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Introduction
Our client was Dr. Mehmet Belviranli. Currently, Dr. Belviranli is an Operating Systems
professor at the Colorado School of Mines. He is researching using predictive motion to
pre-render frames in the cloud. This would allow for untethered virtual reality streaming to work
even with current network latency limitations.

Currently, there are two main forms of virtual reality (VR), these being tethered and untethered
systems. Tethered systems are physically connected to a device, allowing for intensive graphics
processing, but minimal mobility. Untethered systems typically use a mobile device in a VR
headset, meaning that the processing power is limited due to mobile processing power but there
are no mobility limitations. The goal of this project is to use graphics streaming to allow for
untethered VR to run with a similar level of graphics quality to tethered VR, while retaining the
benefit of unlimited mobility.

To do this, we created a graphics streaming system which allowed for an untethered system
(client) to send inputs to a server and receive future frames. In order to avoid motion sickness in
future VR applications, we would need to reach a frame rate greater than 90hz and a motion to
photon latency of less than 25ms. For the basic implementation of our project we started with
keyboard and mouse input rather than full head-mounted display (HMD) motion, which would
have been pursued if time allowed.
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Requirements
A List of the Functional Requirements

● Users have the ability to move around in the Unreal Engine game(s).
● The stream of keyboard and mouse inputs from the client should be able to be processed

by the server, which in turn should stream graphics back to the client.
● Implementation of Standard and Third-Party Application Programming Interfaces (APIs)

should be compatible with ARM Linux.
● Make a consistent connection between server/client (correct interval from user input to

display).
● Establish a connection between Unreal’s Pixel Streaming plugin and the client software.

A List of the Non-Functional Requirements

● Software must have little performance demands, and be optimized for mobile platforms.
● Software must achieve >90hz frame rate minimum, <25ms Motion to Photon latency.
● Software must minimize API usage for compatibility.
● Both server and client sides of the project must be compatible for the encoding/decoding

of H.264/FFMpeg video frames.
● Code must be modular and well documented (extensible for future work).
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System Architecture

Client-Server Dependencies

Figure 1 below shows the system’s technical client-server architecture. This diagram illustrates
many of the lower level components such as the type of data transmission, APIs in use, etc. The
diagram starts with the control logic of the keyboard and mouse. This begins on the client side
that, via a transmission control protocol (TCP) socket connection to the server, sends encoded
game input to the Unreal Game Engine. The server side handles the game input through the
game engine, encodes rendered frames, and then returns to the client a stream of H.264 encoded
frames. The cycle is complete once the client side is able to decode the frames and display to the
user, creating a full circle gaming experience.

Figure 1: Low Level Client-Server Dependencies
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Client-Server Communication

Figure 2 shows the design overview of how our team went about creating a system to meet the
project requirements. By creating this early on in the project we were able to break the project
into smaller tasks. Also, by including the future research team’s goals as part of the design
(predictive inputs/buffering) we ensured that our project would be easily extensible. This
diagram was also created to plan how and when the server and client would communicate. For
example, input was sent as it was recorded using a packet format, whereas frames were streamed
in essentially a byte-stream format because they often overflowed into the next packet.

Figure 2: Client-Server Communication
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Technical Design

Server Side

On the server, one of the most interesting technical aspects was the implementation of H.264
encoding, and how we used it to dramatically decrease the bandwidth requirements of our
project’s implementation. We initially implemented a compressed jpeg format to stream frames
to the client from the server. In this version of the project each frame was being fragmented due
to the relatively large size of the images, spanning anywhere from four to over ten packets. We
had quickly found out that sending so many packets per frame was unacceptable, and we
couldn’t realistically decrease the size due to the maximum transmission unit size, so in order to
meet the project’s latency requirements we implemented H.264 encoding. H.264 is a lossy
compression algorithm which relies on sending the differences between frames (delta encoded),
rather than the entire frame. By implementing H.264, the server could not only fit an entire frame
within a single packet, but it would often be able to merge multiple frames into a packet. This
change dramatically improved the performance of the entire system.

However, implementing H.264 had its own unique challenges. Since it relies on delta encoding,
the H.264 factory is required to wait for the next frame before it can encode anything more. This
caused the speed of encoding to be dramatically affected by the framerate of the server, with a
low frame rate leading to huge encoding times, for example 60 frames per second resulted in 33
millisecond (ms) average encoding time. This was a problem because the target goal of 25 ms
roundtrip could not be achieved, especially if the encoding latency was greater than the roundtrip
itself. To remedy this problem, the server team uncapped the framerate and optimized the Unreal
Engine rendering path, turning the max framerate from ~110 fps to ~280 fps. This improvement
caused the H.264 encoder latency to drop to ~5ms, an acceptable latency.

