
Cutts, Stech, Taylor - 1

GeoPointClouds Application Final Report

Clients: Dr. Zane Jobe and Nataly Chacón Buitrago
Advisor: Dr. Wendy Fisher

Team Name and Members: CSM Jobe 1 - Samuel Stech, Ethan Taylor, Mitchell Cutts
16th June 2021

Table of Contents

Introduction 2
Client Background 2
Product Vision 2

Requirements 3
Functional Requirements 3
Non-functional Requirements 3

System Architecture 4
Development issues: 4
Design Architecture and Graphics: 4

Technical Design 6
Data Management Design 6
Volume Selection Use Case 7

Quality Assurance 8
Code Quality & Metrics 8
Testing 8
User Acceptance Testing & Code Management 8

Results 9
Lessons Learned 10

Future Work 10

Appendix 11

Cutts, Stech, Taylor - 2

Introduction

Client Background
The Chevron Center of Research Excellence is a research group in the Colorado School

of Mines’ geology department that focuses on identifying stratigraphic architecture, scaling
relationships for depositional systems, and investigating source-to-sink sediment dispersal. The
applications of their research generally apply to the oil and gas industry, but many of the
solutions they create can also be used in exploratory geology. Currently, the group is working on
integrating machine learning solutions as well as developing software solutions to better
supplement and streamline their research workflow.

Product Vision
The client had requested an application to manage and visualize point cloud data

generated from drone photos of rock outcroppings. This product has a user interface that allows
users to label the data through the capability to select polygons and volumes on point cloud and
add a corresponding name, color, and description to the labeled data. Ultimately, the project was
wrapped as an executable that is downloadable from the github repository provided by the client.

Our client placed emphasis on ease of use for geologists without programming
experience as well as the creation of abundant guides and documentation for scalability of this
open-source software. To accommodate this request, our team has elected to provide two forms
of documentation: one for users of the program and one for developers to continue building the
documentation.

To put the functionality of this product into context, an application for managing and
labelling point cloud data would be useful for the client because they can perform geological
investigations on the outcroppings while not in the field by being able to interpret 3D recreations
of the data. A potential extension to the product is the functionality to merge labels of the same
characteristics. The user would then be able to see the labels in the point cloud (visualization)
and generate an output file with information of each label, such as positional, color, normal, and
classification information for future use.

In conclusion, this application will be used for the client to trace geometries and polygons
on rock outcropping point cloud images to better quantify the thickness and variability of how
geological features are stacked in the subsurface of the Earth.

Cutts, Stech, Taylor - 3

Requirements

Functional Requirements
Create a functional python package to (in prioritized order):

● Import and export point cloud data supporting several formats:
○ .txt and .csv with formats: [x, y, z, normal_x, normal_y, normal_z], [x, y, z, r, g,

b], [x, y, z, intensity, r, g, b]
○ add handling for further formats including .pcd and .ply.
○ photos: .png, .jpg

● Select polygons of the point cloud and add a name and/or description in string format.
○ This implies building a graphical user interface that has interactive capabilities.
○ This implies developing or using a graphics display program that will visualize

the point cloud.
● Draw lines between points on the point cloud to demonstrate geological changes over

time.
○ This implies being able to select points on the point cloud in the graphics display

program.
● Manage data classifications as well as their corresponding names, descriptions, and

colors for display on the labelled point cloud.
● Wrap all functionality into a file executable on MacOS and Windows.

Non-functional Requirements
● Two methods of useful documentation: our program must have documentation available

in Sphinx format for developer documentation as well as a github readme for user help.
● Our client requested that we repurpose code from other open source libraries to save

time, as well as improve upon current code created by the client to make it more efficient
and expandable.

● Perform research on related industry solutions to this problem for different use cases and
new solutions. Several paid versions of this product already exist in some capacity, so our
client has suggested we do research on them to understand interface examples.

● Utilize AGILE and Scrum best practices to allow for future development and working
software.

● Emphasize ease-of-use and interpretability for users without programming experience.
● Develop code incrementally and utilize the client-provided github repository for

development.

Cutts, Stech, Taylor - 4

System Architecture

Development issues:
Over the course of this project, our team was presented with several different solutions that we could have
implemented for this project:

○ Utilizing Open3D and PPTK brought concern that we would be completely limited by
what the libraries had to offer. While we accomplished the functionality our client
requested, we were wary of these libraries at first.

○ OpenGL would provide a high level of flexibility for whatever solution we ended up
developing. The downside is that we would have to implement a good amount of the
functionality ourselves.

○ Contributing to a current open source library is a topic that none of us had experience in;
it appears that many of the libraries have extremely complex architecture and
development chains such that there is the possibility our developments would never get
accepted for future use by our client.

We have listed this as a technical design issue as this decision greatly affected the outcome of the project.
After evaluating the pros and cons of each method, we put together small demonstrations for the OpenGL
and Open3D implementations. After conferring with our client, it was decided, despite our initial
impressions, that we would end up designing an application utilizing Open3D instead of OpenGL.

