COLORADO MINES

EARTH ¢ ENERGY ¢ ENVIRONMENT

ADVANCED SOFTWARE ENGINEERING
CSCI370

CSM EDNS 2
Client: Dr. Chelsea Salinas, Mines EDNS

Authors

Tamara COUSINEAU John HENKE
Paris FLOYD Anna OTTERSTETTER

June 16, 2021

CS FIELD SESSION: THE STABLE MARRIAGE

Contents

1 Introduction

2 Requirements

2.1
2.2

Functional Requirements
Non-Functional Requirements

3 System Architecture

4 Technical Design

4.1
4.2
4.3

Ranking Algorithm
Matching Algorithm
CostFunction

5 Quality Assurance

6 Results
6.1 Overview.
6.2 Software testing summary, including accuracy and performance
6.3 Plans for usability tests
6.4 Missing features and possible future extensions
6.5 Lessonslearned

7 Future Work

Bibliography

N G1 G g

10

12
12
12
13
13
14

15

16

1 Introduction

Each semester, the Colorado School of Mines EDNS Department has the task of match-
ing senior design students of varying majors with projects. Each project requests a certain
number of students from each major it desires. Furthermore, each student submits a list
of n ranked projects, from most to least preferred. The department ideally assigns stu-
dents with a highly ranked project on their preference list. Currently, the group process
is performed manually. While it produces effective results, it is an extremely arduous and
time-consuming process.

This project automates the capstone teaming task, as described above, and is geared
toward maximizing the happiness of students and fullness of projects. However, due to
the fact that student happiness is a priority, the requested number of students in a project
is a slightly flexible requirement to ensure that students get placed in a project on their
list. This program, therefore, aims to match all students fairly and maintain project ma-
jor preferences where possible. The program also flags unpopular projects in order that
these projects can be dropped for the current semester and potentially reevaluated for as-
signment in future semesters. Finally, it creates output files, including multiple CSVs and
Excel files listing the students, the project they were matched with, and the student’s rank-
ing of their assigned project. Successful completion of this program will save precious time
for the client that will be better spent on more academic and human-oriented tasks.

2 Requirements

2.1 Functional Requirements

The overall functional requirements for the capstone teaming project include the following;:

* An automated software product for capstone teaming that efficiently provides an
optimal solution (of which there are many).

¢ Compatible with different input file formats. This is solved with YAML files.

* A “cost” function for a given “state.”

— A state is an assignment of students to teams.

— The cost function will calculate the overall “cost” of the given state. The cost is
what we are trying to minimize.

¢ Fairness - want to make sure that students are not given special treatment by the
algorithm based on characteristics like their major or the date that they answered the
survey.

¢ Output a formatted CSV/excel file of the client’s specifications.
¢ Handles special cases where students must be on a project.

¢ Identifies unwanted projects

2.2 Non-Functional Requirements
® Program must take in a CSV file created from an online survey.

* Program’s output file must be readable and contain what choice number the stu-
dents’ assigned project was for all of them.

¢ Similarly, the input file must ask for reasonable information that both students and
project heads can access easily.

¢ Program must be adaptable to changing surveys or potentially inconsistent input.

* Program must be clear and easy to understand for later improvements and/or changes.
* Program must be easy to run and install, and will be made using Python.

¢ Program must aim to optimize happiness of both students and clients.

¢ The grouping process must be done fairly.

¢ Documentation must be sufficient such that low-code literacy clients can run the code
and not have issues.

3 System Architecture

Architecture diagram 1
By Anna Otterstetter, John Run the
Henke, Paris Floyd, Tamara program)

Cousineau

Read data from Verify CWID Remove/flag sP':zzeerS\?:fr:ftIg Run the matching

: i notioe ; :
configuration files ((R4%:10) unpopular projects specific projects algorithm

Reached
: PEEEEEEV/VNN——— minimum cost?
csv file

Output to

Fig. 1: Diagram demonstrating the flow of the program.
Figure 1: Architecture Diagram I

Displayed in Figure 1 is a visual overview of how the program executes from start
to finish. First, we read in the student and project data from given .csv files. It utilizes
configuration files to find the location of specific information within the data files. Next,
we verify that each student has entered their campus-wide ID properly. This is important
in ensuring there is no confusion between students. Following this, we use the ranking
algorithm to flag the unwanted/unpopular projects, and then we allocate the students
that are required to be placed onto a certain project. The matching algorithm stage, and
the most time-consuming part of the program, consists of assigning students to projects.
The algorithm runs repeatedly, and uses the cost function to determine which of the many
possible assignments has the lowest cost. This final, most ideal assignment, is then output
to an excel file.