Server Side Design Diagram

Figure 3 displays the overview of how the server side code worked. The majority of edits we
made were based on the streaming functionality of Unreal engine. Because of this, our branches
started off in the InitStreamer() function, provided by the PixelStreaming plugin. The left side of
the flowchart shows how we captured rendered frames from the engine using hooks into Slate’s
rendering callbacks and the RHI ReadSurfaceData() function for extracting the color buffer.
After capturing the frame it is sent to the H.264 encoder, and upon finishing is streamed to the
client in a compressed H.264 format. The right side of the flowchart shows how we received user
input data from the client and used this to update the game state within the engine. The two
branches are related because after the game engine is updated, such as after an input from the
player is made, a new frame must be sent to the client.
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Figure 3: Server Side Design Diagram
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Client Side

On the client side, one of the most interesting technical aspects of our design was parsing the
byte stream data sent by the server and decoding that data using FFmpeg. We first determined
that the server was planning to send H.264 encoded byte streams through packets sent via TCP
socket. In order to parse these packets, we first started by creating a function in our Socket class
that would parse the bytes themselves by passing the data into a buffer object, which was a
vector of bytes. Then, we started by putting the header information such as the timestamp and
duration of the frame into variables themselves. This information is needed to decode H.264
frames so it must be saved for later. Then, we had to determine how many frames were
embedded in the received packet, making sure to feed every individual frame to our decoder to
prevent visual desynchronization, or if the frame had been fragmented across multiple packets
and needed reconstruction. In order to achieve minimal time spent waiting on packets to arrive
over the network, we leveraged C++ futures to asynchronously send and receive packets, greatly
reducing the overall client latency.

After implementing asynchronous networking with futures, the client needed to determine
whether a packet contained one frame or multiple. Because each frame had its size embedded in
the packet header this could be calculated. We compared the total size of the packet received
over the network, without the header bytes, to the size of the image retrieved from the packet. If
the image size was less than the packet size, then we knew that multiple frames were rendered
and needed to be sent to the H.264 decoder separately.

This methodology was essential for the decoding purposes of our project. By using H.264
encoding on the server side, our team was able to utilize a tool called FFmpeg. FFmpeg is a
collection of cross-platform libraries which allows users to decode and convert video frames. As
suggested by our Client, we used the audio-visual (AV) libraries downloaded with FFmpeg and
could decode the H.264 frames using the built in decoder that the AV libraries provided. The AV
libraries provided functions for the software engineer to decode bytes into frames that could be
used by display software. After spending a copious amount of time researching, we were finally
able to use the parsed bytes directly sent to us along with the timestamp and duration of frame
headings to decode the H.264 frames into YUV (a coloring encoding system) formatted frames
provided by FFmpeg into BGR32 (a color encoding format using 32 bit RGB pixel values)
frames using a formatting library also provided by FFmpeg.

Finally, the client team had all of the information to display the decoded frame using Simple and
Fast Multimedia Library (SFML). SFML is an efficient and simple interface that the user can use
to create, develop, and display multiple forms of media to be displayed and interacted with via a
window. Through this, we were able to convert the BGR32 frame into a texture which SFML
uses to display an object, such as a Sprite, to the Window.

8



Client Side Design Diagram

Figure 4 highlights the different components of the client side implementation. The Main
function handled the SFML window, connection to the server, keyboard and mouse inputs, and
rendered frame outputs of the specific functions and the three main class objects that were
implemented. The inputs class held the different types of keyboard and mouse inputs which were
then used by the SFML event handler in Main.

Once these inputs were received, they were sent to the server through the Socket object receive
function. The Socket class would use the received packet data to parse the bytes that were
encoded in H.264 frame information rendered by the server. The Frame object would use the
parsed data from Socket to decode the data using the Frame object’s decoder function. This used
FFmpeg libraries to decode and transform the frame into decoded BGR data that could be used
by SFML to display the frame into the window in Main.

Figure 4: Client Side UML Diagram
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Client Side Design Flowchart

Figure 5 outlines the client side flow of data. As the user played through the game, the input
would be captured using keyboard and mouse inputs. This raw input was then converted into a
virtual key code and then sent as a byte stream to the server. After the data had been encoded by
the server, the client would receive this as a byte stream of an encoded H.264 frame. Once
received, the client device decoded the stream, displayed the output, and continued to wait for
more user input to send.

