
Datava 4: WebSockets
Asa Farrer, Kyle Hughes, Henry Purdum, Hunter Sitki

Final Report
Field Session Summer 2021

1



I. Introduction

Datava Inc. is an SaaS business analytics startup, founded in 2006. Although they also
specialize in employer training, our group was tasked with assisting the client with the
back end of their data management and analysis system. During preliminary discussions,
our client David introduced us to the WebSockets (WS) framework - which allows for a
persistent connection between a server and browser, once a connection has been made.
Our team was tasked with updating the existing HTTP and Ajax (Asynchronous
JavaScript and XML) request system that exists within the Datava system with a
WebSockets connection. Our group was given the option of using any WebSocket API
available to us; though, it was recommended that we use Swoole or Ratchet, depending
on our group’s confidence with the PHP and JavaScript languages.

As two of the more experienced coders on the team were comfortable with the
networking environment, our group opted to use the Ratchet library, as it was an
intermediate-to-advanced level introduction to the WebSocket framework. Datava’s
product vision included:

● Replacing all Ajax-type connections with WebSockets
● SSL secure encryptions for all new connections
● The ability to ‘push-down’ information from the server to a user’s browser

These were the stretch-goals that came from the client during our first week of discussion
- as our group became more aware that not all of the team members were capable of
writing code for the project, the project goals were narrowed down to installing a
WebSocket library onto the server, and ensuring that all existing Ajax requests could be
replaced with the new software.

Our group was able to meet these two basic requirements, more as a proof of concept
than a working product. Our connections are opened without closing, and created every
time an Ajax request would be made. This is not the optimal implementation for the
WebSockets framework, which is designed to remain open as long as the user is
connected to the server, to push/pull information based on user events or server response.
Fortunately, the code is written in a way that implementing SSL should be an easy
adjustment; however, persistent connectivity will require more work to include. This is
because implementing persistent connections will require a function to be added that
opens a WS as the user connects to the system, then the current override will need to be
changed to only send/receive information to and from the user.

2



II. Requirements:

This project consists of several requirements to be met to deliver a good product. The
first of these is to replace the existing Ajax and HTTP communication of the client’s ESP
with WebSockets to enable two-way communication. We need to be able to push the
WebSocket information to and from the server without having to make a new request
each time. This framework should also allow for future use as instant client-to-client
communication. This project also requires that tests be run to ensure that the updates we
are making do not break the client’s existing code or cause other issues for the existing
codebase.

The point of this backend overhaul project is to make communication more efficient and
provide a future route for implementing two-way communication. One implementation
requirement was to use either the Ratchet or Swoole frameworks to implement
WebSockets for the Datava system. Any back-end functionality should be done using
PHP and most front-end functionality should be using JavaScript, especially the ExtJS
framework. There should also be a measurable performance improvement from the
former system to the WebSockets system.

3



III. System Architecture:

A. Summary

The overall objective of this project was to implement a system to update and
potentially optimize the way that the Datava web servers interact with clients’
browsers. With this in mind, our project focused almost exclusively on the
back-end components of the pre-existing application. This is not to say that no
interaction or modification of front-end aspects was required, which it was.
Instead, the majority of the front-end modifications were made away from the
actual user interface and instead focused on the ExtJS implementation of Ajax
requests. By focusing on and modifying this one class’ behavior, we were able to
essentially modify the behavior of the entire existing application while only
needing to create and maintain front-end code in a single file.

B. Back-end and WebSockets

WebSockets provide client applications and browsers the ability to make a single
request to a running server to establish a connection. Once this connection is
established, the connection remains open and information can be freely pushed
back and forth between the server and client without the need for extra requests or
acknowledgements to be sent. In general, WebSockets are often used for
applications that require or would benefit from near instantaneous communication
with a server, such as web-based games or real time messaging, due to the fact
that WebSockets can send and receive messages much faster than other methods
of network communication.

The client’s main objective for us was to change the existing Ajax request system,
which simply specifies some parameters and a URL, which itself corresponds to a
file within the application. The Ajax request would send the parameters, as well
as a plethora of other meta information, to the specified file where a response is
generated based on the inputs and echoed back to the Ajax request in the form of
a JSON object. When a response is received, the Ajax request then executes a
callback success function that does something meaningful, such as updating the
UI or validating the user’s session, with the response.

