
Email Automation Application

Abagail Krostue

Aidan Funk

David Fraser

John Santiago

Lydia Smith

CSCI 370 Field Session

Donna Bodeau

Summer 2021

Table of Contents

Introduction 2

Requirements 3

System Architecture 4

Technical Design 7

Quality Assurance 9

Results 11

Future Work 13

Appendix 14

1

Introduction

The vision behind our team’s field session project originated from our client,
Datava. Datava works with banks and other financial institutions to develop software
solutions to meet their unique needs. This project was created by Datava so that they
would be able to have an application to meet their customers' email needs. The ability
for economic institutions to communicate with their large customer base is valuable in
engaging with their customers and alerting them of important information. It is also
valuable to these institutions to be able to quantify the success of these messages. In
the project proposal handed to us by Datava, it detailed that our team needed to create
a web application integrated with Datava’s system that would allow users to design,
send, and track emails with a large number of recipients.

This application would make sending emails much easier for companies with a
large number of customers. Without email automation, companies would have to keep
track of when to send out emails and who to send those emails out to. Additionally, they
would have to manually send out these emails. With automation, users can simply
define user groups and rules for when to send out emails, and our app will do the heavy
lifting.

This application would also give valuable feedback to email senders. A company
would want to know if a particular email caused a lot of unsubscribes, was often marked
as spam, or was immediately sent to recipients' spam folders. In these cases,
companies would know when to switch up their email strategy. Alternatively, a company
would want to know if their emails were well-received and that they do not need to
change their email strategy. For example, if a user of the app sees a high sent or
opened ratio and a large number of links clicked within the email, they would know their
email is performing well.

The functionality of the email application was broken into three main
components: the back-end integration of an email provider, the scheduler process that
keeps track of when to send emails, and the front-end user interface.
The email provider we decided to work with was Twilio SendGrid. It allowed us to
efficiently send out emails and track the effectiveness of those emails. We were able to
access Twilio's services through API requests in which the input and output were
formatted as JSON objects. On the front-end, we created a plugin for Datava’s Table
Manager application. This plugin allows users to save the filters they applied to a given
table and send emails to everyone on that filtered list. After clicking the plugin button, a
user can set email schedules and view stats from within our email application. This
design allows users to conveniently send mass emails to their clients and receive
statistics on those emails.

2

Requirements

Taking a deeper look into the vision of the project led to the defining of the
necessary functional requirements on both the front and back-end, which work together
extensively. On the back-end, the application needed to be able to use a schedule to
determine when emails were to be sent through a scheduler that was always running so
that no email was missed. It needed to be able to interface with the chosen email
provider, Twilio SendGrid, in order to successfully send emails with the correct content.
Twilio SendGrid is a cloud based SMTP provider that allows businesses/companies to
send an email without the cost and complexity of maintaining their own servers. Thus, in
order to interface with Twilio SendGrid, we had to use API requests to send emails.
Once the emails had been sent, data gathered from the sent emails, including the
number of emails that were opened by the recipient, needed to be obtained, managed,
and displayed. Gathering the statistics also needed to be done through API requests as
Twilio SendGrid tracks the emails through their system and we only had to grab this
data from the request.

Along with the requirements for our own application on the back-end, we were
tasked with making sure that all of Datava’s database information was thought through
and implemented into our program so that our application could be easily implemented
into their current system. We needed to make sure that we would be able to access the
information in their preexisting tables as well as add our plugin into the options of the
different actions that can be taken from those tables. However, our plugin is only an
option if the table has a column with user emails, otherwise there is no need to send
emails with the information that is in the table. All of these functional requirements
needed to be implemented as both a desktop application and as a data table plug-in to
make this process as user friendly as possible.

On the frontend, functional requirements included a user interface for creating
email templates, modifying and sending the emails, and accessing the statis obtained
from back-end API requests from Twilio SendGrid. Another front-end requirement was
ensuring that the UI was user friendly as well self explanatory. To ensure this made it a
requirement to add all visual functionality that Datava had been implementing so that
there was no change between applications as to which visual options are available.
Since the back-end works closely with the front-end in order to fill all of these
requirements, we had to work together as a team to verify that both the front-end and
back-end teams were on the same page. Miscommunication between the teams could
have resulted in data not being properly exchanged.