Figure 5: Client Side Design Flowchart
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Quality Assurance

Client-Server

Both teams made use of pair/group programming. Pair programming helped the quality of our
product by reducing the number of bugs encountered and keeping the coding process consistent
throughout. It also helped us maintain a high level of coding standards which was significant for
any future adaptations of our code. The client and server teams also had continued
communication in order to preserve a compatible input/output protocol across both the server
and the client.

Server

Integration testing was essential to creating a working product. It was implemented by ensuring
that user inputs were sent to the server and H.264 encoded frames were sent to the client. It was
easily testable by running the program and checking the output logs created by print statements
throughout our code. Integration testing fell under both defect detection and verification because
it tested if the code worked and verified that our project requirements were met.

The server team implemented timing systems to test how fast parts of the code executed. This
was an important part of the quality plan because fast response times were a key part of this
project. By using many different timings, we were able to pinpoint which parts of our code
executed the slowest, and then worked on making them faster. This addressed verification testing
to ensure that our product met the requirements.

The server side also added various log messages to the provided logs in the Unreal Engine. This
essentially replaced the unit testing implementation by printing messages for each unit rather
than using assert statements. The server team found this to be useful because it meant our code
was always being tested and we could easily trace back any issues that occurred during runtime.
This addressed defect detection because it was easy to tell where an error arose.

Finally, by stress testing the server using JPEG images, the server team was able to determine
that H.264 streaming would work as a more efficient output stream to the client.

Client

The client team maintained documentation throughout the code to ensure extensibility for future
modifications to the program. The documentation included comments in the code, design
diagrams, and a requirements document. This documentation also allowed for easy debugging as
we could see what we had already done and what would or would not work.
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Integration testing was the main testing method of the client team. We ensured that as we
developed more of the project, there would not be any bugs or damage to previous code
implementations. The process included making a new segment of code, running and compiling
the code, then examining the result. If the new code caused any bugs to occur, we ran print
statements and logs during our debugging process to locate the bug and research what might be
causing the issue. Once the bug was resolved, we continued on with that process until our code
was complete. This process made sure that with each new implementation, our code continued to
work with as minimal to no bugs as possible, while maintaining modularity through refactoring.

The client team also implemented a window display to verify that keyboard/mouse inputs were
being processed correctly. We did this by utilizing screen share on Zoom, and viewing the server
team’s logs in real time to see if the packets that we sent were actually being received and parsed
by the server.

Finally, the client team ensured that the libraries and APIs that we used in the project had been
researched to meet compatibility/license requirements set by our Client. We also made sure that
the version control was maintained for documentation and the delivery of our code to the Client
would be seamless and easy by using GitHub.
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Results
Features Not Implemented

On the server side we met all of the functional requirements, but have had issues with the
non-functional latency requirements. Currently, the server side code executes in roughly 17
milliseconds (ms). However, the network latency pushed our round-trip, motion-to-photon
latency above 25ms. We hoped that the future work of motion prediction would allow us to
successfully reach under 25ms motion-to-photon latency.

On the client side, we did not have the time to implement the Android interface due to having
trouble getting the Linux interface running correctly. Otherwise, there were no known bugs at the
finish of the client side implementation.

Performance Test

Using a combination of Tracy, Unreal Insights, and manual UTC synchronized timestamps, we
were able to measure the average latency of various components in our end-to-end architecture
as seen in Figure 6. Overall, we found that a significant portion of our latency was coming from
frame encoding on the server side, largely due to H.264 not being able to finalize the current
frame until the next was available in the queue. We also were able to measure our end-to-end
latency being about 17 milliseconds, excluding the networking round trip time.

Figure 6: Performance Metrics
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Summary of Testing

The existing solution we have implemented is very playable for desktop applications, but it will
likely induce motion sickness in virtual reality rendering due to the high latency. To tackle this,
we were currently looking at optimizing H.264 encoding on the server, and replacing the Nv12 to
RGB format converter with something that could better leverage the hardware, ideally via GPU
compute.

The client side to server connection is consistently working and the inputs, received packets,
decoding, and displaying are all working properly. Therefore, we have completed the main
functional requirements of the project by ensuring that on the local XavierNx device, the user
would be able to play a game in real time rendered from the cloud.  The XavierNx was the client
side computation device which was considered to be a virtual machine that utilizes Ubuntu,
which is another Operating System built off of Linux.

Results of Usability Tests

From what we could tell, our software is very usable for the intent in which it was made. Dr.
Belviranli contributed a great amount of input and approved of our design decisions throughout
the course of this field session. With this in mind, we believed that the future research team
would be able to extend our code quite easily due to our design and documentations, especially
considering that the future research team includes members of our field session team.

