
Automatic Raspberry Pi Network Configuration and
Discovery

Gamble, Zach McDonnell, Brendan Radley, Ian

for Dr. Phillip Romig III

June 16, 2021

Computer Science Department

Automatic Raspberry Pi Network Configuration and Discovery Page 1 of 20

Contents

Introduction 2
The Problem: Automatic Network Connection . 2
The Problem: IP Address Discovery . 2

Requirements 3
Functional Requirements . 3
Non-functional Requirements . 3
Definition of Done . 4

System Architecture 4

Technical Design 5
Web Server . 5

Database . 7
API Logic . 7
Proxy . 7

Raspberry Pi . 9

Quality Assurance 11

Results 13
Lessons Learned . 14
Non-Implemented Ideas . 14

Future Ideas 14

Appendix 16
Installation instructions . 16

Build image . 16
Database password . 16
Database backups . 16
TLS certificates . 17
Firewall rules . 18
Migrating the web server . 18

Setup . 18
Device and MAC Registration . 18
Home Network Registration . 19
Get IP/status information . 20

Development instructions . 20

Glossary 20

Automatic Raspberry Pi Network Configuration and Discovery Page 2 of 20

List of Figures

1 Overall system architecture . 5
2 System architecture swimlane flowchart . 6
3 Database Entity Relationship Diagram . 8
4 Example home page for a student user. 9
5 RPI config flowchart . 10
6 IP Discovery . 11
7 IP Discovery Process Flowchart . 12

Introduction

Python-based Computing: Building a Sensor System (CSCI250) is a class that uses Rasp-
berry Pi’s (RPi), a small computer running Linux, in order to learn about interfacing with
electronic sensors. Each student purchases a Raspberry Pi to use throughout the semester.
The client, Phil Romig, is an instructor for CSCI250 and is in need of a new method for
effectively utilizing the RPis. Presently, the RPi must be connected to a monitor, keyboard,
and mouse at the start of class, taking valuable class time and requiring a classroom with
HDMI monitors — of which there is only one on campus large enough to accommodate a
full class.

A preferable solution would be a headless setup: one that does not require the RPi to be
connected to a monitor, keyboard, or mouse. A headless setup allows students to remotely
access and control the RPi through SSH or VNC from a separate computer. There are two
problems preventing a completely headless setup, however. First, the RPis would need to be
initially setup to automatically connect to the network, including the Mines network where
they need to register their MAC address with the school; and second, the students need some
way of determining the IP address of their RPi to connect to it.

The Problem: Automatic Network Connection

The RPi needs to be able to connect to any wireless network the student needs to access
it on. This is not currently possible. One issue is that the Mines wireless network requires
every device (identified by MAC address) that accesses it to be registered to an individual.
Until this registration takes place, the device cannot use the network. The other issue is
that the RPi must be manually configured with the name and credentials of a network before
it can automatically connect to it. At the moment, there is not method to perform these
actions with a headless setup.

The Problem: IP Address Discovery

There is not a simple and reliable way for a student to determine the IP address of a headless
RPi, which is necessary for connecting remotely. Presently, the RPi sends its IP address to
the student in an email on boot. The email uses an insecure protocol the Colorado School

Automatic Raspberry Pi Network Configuration and Discovery Page 3 of 20

of Mines (Mines) is no longer permitting in future semesters. This method is unreliable,
limited, and will not continue to function.

The goal for this product is to solve both of these issues to enable a completely headless RPi
setup. To this end, the product has the following functional and non-functional requirements.

Requirements

Functional Requirements

• Initial Configuration

– A method for a RPi to automatically connect to CSMwireless (Mines’ network).

– The student must also be able to register the MAC address of the RPi with the
school so they have internet access on CSMwireless.

– Provide instruction and functionality for students to add additional networks for
automatic connectivity.

• RPi Information Discovery

– Provide students with IP address of their RPi and network information (i.e net-
work SSID).

– Central server with Mines’ authentication methods is preferred.

– All communication must use robust, secure protocols.

– Additional device information, such as the status of SSH and VNC services on
the RPi, should also be included.

Non-functional Requirements

• Has to be a secure implementation such that no student’s private information can be
identified or stolen.

• Must be effective for students with no prior coding experience.

• Minimal steps to effectively operate.

• No complex command usage.

• Documentation must be readable, explicit, and understandable.

• Any central server system must be able to be easily moved to different server setups
without loss of functionality or existing data.

