
Hubspot Integration

Maksym Bondar, Dustin Choat, David Esposito, Jordan Tehranchi
June 16, 2021



1

Introduction

Datava is a Software as a Service (SAAS) organization that focuses on developing
CRM business tools for their clients; typically consulting firms and financial institutions.
This includes providing enterprise-level management and business intelligence tools
offered through a cloud-based platform. These business tools are provided through a
suite of applications, providing users with software solutions focused on Customer
Relationship Management (CRM), problem resolution, learning management, and
predictive analytics.

One of the services Datava provides with their app is the ability for clients to view and
manipulate their custom objects on Hubspot, a popular CRM tool that provides users
with a suite of applications to help their business. The tools provided from Hubspot can
utilize these objects to provide statistics and analytics information for the user to help
them with their business and CRM needs. For example, an app on the Hubspot App
Marketplace could interact with the user’s “Clients” objects to provide statistics and
information regarding their clients. These custom objects are vital to a user’s experience
on Hubspot, but currently, there is no easy front-end solution to manipulating these
objects. The first part of our team’s project solves this problem by creating a
comprehensive user interface to build upon Datava’s Hubspot manipulation software.

In addition to developing this interface, our team was tasked with implementing an
OAuth protocol to connect Datava user’s to their Hubspot accounts. OAuth is an internet
protocol for securely accessing a user’s information on another app without requiring
their login credentials for that app. In this case, Datava’s app is requesting a user’s
Hubspot information, so OAuth is needed to ensure that Datava can do this without
handling the user’s Hubspot credentials to do so. Accessing Hubspot’s API with OAuth,
rather than an API key, is a requirement for being listed on Hubspot’s App Marketplace,
which is something that Datava wants to do in the future. Implementing OAuth was the
second part of our group’s project, and a vital part to further improving Datava users’
ability to interact and manipulate their custom objects on Hubspot. Through OAuth,
users are able to safely login to their Hubspot accounts through a redirect on Datava’s
app; credentials and personal information are not stored within Datava’s server.



2

Requirements

There are numerous functional requirements for this project. On the OAuth side of
things, we must successfully implement an OAuth integration between Datava and
Hubspot. This means that an end-user should be prompted with an option to login to
Hubspot on Datava’s app, all through a secure OAuth connection. Additionally, the
tokens associated with the OAuth login should be stored in Datava’s database. This is
necessary because OAuth’s access tokens are set to expire every re-login or after a
certain amount of time. By storing this information, Datava is able to prompt their users
to reauthenticate their Hubspot connection inside the Datava app.

For the custom object handling, we need a way to create, modify, and delete Hubspot
custom objects within the Datava app. These modifications must also be reflected in
Datava’s database. A data sync between Datava and Hubspot is another requirement
set out by Datava. Information regarding a valid Hubspot custom object in Datava’s
database must be accurately reflected in Hubspot, and vice-versa. The user UI on
Datava’s end must be comprehensive and self-explanatory, whenever possible,
requirements should be prompted through the front-end.

Non-functional requirements relate mostly to user privacy, security, and
future-scalability. The integration of OAuth 2.0 is necessary for a safe and secure
Hubspot login through Datava; this connection should not store any Hubspot credentials
on Datava’s database, like their username and password. For the software, post
verification is necessary whenever the Datava app sends information for function calls.
Post verification makes sure that the information sent to both Datava and Hubspot is
secure, and adds additional protection for the database. Similarly, software variables
should be flexible and not hard-coded. If an update to a variable is required in one file in
the server, any additional dependencies should not have to be updated manually -
allowing for future scalability.

Additionally, the code for this project, and any extra UI implementations should be well
documented, with TODO statements left as necessary. Finally, as a future goal, Datava
is looking to get listed on Hubspot’s App Marketplace. For us, this translates to a
successful OAuth 2.0 integration, as well as finding any information related to an App
Marketplace listing.



3

System Architecture

OAuth Implementation Design

The diagram in Figure 1 shows the current working flow for integrating OAuth with
Hubspot on Datava’s app. The process is broken down into five steps, beginning with
the user instantiating the authentication from Datava’s application and ending with
Hubspot giving Datava a list of tokens, which can then be used in any API calls. This list
consists of an access token, which is used to authenticate the calls, an expiration time,
which states how long the access token is valid for, and a refresh token, which is used
to get a new access token once it has expired.

This protocol ensures that Datava never handles the user’s Hubspot credentials,
leading to a secure connection between the user and their Hubspot objects through
Datava’s front end application. Another way we ensure security during this series of
transactions is through ID’s being sent between servers. Any request we send to
Hubspot during this process is accompanied by an encrypted ID, which we check when
the call is answered to make sure the response is from Hubspot and wasn’t some attack
from another server. Using OAuth, we can protect the user’s information regarding their
Hubspot credentials and information stored on their account, while still providing them
easy, seamless access to their data on Hubspot.