To mimic this kind of behavior with WebSockets, we needed to create a system
that could interpret the parameters that would be passed through an Ajax request.
The Ratchet WebSocket API that our team utilized requires two main components
to function in the way that we required:

1) MessageComponentInterface

4



Our group referred to the MessageComponentInterface as the “socket” in
WebSockets. This socket is a class that specifies the behavior of the server
when a new connection is established, a message is received, a connection
is terminated, or an error with a connection occurs. Each of those
situations must be explicitly handled in their own corresponding function,
such as onMessage(). For our implementation, a very generic
implementation sufficed, save for the handling of messages from clients.
In our onMessage() function, messages will come in the form of a
URL-encoded string. Using built in PHP functions, this message is parsed,
then converted into a PHP array. After the array is converted, it is passed
to the file that is specified by the message and that file is dispatched. Once
the file has concluded its execution, it will echo a response - in the form of
an encoded JSON object - to stdout and the onMessage function will
capture that output and send it back to the requesting client.

2) WebSocket Server

The WebSocket server provides the overall network functionality for
WebSockets. A WebSocket server is not the same as the web server that
the application interacts with… the difference being that the WebSocket
server runs on the web server, and occupies a thread continuously. This is
all done as the WebSocket is waiting for messages and handling
connections. In production, this would look like a daemon running on a
background thread on the web server. The construction of such a server is
relatively simple, it only requires passing a MessageComponentInterface
and IP address and port values into its constructor. From there, the server
will run indefinitely until it encounters an error or is terminated manually.

C. Front-end and Ajax

In order to comprehensively modify the behavior of Ajax requests throughout the
application, we chose to override the Ext.Ajax class, which is the ExtJS specific
implementation of Ajax. Within this override, we were able to modify the
behavior of the request function - this is the function that is used throughout the
entire application.

To utilize the WebSocket interface that is running on the back-end, we used the
built-in WebSocket functionality that JavaScript provides. This framework allows
us to create a WebSocket object and attempt to connect to a running WebSocket
server port. Once the connection between the front-end WebSocket object and the
back-end server is established, messages can be sent back and forth between each
other. This behavior is modelled in Figure 1, found below.

5



6



IV. Technical Design:

A. JS Overrides

Development of our server application did not require immediately creating an
extensive arrangement of files or frameworks. Instead, we were able to use some
of the existing files as a test area for implementing a single WebSocket
connection. As a result, we spent a lot of time connecting to that server from a
few select lines in a particular JavaScript file.

As we got further into our development process it became clear that simply
making a connection request to replace every existing Ajax related functionality
would be extremely inefficient and time consuming. If our client had only a few
applications requiring WebSockets, we could have hard coded each connection
request. However the more modular practice of adding a functionality override for
the Ajax requests that were already implemented proved the more elegant and
efficient solution. Relocating this override functionality to it’s own unique
location of the development servers means that our presentation of our product to
our client can be more streamlined and better organised. An example relative path
from our main development directory on the server to our override
implementation would be “./js/overrides/Ajax.js” where our implementation is
stored in this Ajax.js script.

This implementation covers functionality for handling requests, responses, and
sending/receiving messages with our WebSockets. Requests are handled by
checking if the configuration parameter of said request defines a WebSocket or
not. If it does, we create a WebSocket if one is not already open. We then set a
few more configuration parameters, set the functionality of the WebSockets
onmessage function and then send the message. Some of the Ajax functionality
can be seen in Figure 2.

Responses from the web server are handled by converting the response text into a
JSON object. This object is then passed into callback functions that are specified
with the configuration parameter passed into the request. The standard Ajax
functionality had default error and success callback functions so it was necessary
to execute those functions if the configuration did explicitly specify any. In
general, sending a message from the frontend is as simple as calling
“websocket.send(message)”. Our receiving end of the functionality requires a bit
more complexity; we need to decode the JSON object that our message has been
converted to mid-flight. Otherwise, functionality between the two parts of the
system is fairly similar and straightforward.

B. Functionality of onMessage

Figure 3 does a great job of demonstrating the Finite State Automata at work
behind our program. We start in the center of the diagram, awaiting connections

7



and requests to send messages. When a new client tries to connect, we should
assign them a unique ID and then establish the connection. When a message is
received we should parse the URL for parameters, reroute those parameters to a
global variable or outside file, await a response and then send an encoded JSON
response containing the necessary parameters.

8



V. Quality Assurance:

A. Unit Testing

Smaller scale unit testing was beneficial in guaranteeing that the behavior of small
mechanisms within the application output the same results even after we had
significantly modified the underlying machinery. When first beginning our
implementation, we focused on very small portions of the application and used
those as somewhat of an experiment to try and get a better grasp on the
technology and techniques. As we moved forward and began to create
modifications that would impact the entire application, these smaller tests and
portions of code were exceptionally valuable when trying to determine the impact
our changes had on the entire system.

B. Integration Testing

The client already had a relatively large suite of tests before we began working on
the project. Since our project focused less on creating new functionality and more
on optimizing some existing functions, the behavior of the application, in general,
would not be expected to change much due to our modifications. With this in
mind, ensuring that the changes we made did not significantly impact the core
functionality of the application was critical and being able to utilize the provided
tests was helpful.

