

Unity WebGL Simulation Transition Report

PS Technology

By Logan Cooper, Beck Bolinger, Devin Gao, George Karachepone, and Carter Pasqualini

Summer 2020, 5/11/20 - 6/12/20

Table of Contents

Table of Contents 1

Introduction 2

Requirements 3

System Architecture 5

Technical Design 7

Website to WebGL Interactions: Buttons 7

WebGL to Website Interactions: High Score Board 8

Dynamic Assets 9

Quality Assurance 12

Results 13

Appendices 15

Documentation 15

Website Layout 16

1

Introduction
PS Technology is a technology firm that specializes in developing training software for the

railroad industry. The company they are specifically designing their software for is Union Pacific

Railroad. Their line of work consists of developing training simulations for railroad employees. These

training simulations are designed to provide a better service for training conductors by integrating

safety rules and procedures the conductor must follow as well as implementing features to give the

trainee immediate feedback on their performance. PS Technology’s simulations also cut down the

cost of the normally expensive training programs that require a real locomotive train, as well as crew

to keep things in check. With their modern solution, PS Technology aims to create more safe and

more effective training software that will benefit Union Pacific Railroads as a whole.

This website development project was aimed at solving several technical challenges relating to

transitioning existing Unity-based simulations to an internet-based WebGL system. The technical

hurdles that needed to be overcome include dynamically adding new simulations to the front-end

website without additional coding, creating a high score table on the website utilizing the data from

the Unity simulations, dynamically loading assets from a URL into the WebGL simulations, and sending

function calls between the frontend website and the WebGL backend.

The project was completed using Angular 9 to develop the frontend website, Java with the

Spring libraries to develop a RESTful API for the backend, and Unity with its built-in "Compile to

WebGL" option for developing the simulations. The version of Unity used in this project is the 2019.3

release version family. A number of basic sample simulations created using Unity are provided, each

highlighting a specific piece of functionality. Additionally, both a simple frontend and backend were

created, demonstrating the functionalities required to solve the technical challenges of this project.

As a final overview, the website that we have created consists of a stylish home page,

convenient and visible dashboard that allows dynamic loading of simulations, and a game page for

each simulation with a high score table and some buttons that interact with the game. Across these

pages and between the four simulations provided, all the technical challenges are solved with the

solutions implemented. We also created detailed documentation of how each technical challenge was

solved, including all relevant information.

2

Requirements
The project had several functional requirements that needed to be met before the final code

was delivered. These included simulations being able to be added to the website without requiring

additional coding (such as by dragging & dropping into a folder) and Unity WebGL simulations being

able to interface with the website via JavaScript function calls (such as to cause the game to pause or

have the player jump). More functional requirements included the application needing to be hosted

using the free tier of a cloud host provider, with properly playable simulations developed in Unity and

exported using the WebGL export option. On a web design side, functional requirements included

having a dashboard from which the user can access all simulations, and embedding the simulations

into the webpage itself. Another requirement was to have the ability for the simulations to save high

scores and then display these high scores into a table on the simulation page. Additionally, the clients

asked that we implement a way for assets or components of the Unity simulations to be dynamically

loaded at runtime. This would allow for the clients to update their simulations without the need to

rebuild their Unity simulations, assuming their new assets were prebuilt with all of the needed

dependencies. The dynamic loading would also allow for the general management of simulation

assets to be much more efficient.

There were also several non-functional requirements to work with during the project. Since

the project was more about building the frameworks to host simulations, the simulations themselves

did not need to be very complicated or sophisticated. Instead just needed to act as a proof of concept

for the features we needed to implement regarding simulations. However, it was important that the

simulations were able to run properly and efficiently within the web pages, without causing system

lag on the user's computer or web browser. The website also needed to be aesthetically pleasing and

easy to understand for an end-user. We were given a set of specific tools to attempt to develop the

project with, those being the free tier of Unity, a frontend in Angular and a backend written in Java

using the Spring libraries. The code also needed to be refactored for quality and ease of modification,

as well as being well commented and documented so that PS Technology is able to easily understand

the code. Finally, the code was designed to be easy to deploy to different server architectures with

minimal changes required to the codebase, beyond simply updating internal URLs.

PS Technology asked that we find a way to prioritize the loading of certain asset bundles over

others in the case that there might be a folder containing asset bundles that multiple simulations will

need to load. Each simulation might have its own asset bundle folder containing asset bundles of the

same name, and our system should allow for these specific asset bundles in simulation specific folders

to be prioritized over those with the same name in the common asset bundle folder. The final

non-functional requirement of the project was that the codebase should be structured as to be easy

to extend to add additional functionality after the completion of this project.

3

This project was primarily a proof-of-concept to determine the technical feasibility of

transitioning existing standalone Unity simulations to web-accessible WebGL simulations as opposed

to creating a full-scale production website. This is enabling PS Technology to make an informed

decision on if they should make the transition from their desktop application based simulations to

migrating them to WebGL applications hosted on a website. As such, we were able to determine

much of the layout of the website and the content of the simulations ourselves, so long as they were

quite simple and demonstrated the requested technical functionalities.