Architecture diagram 2

By Anna Otterstetter, John
Henke, Paris Floyd, Tamara
Cousineau
1
©: " @
3 Civil
L
2 @
> @
Students Projects

Fig. 2: Stable marriage problem. The number on each line representing the ranking of each student. On the right hand
side, the labels on each line represent the majors requested for each project. Not every number
are shown on the figure, for simplicity purposes.

Figure 2: Architecture Diagram II

Figure 2 is a bipartite graph illustrating the stable marriage algorithm. The graph con-
sists of two columns: one representing the students, and the other one representing all
the projects. The lines originating from the students and ending at projects represent the
projects that the students wish to be assigned to. The number on the line is the ranking
entered by each student. For example, student ‘a” would like to be part of “p1” as its num-
ber one choice, ‘p2’ is the second choice and ‘p3’ the third choice. From the view of the
projects, each project has a certain number of students it can accept and also requests that
these students be of certain majors. For example, Figure 2 shows that ‘p1” needs one stu-
dent in mechanical engineering (ME) and one student in civil engineering (Civil). Since
Figure 2 is a simplified version of the problem, it does not show all the lines going from
‘p1’ to all the students with ‘"ME’ as a major. In reality, any mechanical engineering student
would be a candidate for the project (from the project’s perspective).

4 Technical Design

4.1 Ranking Algorithm

In order to determine which projects should be dropped due to their unpopularity, a
ranking algorithm was designed to determine a project’s popularity.

1 (L) <num majers - (num people favorited),))
i

(num diff majors needed) ;)(n B].Z% (n X (num of major; needed);)

score —

Let n = the number of top choices received by the students. In order to ensure fairness
across all projects, several different weights were added to this formula. First, it was nec-
essary to ensure that projects requiring more people would not have an unfair advantage
over projects requiring fewer. For example if a project requested five mechanical engineers
and exactly five listed it as their top choice, that project should definitely not be dropped.
However, if each vote for a top choice for a project was simply one point, then a project
requiring 50 mechanical engineers and getting six top choice listings would score higher
than the perfect scenario described earlier. To avoid this project scoring higher, the project
points were divided by the number of people required. This ensures no unfair advantage
to the projects requiring more points.

Next, consider the situation where a project requires a handful of students from two
different majors but only one type of major heavily likes it. The ranking algorithm needs
to ensure that all majors are equally weighted. This is taken care of through the second
summation, where each each of the m many different majors required holds (1/m) much
of the total score weight.

Finally, the projects must be weighted differently according to how the students rated
them. For example a students top project should receive more points than their 8th project.
This was accounted for by multiplying the denominator by the variable n and multiplying
the numerator by a decreasing metric. For example, if a project requires five mechanical
engineers and a student lists their top eight projects, then if it is listed as the students top
choice, it will receive 8/40 more points to their score. Similarly, if it is second, then it will
receive 7/40 and so on until listed as eighth at 1/40.

After this scoring has taken place, the projects are then sorted in score order. Next,
the number of students the projects can hold are counted until a project is reached that
exceeds this limit. Every unpopular project following this last one is then flagged as a
potential dropped project.

4.2 Matching Algorithm

As stated previously, this problem is fundamentally a variant of the stable marriage
problem. The stable marriage problem is a general problem in which there are an equal
number of men and women that provide a ranked list of the partners they prefer. The
algorithm then creates an optimal matching between the men and women (i.e. creates
couples) [1].

An optimal solution within this problem is named “stable”. A matching of men and
women is considered stable if there is no couple that is not currently matched (i.e. they are

5

currently with other partners) that would leave their current partners to be with each other.
In other words, there is no rogue couple (y, x) such that y prefers x to his current partner
and x prefers y to her current partner. These two would abandon their current partners
to be with each other (make a side deal), which results in instability and undermines the
integrity of the algorithm.

