

Uber Freight Tracker

Team:
Daniel Fialkov

Jason Wakumoto
Kevin O’Linn
Derek Wang

Client: Ricky Walker

6/8/2020

Introduction:

Uber Freight is an Uber subsidiary that connects freight drivers with enterprise
customers to provide flexible and personalized work assignments to drivers fulfilling
shipping orders and rapid fulfillment of customers’ brokerage needs. A key feature of
Uber Freight is the ability to fill in gaps in supply chains on short notice, which requires a
low reliance on fixed infrastructure and a high emphasis in developing capacity to
dynamically create and alter routes.

The Uber Freight Location Tracker is a multifunction Android app that uses GPS data
corresponding to a driver’s location to relay related info to Uber’s central systems and to
the driver. Desired info includes exact info on the time of a driver’s arrival and departure
to and from particular facilities as represented by a perimeter against which the driver’s
location can be checked and info on whether a driver’s shipment will be late given their
current location, destination, and scheduled arrival.

Uber Freight currently has nothing in place that performs check-in/check-out detection
or lateness detection automatically, which substantially undermines their ability to
gather up-to-date information on how well shipments are conforming to schedules. This
forces drivers to manually verify their own progress, which allows room for both human
error and fraud. It also gives customers an unsatisfactory amount of info on the status of
their product transfer. We have developed a product to resolve Uber’s tracking-related
programs by delivering an app that can perform location tracking and lateness
calculations without input from the independent contractors that perform shipping work.

Functional Requirements
The final product contains four main components: The app itself, which houses the UI
and tracking, the tracking component, which uses GPS services to find the user’s
location, the processing component, which determines whether the user is in a
particular geofence, and the endpoint, which is simulated with notifications.

The app

● Has a UI that displays the destination point and an ETA, or Estimated Time of
Arrival, based on the current position

● Has a processing component
● Has a tracking component
● Can interface with user

The tracking component

● Can interface with GPS services to find the device’s position
● Can interface with GPS services to detect the device’s presence or non-presence

in a user-specified geofence
● Can feed data into processing component

The processing component

● Can interpret data from tracking component to record and prepare
check-in/check-out data for transmission

● Can interpret data from tracking component to record and prepare lateness data
for transmission.

● Can interface with app to provide data for transmission to endpoint
● Can store geofence data and interface with tracking component as needed.

The endpoint

● Is currently the notification interface, though info from notifications can be
redirected to a central database easily.

● Can receive lateness and check-in/check-out data from the app.

Non-Functional Requirements

1. Is compatible with modern Android devices
2. Was developed with Android Studio
3. Primary program language is Java
4. All functionality must work with the app running in the background.
5. Was developed in five weeks and delivered by 6/11
6. Plans to deploy app on Firebase cut due to time constraints

System Architecture:
Data Flow

Figure 1

The app takes advantage of a number of services to perform its functions. It is currently
in a proof-of-concept state, meaning that data comes directly from user input, though
the code is set up such that modification to take data from another source is simple. In
order to provide arrival and departure detection and lateness detection respectively, the
app feeds data from the phone’s GPS sensor into a geofencing API and an ETA API.
This data is then fed back into the backend, which detects lateness, arrivals, and
departures and constructs notification contents, which are then given to the user via the
Android notification service. Because the app needs to function while in the background,
the backend must be able to run as a background task in Android.

System Architecture: Execution Flow

Figure 2

The app has a fairly simple execution workflow. A background task periodically collects
the device’s location and feeds it into an ETA API and a geofence API. If the device
detects that it has entered, stayed in, or left a geofence, it sends out a notification
informing the user of this fact. If the device detects that lateness is likely based on the
ETA to the destination, it will notify the user that they are likely to be late.

Technical Design:

An interesting aspect of the product is the fact that it must be developed with the
requirement of being able to function to a satisfactory degree in remote areas, where
geolocation is substantially less precise. Modern geolocation systems use a number of
complementary telemetry types to improve the accuracy of a GPS signal. While it is true
that a GPS signal is available almost anywhere due to the planet-wide coverage
afforded by the GPS network, relying on GPS alone gives an extremely imprecise
reading of the location. As such, modern phone location services use a number of other
telemetry readings to supplement the GPS signal and make location more precise. This
is rarely an issue in populated areas, but location accuracy is substantially more difficult
to guarantee while on the open road. A core piece of functionality desired by the client is
the ability to operate in adverse signal conditions like those found in the remote
locations that truck stops are often built in. The typical way to acquire the device’s
location automatically gathers all available GPS-enhancing telemetry, but disabling
certain telemetry on the phone allows a user to gauge accuracy without a particular
piece of telemetry. There is typically no reason to do this, but it allows us the ability to
see which telemetry types are most helpful in acquiring the device’s location and
thereby predict the type and strength of compensation measures required to avoid
substantial error in areas where certain telemetry types are unavailable. In order to
predict the adverse impact of being unable to access certain telemetry methods, a
member of the team went to an area with a strong location signal and disabled certain
telemetry features. We then recorded the error in location caused by the absence of this
telemetry method. All figures in the below table are approximate, as the degree of
accuracy of the map used to pinpoint actual real-world location by comparison to
landmarks is unknown.