4

System Architecture
Our code and development were driven by a layered architecture diagram that was created

very early on in the project, visible in figure 1. It contains each of the five layers of the project, as well

as all the interactions between different layers. The layers were created using standard system

architecture layers, with each component organized into the layer that it best matched.

Figure 1: Layered Architecture Diagram

The User layer describes how the end-user will access the project once it is completed and

deployed. Since the simulations and the framework itself are hosted on a cloud server, the way a user

will access them is through an internet browser connected to the internet. The user's browser is the

primary interface between the user and the website, providing a way for the user to interact with the

5

rest of the application. Connecting to the server directs the user to the website’s home screen,

bringing us to our next layer.

The Presentation layer is where the Angular frontend is located and serves as the means

through which the end-user will interact with every aspect and component of the project. The Angular

frontend receives various bits of information from the lower layers such as the list of simulations and

also broadcasts some information back to the lower layer such as scores by subscribing to and

consuming endpoints (a place to connect to the backend) provided as a RESTful API by the backend of

the website. The Angular website is also what allows the user to load and interact with the various

simulations that are hosted on the server, by embedding simulations into the webpage dynamically as

the user selects different simulations within the application. It also plays a part in allowing there to be

a user interface for simulations outside of the Unity embed itself - by providing buttons that send

various commands to the Unity simulations.

The Application layer is where the Spring RESTful API is located. It handles the moving of

information between the Presentation and Data layers by exposing endpoints. These endpoints are

provided on port 8080 of the server running the Spring backend that the Angular website can use to

get or send data. To send the list of available simulations, the API loads a designated text file

containing a list of valid simulations on the web server and records the items in a JSON list (a

text-based format for storing lists of data) that can be sent to Angular. Spring will also interface with

the general data in the data layer through the server layer in order to send existing scores to Angular

or store a newly recorded one.

The Data layer is where the bulk of the information pulled by the Presentation layer is located.

This includes the filesystem where the Unity simulations and their respective assets are stored.

Specifically, this would include the build of each simulation and the storage of all of the asset bundles

for each individual simulation or shared between many. The layer also contains miscellaneous data

and programs that are needed to make everything else work.

The Server layer involves the actual hardware and server space that everything is hosted on.

The URL the end-user will enter to reach the website will link to the server and send the user to the

Angular website. The server is also where user scores for each simulation are directly stored. For this

project, the targeted server deployment at the start of the project was an Azure free tier server.

However, due to severe computation time restrictions on the Azure free plan as well as overall time

constraints of the field session, we instead decided to test and deploy the code to an OVH Cloud

server instead. Both testing and deployment of the final product were done using OVH Cloud servers

that have an identical technology stack to the originally targeted Azure servers. This was done to

make future deployment by the client to a paid Azure server significantly easier.

6

Technical Design

Website to WebGL Interactions: Buttons

To demonstrate the possible interactions between the Angular website and the WebGL

simulations, we were asked to incorporate buttons into our simulation pages that would be created

as part of the web page, but would send messages and interact with the Unity WebGL simulations

embedded into the page. This required communication between the HTML and JavaScript on the

frontend of development with Angular, as well as message retrieval from within the WebGL builds

and C# scripts included in these builds.

First, we developed simple HTML buttons within our Angular webpages. These buttons made

function calls defined in the logic component files of the simulation pages. To make function calls to

the Unity WebGL simulation instance, the HTML page needs to access the instance of the simulation

by going into the iframe it is embedded into. Once the instance is accessed, we would call methods in

the WebGL simulation instance utilizing the SendMessage() method that Unity is designed to

understand.

The SendMessage() method calls a specific game object within a simulation and sends a

message to trigger a method attached to the object, and can pass in a value into that method if it has

a needed parameter. We dedicated a specific GameObject in our simulation that has scripts attached

containing the methods that would produce the desired interactions with other objects within the

game. For example, one of the SendMessage() calls we make within the website's JavaScript looks

like SendMessage(JavaScriptHook, TogglePause()). This accesses the JavaScriptHook GameObject in

the corresponding Unity simulation instance, then calls the public method, TogglePause(), from

within a script attached to the JavaScriptHook, pausing or unpausing the simulation. When put

together, this allows the buttons on the Angular website access the WebGL instance, call specific

methods, and the WebGL instance to then execute them without significant delay. The buttons could

be designed per simulation or they could be universal through all simulations, such as a pause button,

assuming that the simulations have the proper elements to execute the desired function calls. As

shown in figure 2, we created a pause button on a simulation web page that calls a method within the

simulation itself, pausing or unpausing accordingly.

7

Figure 2: Pause Button Interaction

WebGL to Website Interactions: High Score Board

Simulations that have some scoring system and can utilize some sort of scoreboard was one of

the examples suggested to us as a way to demonstrate interactivity between the simulations and the

website. The scoreboard of a simulation is handled via the Angular frontend making calls to the

RESTful API constructed in Spring. These calls include storing new high scores and retrieving those

already in the system. It can retrieve every recorded score for a simulation or just the score for one

user if it exists. The scores are sorted in descending order by Angular and then displayed on the

website by using ng directives in the simulation page’s HTML component. Certain simulations have

the functionality to send scores to the database so this component really ties every aspect of the

project together. This overall data flow is outlined in figure 3.