Within the student-project assignment problem, the students are the “men” proposing
(i.e. applying) to the “women” (which are the projects). There are two main variations
from the base stable marriage problem with this context:

1. The women (projects) can be married to multiple men (students)

2. The projects are indifferent between students of the same major

The first variation is handled within the Hospitals-Residents problem (HRI), in which
medical students are assigned to hospitals for their residency. The graduating medical stu-
dents provide a ranked list of hospitals, and the hospitals provide a ranked list of students.
The matching algorithm uses these rankings to produce a student-optimal stable match-
ing of students to hospitals, where student-optimal implies that students receive the best
matching they could receive in any stable matching [1].

Abraham, Irving, and Manlove provide two algorithms for the more general student-
project allocation problem which can be directly applied to HRI and the student-project
allocation problem. The first algorithm is student-optimal, which implies that a student is
assigned to the best possible project that s/he could obtain in any stable matching. The
pseudocode that Abrahram, Irving, and Manlove provide was used as the skeleton of the
pseudocode written to solve the capstone teaming problem.

The main difference between HRI, stable marriage, and the capstone teaming problem
is indifference. Within capstone teaming, projects ask for a certain quantity of each desired
major; however, the projects are “indifferent” to students of the requested major. In other
words, all mechanical engineering students are equally desired for a project that requests
mechanical engineers. Indifference introduces three notions of stability, which Irving in-
troduced [2]. See Irving’s paper (cited) for an explanation of the three notions of stability.
Any solution to the capstone teaming problem can only be weakly stable because there
will always be indifference on the side of the project; there is no matching that does not
have indifference.

The pseudocode is very similar to the base matching algorithm. Disassociate all stu-
dents and projects. While there is an unassigned student with preferences it has not yet
applied to, that students applies and becomes associated with their highest currently rated
project. Two cases then arise: the project can be oversubscribed, full, both or neither. If
the project is oversubscribed, then the project determines its least determined student and
disassociates that student. Ties are broken arbitrarily.

assign_students(I) {
assign each student to be free
assign each project to be completely unsubscribed
while (some student s_i is free) and (s_i has a non-empty list of preferences) {
p_j = first project on s_i preference list

provisionally assign s_i to p_j

if (p_j is oversubscribed) {
s_r = least preferred student assigned to p_j
break provisional assignment between s_r and p_j

}
if (p_j is full) {
s_r = worst student assigned to p_j
for (each student s_j that contains p_j in their preferences) {
if (p_j prefers s_r to s_j) {
delete p_j from preferences of s_j

}

Figure 3: Stable Matching Pseudocode

This algorithm results in a student-optimal matching; however, there is some variabil-
ity due to the indifference, which is where the cost function comes into play.

4.3 Cost Function

When the stable marriage algorithm assigns students to projects, it attempts to do so in
the best way possible; that is, we try to minimize the cost of the assignment. We find that
a certain assignment has a cost associated with it whenever it is imperfect, which is to say,
just about every time the algorithm is run. Imperfections arise when:

1. Students do not get on their top ranked project
2. Projects have more or fewer students than they requested of each major
3. Students are left unassigned after the assignment algorithm has completed

The program attempts to approach perfection, while accepting that imperfections will
always exist. For example, not everybody can get their top ranked project. Therefore, it
needs a way to programmatically find the assignment which has the least cost. To accom-
plish this task, a cost function was designed to determine the cost of an assignment.

Because an assignment is represented by a set of projects which contain unique stu-
dents assigned to it, we can determine the maximum cost of an assignment by summing
the costs associated with each project. This is because each project might have more or
fewer students of each major requested than was hoped for or might contain students

which did not rank it highly. To calculate a project’s cost, a member function of the project
class is created.

In order to make the project’s cost function, all the factors of the cost must be accounted
for. With some attention to detail given, the considerations are as follows:

1. Students which ended up on a project that they ranked relatively highly should be
given a scaling cost based on the rank they gave. In the case that a student ended up
on a project that they ranked very low, the scaling factor should be increased.