Additionally, this project consisted of several non-functional requirements. The
code written for this application needed to follow Datava’s coding standards. Along with
the code, proper documentation, for instance quality comments, needed to be included.
We also needed to make sure that our user interface was either extremely self
explanatory or create a step by step guide on how to use our application and plug-in.
When finished with our project Datava also requested some documentation of what files
we worked with, if they were modified or created, and how they currently work so that
for future development it is easy to understand how all of the code works.

3

System Architecture

To gain a broader understanding of how our application will be accessed and
utilized by users, the user experience story given to us by our clients has been
transformed into the following flow chart. Not only does maintaining this flow chart aid in
demonstrating how every front and back-end aspect works as a whole, but it also
provides a basis to conform from in order to easily consider changes if and when
different ideas or client preferences arise.

The below diagram details the application workflow of the front-end. It shows all
the possible actions a user of our app could take and the corresponding decisions a
user would choose from after taking a given action. Ultimately it shows the steps a user
must take in order to view data, view an email schedule, update an email schedule, or
send an email.

Figure 1 : User Experience Flow Chart

4

Our implementation of this email application lives inside of Datava’s existing
architecture. The tools that we used to construct this user experience were ExtJS, a
component based javascript framework, and datava’s pre-existing ExtJS components.
Using these tools, we could quickly create our UI by composing these pre-existing and
new components. As shown in the diagram above, we wanted interactions with certain
front-end elements to trigger back-end functions; this includes saving data to the
database and retrieving statistics. To accomplish this, we added a button listener to the
“send email” button and a tab switching listener to the “view stats'' tab. If these listeners
detected an event, they would trigger an AJAX function which would make requests to
Datava’s server. AJAX stands for Asynchronous JavaScript And XML, and it allows web
pages to be updated without reloading the entire page by exchanging data between the
front and back-ends. These requests would then be handled by a main php file which
would map front-end requests to back-end functions. These functions include reading
and writing to and from system tables as well as interfacing with the Twilio API. To help
visualize this process, we created a process flow diagram which models this
relationship between the front-end, the request router (email.php), and the back-end
functionality in the twilio Interface.

Javascript and PHP coding languages allow for communication between our
front-end user interface, the back-end server-side functionality, and out to Sendgrid.
This communication is essential for maintaining accurate data and ensuring that the
logic the user expects follows through properly. This back-end process flow detailing the
server actions associated with user interface components can be seen below.

Figure 1.1 : Overall Back-End Process Flow

5

Both the front-end and back-end communicated with the database stored in
Datava’s system in order to access and manipulate data. The front-end needed a way
to save and display the data in a clean, user-friendly way, while the back-end had to
access the data in order to create the emails and send them out at the correct times.
The back-end also updated certain columns in the database to assist in keeping track of
what emails have been sent out.

As shown in both of the flow charts above, the back-end and front-end had to
work together extensively in order to make this application as user friendly as possible
while still being able to complete all of the tasks. The Overall Process Flow Chart shows
how the data is moved from the front-end to the back-end; the User Experience Flow
Chart shows how the user will interact with the user interface, as well as how the user
interface sends information to the back-end. Overall, these flow charts were helpful in
understanding our approach before we created these systems so that the entire team
was on the same page as to how the front and back-end would work together.

6

Technical Design

One important technical aspect of our application is the data associated with it.
The data that we collected throughout this project includes email template data, email
schedule data, customer data, and email performance data. The email template data
stores the messages inputted by the user, which act as an email’s body. The email
schedule data allows the user to view all of the emails set to be sent and provides the
ability to delete a queued email. The customer data refers to the table columns from
which contact information and details can be accessed. Lastly, the email performance
data exists as the statistics retrieved from SendGrid. Our application stores this data in
Datava’s system by using specific entity relationships to aid effective email automation.
This data will also assist Datava’s customers in planning their emails as the statistics
that they get back will give them access to information regarding the success of their
past emails.

An interesting aspect of this entity relationship is how we related customers and
emails in our back-end. We did this using two tables: a customer table, and an email
table. We chose to give our email table a recipients column that referenced a subset of
emails in the customer table. We call this subset a user group in our ERD models. With
this approach, we were able to access customer information such as name, email
address, birthday, etc. for all customers listed for a given entry in our email table. This
design also allowed us to inject customer data into the HTML specified in the HTML
column of the email table. With this approach, we could generate personalized emails
that depended on the recipient of a given email. One simple use case of this was
injecting the user's name in the greeting portion of an email. Another advantage to our
schema is that it allows for emails to be sent depending on customer specific data such
as Birthday. Because our customer and email tables are related, our back-end can
simply iterate through customers on a “birthday” email list and send to those with a
birthday. Ultimately, relating customer lists and emails allows for many practical use
cases. Below is the ERD which shows this relationship between customers, emails, and
user groups.