Design Architecture and Graphics:
The architecture for the GeoPointClouds application system is outlined in figure 1 on the next page. The
components of the system are as follows:

File I/O: The import dialog and export menu handle all user I/O interactions and all requested I/O
functionality through the use of flexible import and export scripts our team has written. These scripts
handle all file types mentioned in the requirements.

Main Menu: The main menu has five options to choose from:
● Edit/View Labels: Allows the user to choose which rock type will be selected when using

Select Volume, provides the option to create new rock types and edit their name, color and
description.

● Select Volume: Allows the user to select bounding points on the point cloud to label all
points within the boundary as a certain rock type classification.

● Draw Line: Allows the user to select points and draw lines between these points on the
point cloud.

● Export/Render: Opens file export menu for user to select export options. Returns to the
main menu after completion or cancellation of export.

● View Point Cloud: Displays the point cloud for user reference.

Help Page: Links to our Github readme and user help guide, which can be referenced here.

https://github.com/nchaconbgeo/pointcloudpackage#readme

Cutts, Stech, Taylor - 5

Figure 1 -GeoPointClouds Graphical User Interface and System Architecture

Cutts, Stech, Taylor - 6

Technical Design

Data Management Design
In a data-heavy, interactive application, optimized data organization is vital to both performance and
functionality. For the majority of our technical design, our team focused on designing data architecture
that would allow the user to interact with the point cloud data in a natural way while retaining important
information that will be needed for export. The two main classes for data management are shown below
in the UML diagrams for PointData and Classification.

Figure 2 -UML diagram for Classification and PointData

In this application, all relevant data for displaying the point cloud will be stored in the application’s
PointData class. Some descriptions of the members are provided below.

fileName: the name of the file imported by the user.

pointCloud: an open3D point cloud data object, which is used to display the working point cloud in
open3D. This object has members “points”, “colors”, and “normals”, and the member manipulated by the
user in this case is “colors”.

hashMap: for efficient volume selection, PointData holds a hashMap that can lookup a given point’s
index based on the coordinate values of that point. This allows us to check if a point exists within a
user-selected volume in the cloud.

labels: a list of the associated Classification a point has. This allows us to color points with different
labels and retain user-selected labelling information of the class as each point’s corresponding label
represents a rock type through being equivalent to the rock type’s index in classifications.

originalColors: because the user will manipulate the colors in the pointCloud, this member serves as a
way to recolor the point cloud back to its original state as well as export the original point cloud in post
processing.

classifications: a list to hold all classifications created by the user when labelling the point cloud. This is a
list of type Classification() which is used to define a type of rock, give it a description, and assign it a

Cutts, Stech, Taylor - 7

color. This information will allow us to color the different classes on the cloud, maintain information
about each class, and process different labels.

selectedIndex: the index selected by the user in that they are performing volume select on.

The members of the PointData class that are manipulated by the user of the application include fileName,
pointCloud, classifications, and selected index. The others are used for data retention, logical
organization, and export capabilities.

Volume Selection Use Case
Because the main function of our application is labeling of rock types through volume selection, a good
example that represents our intentionality in data organization design comes through our volume selection
process. When the user selects the points to form their volume in the point cloud, they will be prompted to
select or create a Classification() in which to label the volume and this chosen classification and its index
in the PointData.classifications list will now correspond to selectedIndex. From here, an open3D window
will launch and the user will be able to select points on the cloud so that our application can form a
volume based on the indices of the points chosen. This volume is based off of a bounding polygon
containing a defined orthogonal axis, which for our case is generally ‘Z’. After defining the volume to
crop the point cloud on, the main point cloud PointData.pointCloud will be subsetted into a new point
cloud that contains all points within the volume. From here, our program will now need to perform some
processing tasks to manage this information.

Because our program maintains a single point cloud for display information (PointData.pointCloud), we
must find which points in the cropped point cloud croppedCloud correspond to indices in the main point
cloud PointData.pointCloud. To do this we utilize the HashMap, which performs lookups on the
croppedCloud’s point data and returns the point’s corresponding index in the PointData.pointCloud. Now
that we have the indices of the points within the volume, we can change the points colors to the color of
the classification, as well as the points labels to the index of the classification. This process is visualized
below.

Cutts, Stech, Taylor - 8

Quality Assurance

Code Quality & Metrics
Code quality is a team emphasis of ours as our application is very complex despite having a
small codebase. To maintain quality, we intend to perform regular code reviews in conjunction
with paired programming implementations to encourage clean code that is functionally and
stylistically correct. Other methods that we used to encourage quality code are data format
verification, unit testing, user acceptance testing, and user interface testing throughout our
progress in the AGILE process. While the client has not stressed specific code style and syntax
guidelines, we have defined our best practices in a style guidelines document in our repository.
Moreover, due to utilizing the Sphinx library for documentation, we have also defined our
comment and doc string requirements to be able to maintain documentation in the same style
document. Ultimately, our style guidelines provide information on defining constants, classes,
variables, commentation, function descriptions, enum types, and other naming.