2. If the project is over or under capacity by +/- one student, it should have a very
low cost associated with it. Any difference above/below that one student should be
weighted much more heavily and should scale based on the difference.

3. The difference between the number of students representing each of the requested
majors assigned to the project and the number requested by the project should also
represent a cost. Of course, if a student of a major that was not requested ends up on
the project, there should also be a cost.

These considerations are integrated into a function programmatically by implementing
the following pseudocode:

initialize total cost of assignment to O;
for (each project in the assignment) {
initialize the cost of this project to 0;
if (nobody is on the project) {
set this project cost to 0, continue;
}
if (project is over/undersubscribed by more than 1 student) {
project cost += difference in subscription;
}
for (each major in the project) {
project cost += difference between number of this major
requested and number enrolled;
}
for (each student assigned to the project) {
project cost += rank the student gave this project - 1;

}

add cost of the project to total cost of assignment

add cost associated with the number of unassigned students to the
total cost of the assignment;

Figure 4: Cost Function Pseudocode

Once each project in the assignment can return a cost, the cost function for the entire
assignment simply sums the costs of the projects and the unassigned students.

When the cost function is constructed, it allows the program to create a first assign-
ment (of students onto projects), calculate the cost, do another assignment, compare the

cost to the previous one and save the assignment with the lowest cost, and repeat until the
assignment with the minimum cost is found. Given the intended randomness of the al-
gorithm, finding this minimum cost takes a very long time with our hardware. Therefore,
assignments are made within a certain tolerance of time and the lowest cost is saved to be
output to data files.

5 Quality Assurance

In order to guarantee the product is of high quality throughout the production process,
the following must be true:

1. Every person on the team in creating the product must be working towards main-
taining its quality with every addition to the code.

2. The dedication to high quality software should be reaffirmed often, not just at the
very end of the production process

3. Quality is largely defined by the client; as such, the client must see the product as
high quality when it is showcased to them.

In order to guarantee the quality of the product to the client, it is best to be continuously
involved in the process of quality assurance. This way; it is guaranteed that both in shorter
intervals (such as at the end of a sprint) and in the end (when the product is finalized), we
can always have a high-quality piece of software ready to showcase to our client.

The practices and standards that have been maintained while designing and imple-
menting the software are listed here:

1. Pseudocode

¢ Before a solution to a problem is implemented or tests for that solution are de-
signed, we must understand what is going to be involved in the solution - the
required inputs, expected outputs, and general flow of a solution. In order to
design the solution according to these needs, pseudocode is first written. The
pseudocode is of sufficient detail, but still abstracts some of the more intricate
and yet undeveloped functionality of the solution. This contributes to quality
by enforcing the proper organization of the implementation before it is actually
implemented, as well as simplifying the communication of ideas and concepts
between the writer of the code and anyone looking to understand it after it’s
written.

2. Unit testing

¢ Unit tests will be developed before a solution is implemented in order to explic-
itly lay out the expected output and use cases of the solution. These tests should
be designed for every important function and should ideally examine the ex-
pected/average use cases as well as the edge cases that might be presented.
This contributes to quality by checking for errors and failures of implementa-
tion before the product is given to the client at any stage in development as well
as forcing the software that we deliver to be complete in its implementation at
any stage.

3. User acceptance testing

10

* As mentioned previously, the fact that the client largely defines ‘quality” for
the software that we develop for them means that we must continuously check
in with the client throughout the development process to make sure that the
software is meeting their expectations of quality and usability. While it is not
expected that the client should be able to comprehend the code that we have
written, we should be able to explain what we have done to solve their problems
and they should give us feedback on whether or not it matches what they had
in mind for the solution.

4. User interface testing (automated or otherwise)

¢ The client must be able to run the software conveniently. In order to check this,
we must make sure at some point before the software is delivered that the client
has had practice with and can successfully run our program on their devices.
This is a big part of the client’s definition of quality, and as such we must pay
careful attention to it.

5. Documentation for the user

¢ Simple yet thorough documentation will be provided to the user to help with
configuration and use of the program. This will include instructions on how
to set up and configure the environment necessary to run the program as well
as install the required libraries and software, such as the yaml library and the
Python 3 language.