Fig. 1: OAuth Protocol Design



4

Custom Object Handling and Design

As seen in Figure 2: Hubspot API UI and Object Design, internal users interact and
manage their Hubspot objects through Datava’s application. The interaction between
users and the Datava application is back-and-forth, as Datava’s UI directs users through
the custom object process. Once the application has enough data, or the user attempts
to create a custom object, a series of buttons and action listeners direct the data
through what we called the “Custom Object Manager” (COM). The main function of the
manager is to manipulate the data and prepare it for Hubspot. If there are any issues -
e.g. missing fields - or any errors - e.g. the object already exists - the action is cancelled
and a message is sent to the user. If there aren’t any errors or exceptions, then the data
goes through Hubspot’s API. The API is responsible for creating, modifying, or deleting
the custom object; these changes can be viewed through Hubspot’s application as well
as Datava’s application.

For the sake of simplicity, we opted to leave some of the interactions out of Figure 2. For
instance, the Hubspot application is able to speak directly with the Datava application,
with Datava processing and handling responses from Hubspot in a way that internal
users could understand. Additionally, the process of creating a custom object also
creates a table entry in Datava’s database. The creation of a Hubspot custom object
requires that all necessary fields are filled out, while a table entry requires less of these
fields. As a result, a valid table entry may be added while the Hubspot object creation
itself fails. These scenarios are handled in the COM, returning a front-end response to
notify the user.

Fig. 2: Hubspot API UI and Object Design:



5

Technical Design

Looking into our final product, it is divided into two key components: the OAuth 2.0
integration between Hubspot and Datava servers and the custom objects creation
features in Hubspot. The OAuth 2.0 protocol first interacts with our product by having
the end-user request Hubspot data from the Datava app. From here, our design then
has Datava users sent to a Hubspot login page with the use of a redirect link (integrated
function) for verification. After the end-user logs in using Datava-specific domain
credentials, the OAuth server automatically sends Datava’s server an authentication
code to be used. At this point, our design has it set up so that once Datava has the
authentication code, it will send that same code in addition to their app credentials to the
OAuth server. Finally, the OAuth server takes in this data and verification and, if
approved, sends back an access token which can then be used for all API calls Datava
makes to Hubspot. If the end-user is not approved, however, the user credentials are
revoked and the access token will be terminated. Figure 3 down below represents the
backend of our OAuth Implementation.

Fig. 3: OAuth Implementation UML Design



6

When a user wants to create or manage their custom Hubspot objects with Datava, they
have to first go to the Table Manager app on Datava’s server. Next they have to go to
the Hubspot Objects data table, seen in Figure 4 below, which lists all of the custom
Hubspot objects that have already been made. From here, they can either modify an
existing Hubspot object, or choose to create a new one.

With our implementation, opposed to the traditional objects that Hubspot would allow
you to create such as company or email specifications, our custom objects button
allows more in-depth objects to be created to suit the end-user’s needs. A real world
example of our Hubspot custom object implementation is within the CRM commercial
field of Datava. This is where sales representatives can help classify their customers
and clients based on needs and traits to ensure that the product delivery is optimized to
them. In Datava’s case, clients can receive optimized analytics and data for being able
to kickstart their company in the right direction. Figure 4 below also represents an
example case of the custom objects in use.

Fig. 4. Hubspot Custom Object Database



7

QA - Software Quality Plan

Activity Contribution to Quality

Error Logging (PHP) This activity allows us to find the source of
front-end and back-end errors while trying to
debug the Hubspot custom objects and UI.

PHP Unit Tests This activity is extremely useful in allowing
us to isolate certain functions and features in
our Hubspot Integration and to be able to
test that functionality specifically.

Jira (Atlassian) Scrum Tool This activity not only keeps our team
together through different user-stories and
epics, however, also ensures that we are
following our tasks based on the
requirements.

Pair-Programming (QA) This activity allows our team to be able to
pair up with one other team member.
Working as a pair compared to individually
allows us to catch bugs, bounce possible
thoughts off of each other more efficiently.
Also, this activity ensures that our code is
written more efficiently than individual
coding.

Sandbox/Manual Testing Using our local host, this activity allows us to
emulate the source code onto our web
browsers to be able to test our Hubspot app,
UI, and OAuth functionality.

Visual Studio Code (VSC) Extensions These integrations into Visual Studio Code
help us as a team to be able to format, style
and modify code more efficiently than a
simple text editor. Furthermore, these
extensions are known for helping users
catch syntax errors much more quickly.

Discord (Audio-Chat) This tool allows our team to be alert of code
changes, meetings and enables real-time
communication among our team. Discord
also offers a screen-sharing option that
allows our team members to validate each
other's code and documentation.