Lessons

During this field session we learned a lot about encoding, networking, device compatibility, and
latency timings. Understanding how the Unreal Engine source code worked was the key to the
server side implementation. Between using render-buffers and editing source plugins, the vast
majority of code written on the server was within the Unreal Engine’s code. One of our greatest
struggles was dealing with the complications of practical networking, especially handling packet
fragmentation and reassembly. Dealing with our own custom protocols taught us how to write
high level protocols, while at the same time teaching us how a router breaks packets down
further, and how to parse a byte stream upon reassembly.

The understanding of project builds and library usage also became very important for this
session. Compilation errors rather than runtime errors were the root cause of delay for the client
side of the team. After many library implementations, the client team had to make sure that any
linker issues with any additional libraries were resolved using the Makefile. Through Makefile
adjustments and various amounts of research on Linux builds, the team learned about the
complexities of what a linking issue was, how to locate the specific libraries necessary to include
in a Makefile to resolve it, and how to follow the necessary precautions when trying to reference
libraries from Third-Party APIs.
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Finally, the sending of data to a server side socket required a specific protocol to be used, one
that all types of keyboard/mouse input require. Using a specific byte breakdown of the protocol,
we learned to send packets containing more than just the specific key press or mouse button
click. The packets also contained data pertaining to the physical behavior of the player, such as
holding down keys or moving the mouse rapidly. This was a powerful socket application and was
great for the CloudRenderVR project.

Future Work
A large portion of our architecture’s latency was due to the H.264 encoder waiting until the N+1
frame was fully rendered and enqueued, before finalizing the encoded output of frame N. This
added the full frame rendering time latency on top of the encoder, in addition to the small time
spent actually decoding the frame. In the future, we would look at using a transport stream layer
on top of the H.264 codec to reduce this delay. Another approach we considered was using a
more latency-optimized video encoding protocol instead of H.264. We also considered replacing
our custom networking protocol for inputs and video streaming, with an industry standard
solution, such as RTP or SRTP. This would allow us to leverage UDP sockets instead of TCP,
further reducing the network latency.

The client team would work to include a packet system protocol for human motion input in order
to eventually apply predictive movement to the project. As the socket connection was very
strong, implementation of human VR movement would be a challenge on the software side of
things, but would not be too difficult for the packets to handle. Unreal Engine contained VR
plugins as well, meaning that the engine would be able to handle this input with minimal change.

Since we were unable to transition to the Android platform due to time constraints, future project
extensions would be to include cross-platform compatibility reaching beyond the Linux-based
XavierNx device. We intended to reach the Android platform for compatibility testing, however
optimizing latency and game runtime on the original platform was more important. By
incorporating developed, cross-platform APIs into the project, we believed that porting to
Android (which was also Unix based) would not be a challenge for further development.

During our time working on this project we left extensive comments and created many artifacts,
such as design documents, in order to help aid the future developers. We believe that these will
make the project easily extensible for future developments.
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Appendix

Terminology

Virtual Reality (VR): An immersive experience of a game or simulation that creates a virtual
environment in which the user can interact.

Cloud Rendering: A client/server communication process where the user interacts directly with
the client side, and then the server is able to render frames based on client inputs.

H.264 Encoding: H.264 is a stateful lossy compression algorithm which relies on sending the
differences between frames (delta encoded), rather than the entire frame.

FFmpeg: An open source collection of libraries that is cross-platform and allows users to decode
and convert video frames.

Simple and Fast Multimedia Library (SFML): Cross platform library designed to provide a
simple API to various multimedia components in computers.

Delta Encode: Encoding is stateful and reconstructs frames based on differences between frames
(deltas).

RHI: Render hardware interface, a high level layer above the actual rendering API, for accessing
the renderer in an agnostic way.

TCP: Transmission control protocol, a reliable and ordered networking protocol for sending
packets. As a result of the reliability, it often has significantly more latency than other protocols.

UDP: User datagram protocol, an unreliable and unordered networking protocol meant for
lowest possible latency packet transmission.

Slate: Unreal Engine’s native graphical user interface API.

Tracy: A hybrid frame and sampling profiler for native applications, providing statistical timing
measurements of the CPU and the GPU for the profiled client.

Unreal Engine: An open source game engine which we have used to implement our project.

Unreal Insights: Unreal Engine’s built-in profiling tools for CPU clock cycle measurements.
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Figures

Figure 1 - Client-Server Dependencies

Figure 2 - Client-Server Communication
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Figure 3 - Server Side Design Diagram
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Figure 4 -  Client Side UML Diagram

Figure 5 - Client Side Design Flowchart
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Figure 6 - Performance Metrics
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