7

Figure 2.0 : ERD of Customer Email Entities

Another interesting aspect of our design is how we measured the performance of
the emails sent with our tool. We decided to track metrics such as opens, unsubscribes,
reported spam, etc to give users insight into the effectiveness of their emails. For
simplicity, we decided to store the aggregate, daily statistics across emails in a statistics
table. This table can be viewed in our user interface under our ‘Stats’ tab. The user can
additionally create a chart of the stats retrieved in order to visually display each of the
metrics. This data is able to be used by the consumers to determine which email
campaigns were most successful as well as how many people have actually seen their
emails that are being sent. Without this information, the customers are unaware of the
success of their emails.

8

Figure 2.1 : Email Performance Statistics

9

Quality Assurance

There are a number of steps that we have taken during the development of our
project to ensure the quality of our work and product. The overarching guidelines
outlined in Agile and Scrum development principles. We implemented these by holding
daily standups with our client, using the tool Trello to maintain an updated backlog, and
performing sprint retrospectives in order to provide Datava with continual pieces of
working components.

Implementing pair programming proved to be another valuable portion of our
quality assurance. This aided our team in ensuring concise code, as well as reducing
roadblocks encountered through the input of multiple perspectives. By implementing
pair programming we also have been able to ensure that our code is high quality and
everything is being implemented correctly. Not only has this ensured our code had great
quality, but it also helped us to come together as a team and bounce ideas off of each
other so that we were all growing as programmers.

Another tool we implemented to strengthen the quality of our application included
code reviews. During many of our daily stand up meetings, Datava’s team reviewed our
code and gave us comments and critiques. These reviews aided in our understanding of
good javascript and php coding styles, showed us available resources to utilize, and
gave us a better understanding of what our client envisioned for the final product. These
reviews with Datava were extremely helpful as we were able to either confirm that our
code was going in the correct path or the Datava team could walk us through what they
were expecting so that we could understand how the code worked as well as what their
vision for what the end product consisted of. However, we did not only do this with
Datava, but sometimes if we were working alone and hit a blocker, we asked another
team member to do a code review of our code. This helped so that we could try to work
through as much as possible without Datava’s team’s assistance and so that we were
all on the same page as to what was being created and how the code worked. It also
helped ensure that we did not have any simple mistakes that could be solved easily with
another set of eyes. Additionally, we did reviews as a whole team to ensure
non-repetitive code and clear documentation.

In order to assure quality of our code for all users, we had to account for edge
cases. For example, we had to account for users across different time zones. Our
solution was to use the GMT international standard. In addition, we had to account for
collisions in customer information like in their first and last name. We addressed this by
making email the primary identifier for customers in the back-end. Finally, we had to
consider all frequency options a user might want e.g daily, weekly, etc. We implemented
our scheduler to account for all of these frequencies. Other edge cases we also
considered included if users picked send dates that had already passed, if an email
were to be removed from an email already in the schedule under an interval, and many
other ways a user may use the application in a way different than what was intended.

We implemented user interface testing manually to review the functionality of our
design by accessing the UI through Datava’s server. Using the inspect tool, we were
able to see responses and gauge which of our ajax requests are working and then

10

debug where we had problems. This was also helpful when attempting to populate
tables, for we could check if the table existed and then see which information has been
populated, if any. From there if any problems persisted, we returned to our code and
determined where the error was located.

To assess the results of our back-end code, we utilized unit testing. For each unit
of functionality, we created a set of punit tests that failed. Then we implemented our
code and ran the punit tests. If they passed, we moved on to the next unit of
functionality, otherwise we fixed the errors within our code and checked that the
changes made met the expected results before moving forward to the next test. Another
way we tested back-end functionality included using AJAX requests from the front-end
and inspecting the result with chrome dev-tools. For the email aspect of our project, we
sent test emails to our school and personal email addresses to see if they were sent
correctly.