8

Results

The goal of our project was to develop and enhance Hubspot’s API, which Datava
already has a baseline connection to. This has been completed through the means of
implementing a robust GUI for accessing Hubspot objects and implementing source
code to allow for the creation of custom objects. Furthermore, we secured end-user
privacy through an OAuth 2.0 authentication integration where Datava domain
developers can login and connect to their Hubspot account, through Datava’s
application. Our application meets all of our client's functional requirements, as it
successfully authenticates users and sends token data to all verified Datava domain
users (accomplished through Hubspot developer account testing) and enables custom
object creation through our PHP GUI.

The integration of OAuth 2.0 was done entirely through a back-end environment (PHP)
and testing varied throughout the development process. There were many milestones
where we could send front-end notifications to end-users, such as a successful login
screen, or a domain redirect. When we were not able to verify via front-end, we
redirected variables through console or debugger logs. This allowed us to see what we
were working with, what we were expecting, and what we might need to do. Testing of
the finished integration was mostly straightforward. A successful connection begins with
a prompted connection screen, a few redirects, and ends with a redirect back to
Datava’s app. Additionally, we were able to verify a successful OAuth login by creating
and modifying a Hubspot custom object through Datava’s app after the OAuth login.

The buttons were made with multiple function calls and figuring out what to pass in to
functions, as a result testing revolved around console and debugger logging, as well as
some UI prints to the user. Once the individual features were tested, component testing
was utilized. For component testing, we set up some test objects and then focused on
creating, modifying, and deleting them. We were able to check the objects table in
Datava’s database to verify object creation on their end, as well as checking our
Hubspot accounts to verify custom object creation. A similar process was used to verify
that the action listeners worked as intended. However, the action listeners were set up
in a way to return UI messages to end-users, so their tests revolved around verifying
correct errors/responses for different inputs and actions.



9

Future Work

Additional features could be added to provide new end-user capabilities down the road.
Throughout the project, extra features - or reach goals - have been requested by
Datava. As the implementation of these features was described as “fairly
straightforward,” we chose to focus on implementing necessary functions, such as
object managing buttons and action listeners. A few buttons have been left out and
could easily be added in future work. The button code is pretty similar across all
buttons, and their addition could be accomplished by examining existing code and
documentation left by our group. Other features, like a way to create associations
between objects, could be added with relative ease, as Hubspot has extensive
documentation on their CRM features.

The button and action listeners which we created were focused on just one table in
Datava’s database, which manages the custom objects. However, in the current
implementation, it is not possible to create a custom object with one single action.
Instead, you must first make an entry for the custom object table, and then make a
custom object property in a separate table before you can create the actual object. For
future work, a similar table managing component could be added to the properties table,
where the creation of a primary display property could automatically update the object
table entry and create a custom object on Hubspot. The addition of action listeners to
the property table wouldn’t be too much work, but it would require some additional query
calls to update the objects table. However, it might be easier to simply add a way to
create an object property while creating the object entry itself. This would require some
changes to Datava’s UI, as they would need some extra fields for inputs and additional
rerouting. Either way, the creation of Secondary Display Properties would need to be
taken into account, as these are also made externally before being added to the object
table and pushed to the corresponding Hubspot custom object.

With our project conclusion, there are direct buttons for creating, getting, modifying, and
deleting Hubspot custom objects, and there are action listeners which do the same thing
through the use of the submit button. The creation of these two components stemmed
from a reach goal, where Datava sought to replace the button functionality through the
use of action listeners. As we had limited time for the project, both components were
developed, though Datava can replace or remove the button component entirely down
the line. The automation which comes with action listeners means that ideally, only the
“delete” button should remain, as all other functions can be checked in the after insert
and after update listeners. Replacing or removing three or four of these buttons would
be as simple as removing some Javascript code on Datava’s server.

For future developers, we left documentation of our work, following comment examples
from Datava’s own source code. We also wrote additional comments wherever we
deemed necessary. In the php code, we left TODO statements where our client added
reach goals. In the Javascript code, we documented function flows and left comments
describing desired functionality for any unimplemented features.



10

Appendix

I. Common Terminology

● API - API is an acronym for Application Programming Interface, this software
intermediary allows two applications to talk to each other. In our case, Datava’s
application is able to talk to Hubspot.

● CRM - Customer Relationship Management, CRM is a technology that is used
for managing your company’s relationships and interactions with existing and
potential customers. The goal of CRM is to improve business relationships to
help grow your business.

● Hubspot Custom Object - by default, Hubspot offers four CRM objects for their
users: contacts, companies, deals, and tickets. Hubspot also gives users the
ability to define and create up to 10 of their own CRM custom objects, with
features such as name, singular and plural forms, and display properties for the
object.

● Javascript - an object-oriented computer programming language which is
commonly used to create interactive effects within web browsers.

● PHP - PHP is a recursive acronym for Hypertext Preprocessor. It is a widely-used
open source general-purpose scripting language that is suited for web
development and can be embedded into HTML.

● VSC - Visual Studio Code, VSC is a code editor focused on building and
debugging modern web and cloud applications.