• Methods, research, and end product must be well documented.

– Added functionality must be well documented for future development or non-
standard use cases.

Automatic Raspberry Pi Network Configuration and Discovery Page 4 of 20

– End user documentation must be readable, explicit, and understandable for in-
structors to use in class. Documentation must be provided for student users and
for instructors.

– Methods used and concepts found along the way and any significant technical
challenges should be described.

• Shibboleth, a third-party multifactor-secured system used by Mines, provides authen-
tication.

• All traffic to and from the server must be encrypted with standard protocols, e.g. TLS/HTTPS.

• The central server is exposed to the network under a known domain and must be secure
such that doxxing and Mines access is impossible.

• The bare minimum requirements of what must be exposed for server function must be
documented.

• Exposure points must be secured.

Definition of Done

There must be a way for a RPi to automatically connect to a WiFi network (school or
home), password protected or not. The RPi must detect when the IP address and network
configuration changes, and must provide the student the IP address and connected network
name of the RPi, so a headless setup can be achieved. The client does not have specific tests,
but it must be robust in demonstrations under many conditions.

The deliverable for this project is a GitHub repository with all scripts, Docker server im-
ages, and their corresponding documentation, and instructions for setting up the Raspberry
Pi and server. The repository should also contain documentation about what functional-
ity is implemented, how it is implemented, and why it is implemented that way. Lastly,
documentation for usage and potential further improvements.

System Architecture

There are two fundamental components to the design: the web server and the RPI. The
RPI can automatically connect once it has been registered by the user (both MAC address
and device ID). Once connected, it sends its IP and status information to the web server, as
illustrated in Figure 1.

The web server can be accessed by the students, secured behind MultiPass (indicated by the
IDP block in the same Figure). Students can then obtain network and status information
for their RPIs. If the user is an administrator (instructors), the RPIs for all students are
displayed. The server itself comprises a set of micro-services in Docker containers handled via
Docker Compose, a multi-container management system. The three container services that
make up the server are shown at the top of Figure 2: Apache, FastAPI, and PostgreSQL.
Apache acts as a reverse proxy, handles HTTPS encryption, and interfaces with Shibboleth

Automatic Raspberry Pi Network Configuration and Discovery Page 5 of 20

RPi

IP change

Status change

User

Want IP

Changed status

authentication
IDP

RPi info

device registration

MAC Registration

RPi config

Web Server

Figure 1: Overall system architectureab

aRPI config is Figure 5
bWeb Server is Figure 2

(the system responsible for Mines MultiPass) providing authentication. Apache routes all
traffic after login to FastAPI. FastAPI provides the logic of the server, handling RPI status
updates and generating user pages. The data used by FastAPI is stored in a PostgreSQL
relational database.

The RPI side has two components: IP/status discovery and automatic configuration. IP/status
discovery comprises a set of triggers that fire on specific system events to send IP/status
updates to the server and the actual logic of sending the updates. Automatic configuration
consists chiefly in providing the MAC address to the student via the boot drive and providing
utilities for adding additional WiFi networks.

Technical Design

Web Server

The web server has one main role: it must receive information from the RPIs and provide that
information to authenticated users. The server performs other smaller tasks that are integral
to this main role, such as generating device ID information to enable RPI registration.

The web server comprises a set of docker images connected together with Docker compose.
When the server is started, each container is placed in an isolated virtual network, able

Automatic Raspberry Pi Network Configuration and Discovery Page 6 of 20

Docker

Apache

HTTP received

Reverse Proxy

Reply 403

Reply with response

FastAPI

Compare device ids

ids match

yes

hardware change

Add warnings

Generate IP page

Serve help page

PostgreSQL

Get device id

Write status info

Update warnings

/api/

no

home

no

help

yes

Figure 2: Server architecture swimlane flowcharta

aGenerate IP page is Figure 6

Automatic Raspberry Pi Network Configuration and Discovery Page 7 of 20

to communicate only with the services it must interact with directly. The networks are
configured to allow the following: database and API can communicate, API and proxy can
communicate, and the proxy can communicate with the Mines network. To be clear, the
proxy is the only service that can communicate directly with the Mines network. Each of
the following subsections describe a single docker image.