Telemetry Method
Disabled

Error

None 10 m

GPS 10 m

WiFi 30 m

Cell Internet
Network + WiFi

50 m

All except WiFi 10 m

All except GPS 80 m
Figure 3

The data in Figure 3 provides a number of novel insights regarding location accuracy.
The most important point is that WiFi-based tracking is more accurate than any single
type or combination of GPS-assisted tracking, and can reliably provide highly accurate
geolocation even in the absence of any and all other location methods. Therefore, it can
generally be assumed that tracking will be as accurate as it can be within most truck
stops, as WiFi access points can generally be expected to be present within them. Note
that actually being connected to a network is not a requirement for WiFi tracking and
that the mere presence of WiFi networks that connection is possible to is sufficient. That
said, even the error caused by using GPS alone is unlikely to make a particularly large
difference, as the only time such conditions should occur is on the open road, where
only ETA needs to be calculated. If accurate location can generally be assumed within a
truck stop, even hundreds of meters of error are unlikely to cause a significant
difference in projected arrival time.

Another interesting aspect of the product is the need to build an app that can
deal with assorted user-induced service interruptions. A driver cannot reasonably be
expected to keep the app open during the entire haul, and therefore the app must
perform all of its functions in the background. In order to maintain background function,
system permissions to work in the background must be secured from the user.
Additionally, it cannot be guaranteed that the driver will be willing or able to keep their
device powered on during every ride, so a service to restart location tracking on device
reboot was also necessary to maintain consistent service. Figure 4 demonstrates the
app running in the background with its background presence cleared.

Figure 4: Video of app running while closed with its task dead

https://youtu.be/gsikEBfhEHA?t=100

Quality Assurance

Testing Process:

● Simulation testing: Meant to remove testing error due to poor GPS readings by
guaranteeing accurate readings via location spoofing on an emulator. This is
meant to ensure the app can perform its basic functions at all.

○ Tested to ensure app registers geofence entrance when entering
geofence

○ Tested to ensure app registers geofence exit when exiting geofence
○ Tested to ensure app does not register geofence entrances and exits

when not in a geofence
○ Tested to ensure app correctly measures geofence dwell times
○ Tested to ensure app correctly reports likely lateness

● Real-World Stable Signal Testing: Meant to ensure app function in environments
with stable GPS and abundant complementary telemetry to improve signal
precision. This is meant to ensure app reliability in the real world.

○ Tested to ensure app promptly registers geofence entrance when device
enters geofence

○ Tested to ensure app promptly registers geofence exit when device exits
geofence

○ Tested to ensure app does not register entrances and exits when outside
of geofence

○ Tested to ensure app correctly measures dwell times
○ Tested to ensure app correctly reports likely lateness

● Real-World Unstable Signal Testing: Meant to ensure app function in
environments with unstable GPS and/or lacking complementary telemetry. There
is more room for error here due to limits on the data being gathered, but
measures to compensate for poor signal should be able to deliver acceptable
data. This is meant to gauge app performance in unfavorable conditions.

○ Tested to ensure app promptly registers geofence entrance when device
enters geofence

○ Tested to ensure app promptly registers geofence exit when device exits
geofence

○ Tested to ensure app does not register entrances and exits when outside
of geofence

○ Tested to ensure app correctly measures dwell times
○ Tested to ensure app correctly reports likely lateness

Results
The goal of this project was to create an Android application that would track the user’s
location, display it on another device, and to determine if a user has entered or left a
designated area. The app would then notify the “tracker” of the ETA of the “driver”. Our
application has met all of our client’s functional requirements, as it successfully tracks
the driver, notifies the user when the geofence is entered or left, and functions even
when the app is running in the background or closed. We did not implement accurate
ETA’s into our app, as our app would run concurrently with Google Maps which already
has the feature. In addition, due to a lack of time and knowledge, we were unable to
implement Firebase into our application, as such we could not have user authentication
and separate user interfaces. The implementation of schedule setting, lateness
notifications, and a GUI were all features that did not make it into the final product due
to time constraints. Should we work on this in the future, incorporating ETA from the
Google Maps API, implementing Firebase into our product, and updating our GUI would
be the next tasks to work on.
Overall we learned that working remotely is difficult to overcome, but following a set
schedule and frequent communication is key to overcoming that obstacle. We were able
to utilize Agile methods to maintain productivity throughout the course, and frequent
code reviews helped keep our program clean and running. We also learned how to
implement existing API’s into our project to create a new program. Initially, the project
seemed much more difficult as we had very little experience in app development, and
creating new location tracking code would have been very difficult. Luckily, there is
existing code to help us learn the basics of Geofencing that we have implemented into
our program.

Appendices:

Notes on use:
The product delivered by the team is unsuitable for direct end-user use. The app was
developed with the goal of acting as a proof of concept and lacks basic functionality
typically expected of a tracker that would actually be deployed to end users. Missing
functionality includes an account system, the ability to receive data on new geofences
from a central database, the ability to send data on lateness, arrivals, and departures to
a central database, and any logging beyond that afforded by the Android notification
system.

Installation Instructions:
The product has been provided both as Android Studio source code and as an apk file.
To install the product, simply load the apk file onto an Android device and install it.