C. Code Metrics

We utilize built-in JavaScript timing functions to record the time it takes to
execute both an Ajax request and our new WebSockets request. We allow these
timers to execute 20 times and then are able to get an average for the runtime of
each framework. Depending on the nature of the function these timing metrics can
show either a significant performance improvement or little to no change. Some
functions have to access the same databases and depending on how much they use
it, this can be a bottleneck for performance no matter what the request framework.

9



VI. Results:

As our group’s task was to deliver a WebSockets framework using JavaScript and PHP,
our original plan was to create a mechanism that allowed for the emulation of Ajax
requests using WebSockets. This plan was more or less successful - the existing Ajax
request function is overridden by a WS connection. This new WebSocket is created when
the first request of a user’s session is made. This single WebSocket connection remains
open for the duration of the user’s session and is closed only when the user exits the
application or refreshes the page, which essentially restarts the session. With this
persistent connection between the user’s client and the server, our new framework
resulted in improved connection speeds - in fact, our product delivers a ten-times speedup
when compared to standard Ajax requests, on average.

The team decided that overriding each request would yield the highest likelihood of
completion within the five week window. We made this decision because creating a
function override made the code much cleaner, and allowed our code to run with more
abstraction than if we had gone file-to-file and replaced every call to an Ajax request
within Datava’s system. As it stands, there are still some issues with the way that the WS
mechanism interacts with other back-end components. In order for the system to work
most efficiently for the client, these issues will need to be analysed in more significant
detail than our group will be able to achieve by the end of the five-week sprint. Our
current implementation does not use encryption of any sort, and will likely require some
significant security updates in the future.

As a back-end project, we were able to manually test that requests made with
WebSockets did not break the rest of the ESP from functioning by clicking through most
functions and event-drivers as we came across them. We were also able to write code
performance tests in the form of averaging the runtime of many calls to certain functions.
These demonstrate that our WebSockets implementation does have the desired effect of
increased performance in general. As our project is built on existing system code, it can
be expanded by the company to incorporate security, persistent connections, and
server-side push for two way communication. Overall, our group is satisfied with the
proof of concept we developed and believe that we have demonstrated some promising
results with regards WebSockets and their capabilities for Datava.

10



VII. Future Work:
While we are content with the results our group was able to produce, there are some
features that would almost certainly move our framework forward and provide some
added security and usability benefits. Some of these features are listed below.

A. Client to client communication

Two-way communication is something that will be left for future work. This
would allow for instant updates when multiple users are editing the same form.
This would resemble something like Google Docs which would help alleviate
some conflicts from their own clients’ using the ESP. While we did not have time
to include this feature, the foundations for it are included within our current
implementation. Within our MessageComponentInterface, a list of connected
clients is maintained and it would not be too difficult to keep track of connections
within a certain context and include extra information on certain requests to
maintain a collection of user’s within a specific application and who should be
able to interact with them.

B. Implement SSL certificates and full WSS connections

Despite several different attempts, our group was unable to connect the
application’s client to our WebSocket server when it was using a WebSocket
Secure connection protocol. Since there is a potential for large amounts of
sensitive information to be sent over the websocket, this will likely be a critical
feature to implement before this can go into production. Based on our
understanding of the Ratchet API, it does not seem like a significant amount of
work will be required, especially for someone who is more familiar with HTTPS
connections.

C. Improve WebSocket server infrastructure

One feature that is not necessarily required but would undoubtedly help future
scaling would be to improve the way in which Datava developers interact with the
WebSocket server. At the moment, the back-end WebSocket server must be
instantiated and run from the command line. Upon calling the file that does this,
the developer will lose access to that instance of the terminal because the server
will indefinitely occupy it. An automated way to start the server would be
preferred. Additionally, all error messages are routed to the console, but a
server-specific error log would be very useful for tracking any issues.

11



VIII. Appendices

A. Performance Testing Results:

Figure 4: ShowParentRelation Function Timing Results

Figure 5: GetTabs Function Timing Results

12



Figure 6: Check Session Function Timing Results

Figures 4-6 demonstrate any performance speedups our project yielded. Each red bar shows how
long the runtime took to complete using the previous Ajax framework compared to the new
implementation with WebSockets shown in blue. Each of the sets of bars is an average of 20 tests
for each framework. Multiply the number of total bars by 20 to know how many total timing
tests were performed. These results demonstrate that when faced with a function that takes a lot
of Ajax requests, that time is cut significantly with a WebSockets implementation. More tests can
be run in the future for further demonstration of performance increase, but these give a good
visualization of the performance benefits of WebSockets.

13