6. Integration testing

¢ Besides just ensuring the usability of individual components of the product, we
must also ensure that the interactions between these components are working
as intended. Integration testing can help to guarantee that the entire program
works when all the moving pieces are put together. We plan to do this type
of testing once most of the components have themselves been fully tested and
implemented.

7. Code reviews

¢ Code should be written according to a high standard of organization, comment-
ing, and readability. This is ensured through the continuous practice of pair-
programming, which allows one programmer to actively examine the code of
another programmer as it’s being developed. This improves both the efficiency
of the coding process and the quality of the software, as two sets of eyes are
always better than one for catching errors in both functionality and readability.

11

6 Results

6.1 Overview

This project came with a large learning curve. The most learning occurred with regards
to teamwork, and specifically how to delegate the team’s resources effectively and cooper-
ate with busy and mostly inflexible schedules. In this regard, we have succeeded. Despite
the difficulties in scheduling, we are on the precipice of delivering a high-quality product
to our client that will meet almost all of her needs. Our final product is a well-tested, user-
friendly, highly-configurable piece of software that we will be proud to show to our client.
There is some room for improvement and polish, especially on the user interface side of
things, but we are overall happy with our work.

6.2 Software testing summary, including accuracy and performance

Execution of our project has been tested utilizing the PyCharm IDE. In order to en-
sure the accuracy of our code, unit tests were written prior to writing the algorithms. The
unit tests included edge cases and expected outcomes and were debugged until they ran
without error. After this, the algorithms were written up and debugged until all unit tests
passed. Once the unit tests passed, we could be certain that our algorithm achieved the
goal it was intended, as unit tests were thorough in their search for edge cases. Further-
more, for testing, we created and used several different roster and project files. This al-
lowed us to make sure that our project was not too specified on the edge cases present in
our original sample file. Due to all unit tests passing on all given files, we considered the
project well tested.

The accuracy of our program is satisfying, but we could work on improving the match-
ing algorithm so as to put more students on projects that they ranked highly. For example,
in the document provided to us to test our code, we have that 45% of the students get their
first choice, 15% their second choice, 11% their third choice, 5% their 4th choice and 23%
get their 5th to 8th choice. Ideally, we would want to reduce the last number of 23% to
something closer to 10-15%. Another feature that we are currently working on improving
is the number of unassigned students to each project. Reducing the number of unassigned
students is helpful for the client as less students will have to be placed manually into spe-
cific projects, and the process being then closer to automated.

In regards to the performance of our main matching algorithm and its time complexity,
we find that the general time complexity is O(n2). However, given that we execute our
algorithm multiple times for each run of the program in order to optimize our accuracy,
the actual time that the program takes to run is O(cn?), where c is some constant integer
representing the number of times that the algorithm is run. In our integration tests, where
we run the entire program and check the amount of time it takes as well as the results of
the output, we find that the program completes within about two seconds when we choose
not to repeat the matching algorithm. However, we find that when we begin repeating the
matching algorithm, the execution time increases approximately linearly - if we decide
to repeat the algorithm 100 times, we find that the execution time is typically more like
fourteen seconds. These times were all based on tests that utilized data with more elements

12

than we expect the client to practically use. We will work on finding the balance between
time complexity and the improvements in accuracy that increased iteration yields.

6.3 Plans for usability tests

For usability tests, we plan to have our client try out our product on a sample file she
has. Due to sensitive student information, the data we were given had to be generated.
Therefore, in order to ensure completeness, the client will test the product on actual data.
In doing so, we will be able to help show her how to install all the required libraries and
how to execute the program. In this, we shall be able to locate any possible confusing
points in our documentation on how to utilize this product.

6.4 Missing features and possible future extensions

While our software meets almost all of the requirements and expectations set forth by
our client, there are a few features that we intended to implement but which ended up
being too difficult/time consuming to solve within the time allocated for the field session.
Similarly, this is certainly room for further functionality and polish that future field session
teams could take up.