11

Results

Throughout the project our team has primarily used two types of testing: user
interface testing and unit testing. User interface testing was very helpful throughout the
development of our project as we were able to manually test our code through Datava’s
server using the inspect tool that is part of Chrome’s developer tools. This helped us to
see responses and gauge which ajax requests were working and then debug where we
were having problems on the front-end. We also used the debugger that’s built into
Chrome’s dev tools which allowed us to set breakpoints and step through our code line
by line. User interface testing was especially helpful when testing the machinery of
sending out email and retrieving stats before the front-end could call these functions.

In addition to using Chrome dev tools, we also used unit testing with the pUnit
PHP testing framework. We created many pUnit tests to initially fail before we
implemented our code. Once our code was implemented we were able to ensure that
the functionality of our code was running smoothly and if not we were able to move on
to the next piece of the project. This was particularly useful in verifying the accuracy of
retrieved email statistics. Both of these types of testing were critical to the development
of our product because without them we would have had major blockers throughout the
process.

As we worked through this project we learned a lot of lessons as a team. One of
the lessons learned throughout this project was the importance of the debugger, both in
the vscode for the back-end and Chrome’s developer tools for the front-end. Using the
debugger aids in tracking down bugs and logic errors in a way that builds understanding
of what is actually occurring and reduces time that could be wasted attempting to
resolve the error through alternative routes.

This project also served in strengthening our utilization of version control. In
comparison to using github for classes between groups of two or three students,
learning how to effectively use github between larger project groups and within
companies is important in communicating changes and maintaining code through
potential conflicts.

Another lesson learned from this project was the importance of understanding
the company’s database before beginning any coding. Though the syntax of different
programming languages are similar, the implementation of each is different based on
the industry. Therefore, the more exploration we did throughout the company’s database
we were able to learn about how they were implementing certain elements on the
front-end and back-end as well as avoid reproducing functions that may have already
been implemented in their system.

The next lesson we learned was understanding the integration between the front
and back-end of web applications. The importance of this lesson was to understand
how both ends worked to be able to connect everything all together. Throughout this
project, our team had to split between the front-end and back-end teams in order to
efficiently be productive. However, there was a moment where both teams did not
understand what the opposite team was doing. Therefore, pair programming and code

12

review helped very much get everyone on the same page to be able to move forward
and connect everything together.

13

Future Work

There are several additional considerations that could be implemented in future
work in addition to the features that we did not have time to finish. One of these is the
potential for adding the functionality of cc and bcc recipients to an email. This pertains
to adding additional emails to the send list that do not currently exist in the chosen table,
which could be useful to, for example, add a supervisor to keep them informed on
relevant messages.

The team began adding a more advanced email filtering system, but this wasn’t
able to be fully integrated with the UI due to time constraints. By adding in this feature,
more comprehensive tables of emails could be created. It would also be beneficial to
monitor the number of emails being sent out as a security measure for unusual activity.
Several artifacts of code relevant to this future functionality still reside in our branch
along with comment documentation of its potential use to the next developer to further
improve the application. This should be fairly easy to accomplish since the advanced
email filtering system is there. All that is needed to do would be to save the query, rows
of names selected, or save the post request into a table that can be read to be used
later when it is needed.

In addition to more features, having the ability to autofill message templates
through pulling information from a client table would be beneficial to sending out mass
emails without having to individually type each message out to each individual. This
would include having the ability to insert a variable where a recipient’s name or account
information could appear within the email body.

Through SendGrid, when user’s unsubscribe from an email, SendGrid blocks
emails from being sent out to these recipients. However, in our database these
recipients will still exist in the table. It would be more space efficient to remove them
from the database, which would also eliminate the need to rely on SendGrid to block
these emails from going out.

Another potential data security measure might be to control which users have the
ability to send emails and view the gathered statistics based on a user’s admin level;
this may already be handled by Datava’s login system.

Currently, our application works through having a user select recipients from a
datatable containing user email information, from which they open our app, create the
email, and then schedule it to be sent. From giving Datava a demonstration of the most
current version of the application, they explained how it would be beneficial to send
different emails to different people based on information stored in a given table; an
example case of this is sending a user a ‘Happy Birthday’ email, which would not be the
sent on the same date for many users.

14

Appendix
Sources Cited:
Information pertaining to our client Datava.
Datava. 2021, https://datava.com. Accessed 10 June 2021.
Twilio Send Grid Email Provider.
Twilio. Twilio Send Grid, 2021, https://www.twilio.com/docs/sendgrid. Accessed 11 June
2021.

15

https://datava.com
https://www.twilio.com/docs/sendgrid