Database

The PostgreSQL (PSQL) database stores all persistent data for the web server. The database
derivesfrom the ERD in Figure 3. There are three tables: user, raspi, and raspi warning.
The first table (’user’) stores data about each user registered with the system. This table
consists of three fields: username, last login, is admin. The last login field identifies users
for removal if they have not logged in for a year. This removal is performed with a trigger
in PSQL on additions to the user table. The second table (’raspi’) stores information about
all RPIs that have been added to the server. The second table stores IP address, device ID,
hardware ID, service status, and power status information, as well as fields for last contact
and creation time. The table also has a generated column that identifies a device as having
been registered. Registration for a RPI is defined as the RPI having contacted the server
with an existing device ID. The device IDs are generated whenever a new row is inserted
into the table; the creation time is generated in the same way. The ’last contact’ is updated
automatically whenever values in the row are updated. The rest of the fields are specified by
the RPI on status update. The last table (’raspi warning’) stores a list of warnings mapped
to RPIs along with the time the warning was added. Only one warning of a particular type
may exist in the table for a given RPI. The database is administered using scripts requiring
administrative access to the server itself.

API Logic

FastAPI provides the essential logic for interfacing with the database and generating the
pages presented to the user. FastAPI is a lightweight Python framework. It interfaces with
the database using Pyscopg2. There are four primary endpoints specified in FastAPI: home,
registration page, help, and API. The three user facing pages are implemented as requiring
GET requests to obtain. The homepage is the standard student web page, and an example is
shown in Figure 4. This is the web page a students sees once they have at least one registered
RPI. As shown on the example page, there may be a warning indicating that the device ID
has been associated with a different device. If the student did not swap their SD card to a
new device, the student should contact the instructor, as this may be an indication that the
ID was obtained by some malicious actor, and the IP may be pointing to a malicious server.
The warning is automatically cleared after the first time it is viewed. Instructors see all the
students’ RPIs in addition to their own.

Proxy

Apache handles TLS encryption and serves as a proxy, redirecting traffic to the API logic. It
also integrates Shibboleth for providing Mines MultiPass authentication. When a user makes
a request to the server, Shibboleth redirects the user to Mines’ Identity Provider (IDP) server

Automatic Raspberry Pi Network Configuration and Discovery Page 8 of 20

Raspberry Pi

User

owns

N

1

username

last login at

IP address

device id status

ssh

vnc

power

updated at

hardware id

warning

is admin

SSID

Figure 3: Database Entity Relationship Diagram

Automatic Raspberry Pi Network Configuration and Discovery Page 9 of 20

Figure 4: Example home page for a student user.

to authenticate. The IDP server then provides a session token and user information to the
Shibboleth service provider (this proxy is the service provider). While Mines’ IDP server can
provide many different types of information, it is configured to only provide the student’s
username to the service provider. Shibboleth then takes this username and places it in an
HTTP header before routing the request to the API logic.

Raspberry Pi

The RPI needs to be able to accomplish two primary tasks: automatic configuration and
connection to the network, and automatically sending information to the server for a user
to view.

The RPI configuration is split up into three parts, as shown in Figure 5. These parts must
be completed in the presented order, but each sub-process can be repeated independently.
Part 1 describes the process of registering the RPI’s MAC address in order to connect to
CSMwireless. This is done by utilizing the boot directory of the RPI so users can access
the MAC address from a Windows machine. Part 2 outlines the steps to register a RPI
on the web server. Again, the boot directory of the RPI is used in order to keep the RPI
setup headless. The last section of Figure 5 is optional and allows users to add additional
networks to the RPI. Both methods allow for the RPI to be in a headless configuration. One
method uses a text file in the boot directory to deliver the network’s credentials, which are
automatically read, added, and configured upon RPI reboot. The second method must be
completed while connected to the RPI through SSH. SSH allows the user to run a script that
asks for the network’s credentials.

Automatic Raspberry Pi Network Configuration and Discovery Page 10 of 20

RPi without
registered MAC address

Get MAC address from
/boot/CSM_mac.txt

no

yes

/boot/CSM_mac.txt
exists

Boot RPi

Register MAC
address on

netreg.mines.edu

RPi not yet registered to
IP discovery

Get new device
id from webserver

Place in /boot/CSM_device_id.txt

Boot RPi

Send status
via IP discovery

RPi is registered

User wants to
SSH at home

SSH on
CSMwireless

Run
add_network

script

RPi configures
network

RPi capable of
connecting to user's

home network

Part 1 Part 2 Part 3
(optional)

Insert SD with configured
file

`CSM_new_network`

Figure 5: RPI config flowcharta

aSend status via IP discovery is Figure 6

Automatic Raspberry Pi Network Configuration and Discovery Page 11 of 20

System

Timer...