Testing
Integration Testing:

● Defining GUI selection paths to test our code, Quality Testing on MacOS, Windows 10

Manual testing:
Given that we are developing an application that is mostly GUI based, a good portion of the

testing performed was in the form of us going through the motions of handling the application.
We hoped to uncover most of the bugs that we can through manual testing ourselves, which left
the client room to give us feedback on ease of use and overall structure.

User Acceptance Testing & Code Management
Our product will be used solely by our client initially; however, our product must also be easily
scalable as our client has stressed their intention to build on it further in the open source world.
We were in contact weekly with our client to discuss our progress and envisioned functionality,
and both parties have been realistic in defining our expectations and necessary modifications to
the product. Since our user acceptance testing has been carried out incrementally, we have gotten
a mutual understanding with our user about what our project’s limitations, capabilities, and
expected functionality are.

In terms of code management, our client has supplied us with a github repository
(https://github.com/nchaconbgeo/pointcloudpackage) in which to store our code and changes
over time. We regularly update this repository with our version control changes, and this helps
communicate our progress to our client.

https://github.com/nchaconbgeo/pointcloudpackage

Cutts, Stech, Taylor - 9

Results
Our project has been tested and is working effectively in MacOS 11.0.1 and Windows 10. We
have begun tests in Ubuntu 20.10, but are still testing at the point of submission. Currently, all
non-functional requirements have been fulfilled for the project, with two types of documentation
available for both technical and non-technical users. Our program has also been tested on point
cloud files of up to two gigabytes and handles all required functionality correctly with the
exception of point cloud text labeling in Open3D. Two small remaining issues about the project
is that the volume selection functionality could be improved upon to be more user friendly, and
the Open3D window could be developed to be non-blocking using threads alongside the
graphical user interface.

Usability testing has been conducted throughout the development of the product. All
functionality was not quite in place at the time of our last meeting with the client, but the client
overall seemed pleased with what we had. We are meeting up with the client during the final
week of this course to deliver the final product and conduct the last usability test with the client.
With that said, in the future, this product can be developed further by incorporating labelling
libraries such as LabelMe for image labelling as well as adding statistical methods to the back
end to better classify and sample point cloud data. Another future development could be
developing methods to selectively remove points from the dataset to make the program faster
(known as downsampling); this would require upsampling (retrieval of these points) in
post-processing but would provide more performance without compromising interpretation
capabilities. To aid these additions, we have focused on building the product with documentation
and incremental development as a priority such that the client can eventually build the product in
its complete vision.

Cutts, Stech, Taylor - 10

Lessons Learned

● For projects in areas which you have limited expertise with, plan to spend about half of
your time reading, researching and diagramming.

● When developing software on a time crunch, see if you can leverage other products to
achieve your end goal in time. For example, our product would have consisted of
developing a python graphics library with all required functionality from scratch if we
did not find open3D after a week of research.

● Code management in python can get messy, especially when developing in a single
repository. Constant clean up efforts and repository reviews are needed to maintain clean
and working code.

● Before accepting a large project, be sure to clarify with your clients what exactly the
project will entail. We all joined this project with differing ideas of what the project
would look like; next time we would probably reach out to the client to get more
information before committing to it.

● When using a library in python for development purposes, you will generally be limited
to the functionality of that library and will lose flexibility in development and scalability.
In our case, open3D did not provide for a great interface for volume selection and limited
our ability to manipulate graphics in real time due to its blocking functions and polygon
selection.

● Careful documentation and code metrics will save you from a breakdown later in your
project. Our team was very careful with both of these subjects and it has saved us so
much time on the back end.

Future Work
Some recommendations for future work on the product are defined below:

● Integration of machine learning methods for label generation and feature extraction
would be a great addition to this project as the user would have the added capability to
label and interpret data using statistical information rather than just visual volume
selection.

● Improving the volume selection methods would allow for a more precise experience as
the user. While the volume selection methods used in this application work, some added
suggestions to improve the current methodology include utilizing nearest neighbor
information, applying projection-based volume selection using camera information, and
generating convex hulls or meshes to test point presence in a selected volume.

● Integration and improvement of client-written subsampling methods for point cloud data.
While this is out of the scope of an application, developers could implement the
subsampling methods provided by the client while leveraging our data organization to
allow for scalable and efficient code for statistical analysis.

● Added functionality for outlier detection and removal in labelled dataset as well as color
transformations on the labelled dataset.

● Added functionality for Jupyter Notebooks integration.
● Utilize threading to allow open3D to be non-blocking to the GUI.
● Add downsampling and post-rendering functionality to accommodate larger file sizes.

Cutts, Stech, Taylor - 11

Appendix
To read more about this product or to download the GeoPointClouds application for use on
MacOS 11.0.1 or Windows 10, please visit https://github.com/nchaconbgeo/pointcloudpackage.
We encourage other programmers to contribute to this project as it is open-sourced and well
documented.

https://github.com/nchaconbgeo/pointcloudpackage