In terms of the features that our client asked for but we could not quite deliver, we only
have a few. The first one worth mentioning is organization/readability of the final output
file - the client wanted the final output file to be formatted with borders, good headings,
and the project rankings color-coded, but we could not quite deliver this. While outputting
to CSV is easy with the libraries that we were using, outputting to a well-formatted excel
file involves a much more detailed understanding of the libraries required to do so. As
such, we decided to forgo this formatting in favor of improving the effectiveness of our
matching algorithm. The second worth mentioning is that our program is not very resilient
to input files which differ in format from those that we were given as sample data. For
example, our program demands that single columns represent the last name, first name,
campus-wide ID, project id, etc. and that each of the input files have exactly one row of
headers at the very top of the document. While the flexibility is greatly improved by our
configuration files, and we expect our client will have no problems providing input files
for the program that match the expected formatting, we are still falling short of our goal to
make our program work with many file formats.

One of the aspects of our software that could certainly be improved by future devel-
opers is the user’s experience of running the program. In our current iteration, our client
must install an IDE in order to run the program, and then further install the libraries re-
quired to run our program using the IDE’s console. While we are making sure that this
process is well-documented for our client who has a lower code literacy, it would certainly
be nice if the process was more simple and intuitive (and, to that effect, might have a user
interface), such that next to no documentation would be required. We imagine that a fu-
ture group could work on packaging our program into an installation wizard, such as is
commonplace with more sophisticated programs. This would make the process of running
the programming a much more convenient one for any user.

13

6.5

Lessons learned

. Python is an effective language for running more script-like programs and can sup-

port more organization than you would expect (e.g. classes, unit tests). Additionally,
it is very flexible with different operating systems since it is an interpreted language.

. It is alright if some members of a group don’t fully understand the minute details of

a certain piece of the project’s functionality. When this is the case, however, it is nice
for the author to provide a black-box explanation of how the function can be used
for those who lack full understanding of it.

. Forcing everybody to wait until the next scrum meeting to merge good code into

master can be inefficient. Therefore, efficiency can be increased by forcing those who
would merge with master off-schedule to check that everything they have developed
has been a new addition rather than a modification to existing code. This helps to
prevent merge conflicts.

. It's hard to keep scrum meetings short. We frequently found that we would get done

with the ‘scrum organization” portion of the meeting within two or three minutes,
and it was only natural to move on to group problem-solving and pair programming.
It’s best not to stifle this productivity, even if it forces the scrum meeting to be long.
However, it is helpful to let everyone know that if they have somewhere to be, they
can feel free to leave once the more productive section of the meeting begins.

. We generated a lot of questions to ask our client, and despite this we quickly found

ourselves with even more after each client meeting! After some reflection, it makes
sense that we should have sent more emails containing our more time-sensitive ques-
tions. The lesson learned is: don’t be afraid to be in even more frequent communica-
tion with your client than you expected. It can only help.

14

7 Future Work

If given more time, there are several ways this project could be further developed and
improved upon to match both the client’s stretch goals for the project and other imagined
features that might improve the quality and functionality of the program.

First, the client requested that the output document be color coded for ease of naviga-
tion. However, color coding with the output method used proved to be more of a challenge
than expected. After a sufficient time trying, it was eventually concluded that this addition
was not as important as the optimization of the algorithm, and so the development team’s
attention was instead focused elsewhere. However, with more time, this is a stretch goal
that would have been nice to implement.

Second, the client requested that some projects be given priority in the filling process.
However, this request came to us a bit late, and therefore did not allow us the time to
implement this into our design. The matching algorithm we used ensures fairness for all
projects and students, and therefore implementing such an addition would change our
program significantly. Therefore, it was deemed that there was not enough time left to
implement this and so it is left as a future goal.

The final future goal for this project is to implement an easier, non-computer science
friendly way to interact with and run our program. If we had more time, a GUI would
have been a nice, user-friendly way to interact with the program. Similarly, and installer
program would have been a much more efficient and smooth way to provide the software
files to the client.

15

Bibliography

[1] D. J. Abraham, D. F. Manlove, and R. W. Irving, “Two algorithms for the student-
project allocation problem,” Carnegie Mellon University: School of Computer Science.
https:/ /www.cs.cmu.edu/ dabraham/papers/aim04.pdf.

[2] R. W. Irving, “Stable marriage and indifference,” Discrete Applied Mathematics, May
2002. https:/ /www.sciencedirect.com/science/article/pii/0166218X9200179P.

16