DHCP Client

SSH

VNC

Service Event

Generate Request

Device ID

Hardware ID

SSH StatusIP

VNC StatusSSID

Yes

No

Request...

Send HTTP POST

Network Startup

Elapsed

IP/Network Change

Status Change

Status Change

Yes
System Request

Previous...

Drop non-ID fields

Figure 6: IP Discovery

Once configuration is complete, the RPI can send information to the server. As can be seen
on the left in Figure 6, there are a set of services that can trigger IP discovery requests
on certain events. The request gathers information about the network configuration (IP
address(es), SSID), service/system status (SSH/VNC/system up/down), and ID information
(hardware and device IDs). If the request is a startup event, the entire request is always
sent. Otherwise, it is compared to the previous request. If the request is the same as the
previous request, only the ID fields and event type are sent to tell the server that the RPI
is still available. If the request is different from the previous request, all fields are sent.

Figure 7 describes the user interaction with the web server while retrieving their RPI’s
IP address. Upon accessing the homepage, the user is redirected to Mines’ IDP server to
obtain a session token for authentication. After authenticating, the user is redirected to the
homepage, which displays their RPIs with any applicable warnings.

Quality Assurance

The following procedures were used to ensure the quality of the project, both in terms of
readability and validity.

Code review for each pull request

• All code reviewed for quality prior to merging into the main branch

Automatic Raspberry Pi Network Configuration and Discovery Page 12 of 20

yes

no IDP authorized?

yes

no

has new
hardware
warning?

Clear list of applicable
warnings

nois student?

yes

Build webpage content

Request to get homepage

Reply with generated
homepage

Get applicable
warnings

Block request

Get applicable RPis

Figure 7: IP Discovery Process Flowchart

Automatic Raspberry Pi Network Configuration and Discovery Page 13 of 20

• Done by all members of Team John

• All code modifications are done via pull requests

Automated testing via RPI Docker image

• Allows for running external automated tests.

• Runs internal automated tests.

• Customized attributes like IP address.

Refactoring

• Standardized code and reviewed again by team members

• Modularization

• Ensures readability and

High coding standards with pre-commit standards tests

• Doc strings used for increased readability

• Code must pass coding standard tests on each commit and push. This is verified using
the following technologies:

– Black
∗ Automatically formats code

– isort
∗ Automatically sorts Python imports

– Flake8
∗ Linter that checks for Python code complexity and code style; specifically,

issues that can’t be automatically fixed

– Pydocstyle
∗ Performs some rudimentary checks on Python docstrings, such as: existence

and verb mood

• Future: Usability testing

• Focus group testing for usability on the end user side.

– Provides more insight on ease of use but also potential bugs.

Results

The goal of this project was to create a method for efficiently creating a headless setup of a
RPI. The RPI needs to connect to the university network, CSMwireless, automatically. The
student also needs a way to know their RPI’s IP address for SSH or VNC. The proposed
solution correctly configures the RPI and provides a server system, allowing headless RPI
configuration and network/status information discovery, meeting the client’s specifications.

Automatic Raspberry Pi Network Configuration and Discovery Page 14 of 20

Much of the basic functionality like locally retrieving the MAC address, hardware serial
number, and IP address were able to be tested via the allotted RPIs. However, testing on a
large scale proves to be difficult, as some information, like MAC addresses, do not typically
change. In response, a Docker container running Raspberry Pi OS is used for more robust
testing, as device information can be customized.

Lessons Learned

• Windows and Docker do not interact well with each other. While this may not
be widespread, calling docker-compose up on Windows would randomly fail with
strange errors while the exact same command and configuration worked fine on Linux.

• PostgreSQL is a very powerful database with a lot of convenient features. For example,
it simplified generating a device ID by providing a built-in way of generating it for a
new RPI entry.

It can also automatically update a last update time column when a row is updated, so
that it does not have to be manually updated. It can also provide generated columns
that automatically change on conditions; this allows the table to automatically identify
RPI’s that have been registered by checking whether a specific field is blank, without
requiring the backend to set a registered flag.

• Refactoring is truly valuable. Refactoring has allowed us to delete whole scripts, sim-
plify install processes, and condense and simplify documentation. As this software may
be handed off to another team, the better modularity, extensibility, and modifiability
refactoring improves the quality of the product significantly.

