu.

Results
We, as a team, are satisfied with the quality and completeness of our

project. We achieved the minimum viable product and have created a framework

9

for testing the ideas of standardized story creation with acceptance criteria and

future expansion.

Unimplemented Features:

● User management and SalesForce integration

● Merging two similar stories

● Peer review and in line commenting

● Creating a unit test from user stories

Summary of Testing:

Although Unit testing was not practical for the project, end-to-end testing

works very well and thoroughly encapsulates any errors we may come across.

Throughout the build process and testing the team has come across a multitude of

errors that we have been able to remedy because of end-to-end testing. A lot of

errors we encountered were design errors. For example, after we had the program

working end to end we ran through it and realized that once the user had made a

selection on what page the user wanted to travel to, the user could not actually

get back to the navigation page, leading to the creation of the cancel buttons.

Lessons Learned:

● Set realistic goals for each day of work via scrums or other methods

● If the team gets stuck on a problem for an unreasonable amount of time,

either get help from someone that is well informed in the area or move on

to a different issue and come back to it later

● Communication is key, constantly communicate with the client and the

team members to ensure a quality product

Future Work
This project was built to replicate lightning web components, meaning that

every single thing that can be seen throughout the web app is a series of

self-enclosed components. This allows for extremely quick and simple component

10

swapping throughout the application so future groups will have little to no

difficulty when replacing components.

Furthermore, the team left a large variety of comments throughout the

entirety of the project to ensure that future teams could clearly understand what

is happening in the code.

This project has a lot of potential for new features, a specific example would

be the ability to have peer review sessions with live commenting and editing

similar to google docs. Another good feature to implement would be higher level

user management, the current user management system is just a framework for

future development that can be expanded upon very easily. Finally an interesting

feature implementation would be to be able to create basic unit test from detailed

enough user story, this would be difficult to implement in concept however the

actual integration with the current web application would be quite simple as all

the future team would have to do is call a pull request from the database for the

user story that they would like to get unit tests for.

Appendix

Dependencies:

For the web application to load properly both lightning-base-components

and the Salesforce Design System are required.

Dependency Installation:

● npm install lighting-base-components

● npm install @salesforce-ux/design-system

@salesforce/design-system-react

11