Non-Implemented Ideas

• It would have been preferable to automatically elevate HTTP to HTTPS for non-API
endpoints but not API endpoints. However, the server system used (Apache) did not
have any apparent way to do this. HTTP was disabled instead.

• It would be more convenient for the students if the MAC address for the RPI could be
registered automatically; however, this turns out to be infeasible. MAC registration
requires student credentials and information and is thus impossible to do automatically
without storing credentials in plaintext.

• Warnings cannot be manually dismissed. There is a concern that if warnings are
dismissed automatically upon viewing, if a network failure occurs or the student’s
home page is closed, they may miss the warning.

Future Ideas

• Enable the IP discovery system to account for multiple IP addresses per interface on
the RPI. This would allow more complex network setups to work with the system if
the user wanted to do this.

Automatic Raspberry Pi Network Configuration and Discovery Page 15 of 20

• Provide a way for students to customize aliases for their RPIs, allowing them to choose
a more memorable name to identify the particular RPI they are using.

• Add service hooks to RPI IP discovery, allowing the user to send arbitrary service
information to the service. This may be useful if the user wants to use some special
network service to access the RPI and would like to see the service’s status without
logging into it.

• The current solution requires students to use another computer to view text files on
the RPI’s SD card which could be streamlined.

• Encrypt the device ID at rest. This would likely require a runtime-specific key that
the server does not know and thus some form of zero-knowledge proof system.

Automatic Raspberry Pi Network Configuration and Discovery Page 16 of 20

Appendix

Installation instructions

Build image

1. cd /path/to/autopi/

2. chmod +x install

3. ./install

4. Remove autopi project: cd ..; rm -rf autopi

Setting up the web server

The server is managed by Docker Compose. While most of the server setup is internal to
the container system and does not require setup on the host side, there are some important
exceptions.

Database password

Setting the database password requires two steps: creating the password file and updating
docker-compose.yaml to the password file.

1. Add a strong unique password to a password file. This is, by default, .db_password.secret
. For a random password, the following command can be run:

cat /dev/urandom | head --bytes 64 | sha256sum - | cut -d ' ' -f 1 |

tee .db_password.secret↪→

2. If you used a password file other than .db_password.secret , that must be changed
in docker-compose.yaml . If the respository is managed by Git, add the file to
.gitignore (.gitignore already contains *.secret):

yaml

secrets:

db_password:

file: your_file_here

An alternative strategy is to use Docker Swarm instead of Docker Compose, so that secrets
are stored in a vault, can be rotated, etc., but this is not how this project was developed.

Database backups

Database backups are managed by the prodrigestivill/postgres-backup-local image.

Unlike other Docker data, the database backups are not kept in a named Docker volume, but
instead in a bind mount. This prevents accidental backup deletion during Docker volume

Automatic Raspberry Pi Network Configuration and Discovery Page 17 of 20

management (e.g. docker-compose down --volume) and can simplify remote backups if
necessary.

The bind must be configured:

1. Create the directory. By default, docker-compose.yaml assumes /var/opt/pgbackups
is used:

sudo mkdir -p /var/opt/pgbackups && sudo chown -R 999:999 /var/opt/pgbackups

2. If you used a directory other than /var/opt/pgbackups, update docker-compose.yaml
:

yaml

db_backup:

volumes:

- your_dir_here:/backups

Backup timings are set in the db_backup.env file. Currently, standard defaults are used:

• backups are made daily

• daily backups are kept 7 days

• weekly backups are kept 4 weeks

• monthly backups are kept 6 months

TLS certificates

There are two sets of certificates needed. First, the actual autopi.mines.edu certificates
are expected to be in a folder called tls, this folder should be in the same directory as
docker-compose.yaml, that is the project root. There should be three files here:

tls/

|

| - autopi_chain.pem

| - autopi_server.cer

| - autopi_server.key

The chain file consists of the intermediate certificates. The cer file is a pem certificate with
the actual autopi.mines.edu certificate. The key is the private key. These are not stored
in the repository and must be supplied.

Additionally, Shibboleth requires a key and certificate as well. These are very specific files,
but they are not provided in the repo. When obtained, they should be placed in the folder

Automatic Raspberry Pi Network Configuration and Discovery Page 18 of 20

src/web/shib/ and should be called sp-cert.pem and sp-key.pem for the certificate and
key respectively. Without these, MultiPass cannot function; the image will also fail to build.

Firewall rules

The only port that must be exposed is port :443. Only the proxy service exposes external
ports, and it only accepts https traffic; all other traffic are in segmented internally managed
networks that cannot be accessed from outside the Docker service stack.

Migrating the web server

Migration is simple, as the Docker containers are ephemeral. Migrating each volume ensures
the server state remains constant.

For each named volume (which can be found under the global volumes directive in docker-compose.yaml),

follow the official Docker documentation on backing up, migrating, and restoring with named
volumes.

For the database backups, it is as simple as copying the contents of the backup directory
from the old host machine to the new host machine

Setup

There are two required setup steps. First, the RPI must have its MAC address registered
with the school so it can connect to the internet on CSMwireless. Second, the RPI must
be registered with the IP/Status discovery system. This registration can only occur once the
RPI is connected to the network (i.e. has performed network registration). Custom networks
can also be added to the RPI.

Device and MAC Registration

1. Insert the SD card into the RPI.

2. Plug in the RPI, lights will turn on.

3. Wait for 2 minutes.

4. Unplug the RPI.

5. Remove the SD card from RPI.

6. Insert SD card into your computer.

7. Open the SD card drive on your file explorer (named boot).

8. Open the file CSM_mac_address.txt .

9. Go to netreg.mines.edu while connected to CSMwireless .

10. Agree to the terms and conditions.

11. On the next page, enter the MAC address from the file in step 7.

Automatic Raspberry Pi Network Configuration and Discovery Page 19 of 20

12. Enter the rest of your information and click register.

13. The RPI’s MAC address is now registered.

14. The RPI will be able to access internet in up to 5 minutes, meanwhile, continue steps.

15. Reopen the SD card drive on your file explorer (named boot).

16. Open the file CSM_device_id.txt .

17. Go to https://autopi.mines.edu/ .

18. Login with your Mines MultiPass.

19. Click Register at the top of the page.

20. Copy the ID into the file opened in step 16.

21. Save and close the file.

22. Eject the SD card and plug it into the RPI.

23. Plug in the RPI, lights will turn on.

24. See Get IP/status information to confirm successful registration.

25. To add additional networks, see Home Network Registration procedure.

Home Network Registration

There are two methods for adding a Home network to the RPI. -

• If you can SSH into RPI:

1. Type CSM_add_home_network into a terminal window on the RPI.

2. Follow the prompts and enter network information.

3. Once completed, network settings will reconfigure.

• If you cannot SSH into the RPI:

1. Insert SD card into your computer.

2. Open the SD card drive on your file explorer (named boot).

3. Find file CSM_new_network.txt .

4. Read comments and fill out listed fields.

5. Eject SD card from your computer.

6. Insert SD card into RPI.

7. Turn on RPI, and network settings will reconfigure.

8. CSM_new_network.txt will be reset to blank parameters for adding additional
networks.

Automatic Raspberry Pi Network Configuration and Discovery Page 20 of 20

Get IP/status information

In order to see the IP and status information for the RPI, do the following:

1. Go to https://autopi.mines.edu/ .

2. Login with your Mines MultiPass.

3. Your registered RPI will be displayed with all corresponding IP, network, and status
information. If you have multiple RPI’s, they will all be displayed.

4. Refresh page for status changes.

5. Note that RPIs highlighted in yellow are off or cannot be contacted for some other
reason. If this occurs, try restarting the RPI.

Development instructions

Run:

• pip3 install -r requirements.txt

• pip3 install -r requirements-dev.txt

• pre-commit install

When pre-commit fails (and a hook states that files have changed), run git add -{}-update

to update the git staging area.

Glossary

Headless Not requiring a mouse, keyboard, or monitor
to be physically connected..

RPI Raspberry Pi; a miniature Linux computer..

SSH Secure SHell; provides secure access to a de-
vice over a network.

VNC Provides remote access to a desktop interface
over a network.

	Introduction
	The Problem: Automatic Network Connection
	The Problem: IP Address Discovery

	Requirements
	Functional Requirements
	Non-functional Requirements
	Definition of Done

	System Architecture
	Technical Design
	Web Server
	Database
	API Logic
	Proxy

	Raspberry Pi

	Quality Assurance
	Results
	Lessons Learned
	Non-Implemented Ideas

	Future Ideas
	Appendix
	Installation instructions
	Build image
	Database password
	Database backups
	TLS certificates
	Firewall rules
	Migrating the web server

	Setup
	Device and MAC Registration
	Home Network Registration
	Get IP/status information

	Development instructions

	Glossary