Figure 3: Data Flow from Backend to Frontend

The backend stores each simulation in a RESTful API, which then links to the name of the

simulation and each of the names and scores of all the high scores. The website backend then passes

8

this information on to the angular frontend, which displays these scores on the high score table next

to the game window.

When a Unity simulation determines it is appropriate to save a high score into the server, it

begins by constructing a GET request to the backend Spring API endpoint responsible for storing a

new datapoint, using a URL. It then sends the data to Spring by constructing a Unity Web Request

from the URL and performing the request, which results in the server receiving the data and storing it

into its internal data storage system. By waiting for the web request to finish, Unity can verify that the

data was stored correctly, as otherwise an error would be returned by the Unity Web Request. Once

the data is sent to the Backend Spring code, control of the information passes off to Spring. This is

displayed in figure 3, where the first arrow represents when the player dies, a GET request is sent to

the server. The next arrow from the top then shows the information stored in the GET request. The

information stored from the GET request corresponds to the Simulation name, the data tag within the

simulation, the user’s name, and the score from the user. The last arrow shows the GET request

information sending information to the backend through a method called storeData().

Once Spring receives the data from the WebGL game, it then serializes the data to disk. Even

though the exact details of how the data is stored to disk is not the focus of this project, it is worth

mentioning. Since any database code would likely need to be rewritten by PS Technology to work with

their specific systems, we opted to create a class that has two function calls that can be edited to save

and load data, using whatever system the client desires. By default, it simply saves the data to a file

on disk in the same folder as the jar. Spring then holds onto this stored data until the frontend

requests the data, at which point it loads the data and returns the requested subset of the data to the

website for processing.

To get every recorded score for a particular simulation Angular uses a special service to make a

GET request to the Spring API. The API returns a JSON containing, among other items, a list of

key-value pairs corresponding to individual players and their highest score. When Angular gets this

document it strips it of everything but the scores. An array consisting of a dedicated class for

representing these scores is populated from the shortened JSON and then sorted in descending order

numerically. This is all done during the ngOnInit() of the Simulation component so that the webpage

will be able to display this information to the user once it loads.

Dynamic Assets

PS Technology asked that we implement a method to allow for the dynamic loading of assets,

or the components that make up their Unity simulations. We were informed that PS Technology

creates and loads their assets from asset bundles in their simulations. Asset bundles package groups

of assets together. Since they would normally load their assets at runtime of simulations from these

bundles, to reduce the amount of code PS Technology would have to change, we designed a similar

method to load asset bundles from a web server.

9

First, we had to figure out whether or not asset bundles created for the typical Unity Windows

application would be loadable from a WebGL format. After some experimentation, we learned that

the asset bundles need to be recreated specifically for a WebGL format with specific compression

setting changes. We assumed that PS Technology’s simulations would load their asset bundles from

relative file locations, so we first attempted to load these WebGL formatted asset bundles from

relative file locations on the server.

Loading the asset bundles from relative file locations would require the least amount of code

changes for PS Technology, so this first approach was the most logical. This method also allowed us to

manage the file locations of asset bundles that were in either a simulation’s specific asset bundle

folder or the common asset bundles folder. After experimenting with these asset bundle loading

methods, we found that the WebGL formatted asset bundles could not properly load off of a relative

file location on a web server. Our next approach was to see if we could load the asset bundles from

specific web addresses rather than relative file locations.

While loading asset bundles from specific web addresses would require PS Technology to

create a method or obtaining these web addresses, it was the most efficient method of loading

simulation asset bundles at runtime. This way, as long as the individual simulations were provided the

proper web addresses, they could access the bundles through the web server. Unfortunately, we did

not find a way to simultaneously manage the file locations of the asset bundles, but this was a small

sacrifice that puts slightly more responsibility on PS Technology for managing the locations of the

asset bundles they would like to be used in their simulations.

As shown in figure 4 below, altering the URL location of the asset bundles that a simulation is

loading can change which asset is being loaded at runtime of a simulation. In figure 4, the

“CommonAssets” folder location contains the pick-up material (pickupmat) bundle with a green color

compared to the “Simulation1Bundles” folder location that contains a pick up material with a yellow

color.

10

Figure 4: Dynamic Asset Bundle Loading (Common Assets versus Specific Simulation Bundles)

11

Quality Assurance

The first element of our Q&A plan was the manual testing of the website. As the website

framework was developed, users navigated and tested the pages to see if the simulations were

properly running, there were proper interactions between the simulation receiving and sending out

data, and that the website was intuitive to navigate. This helped to ensure that the UI and UX of the

website were clear and easy to use, and to make sure users wouldn't get bogged down with

unnecessary details.

Since large elements of our project involved integrating separate components, we invested a

fair amount of effort into creating and carrying out our integration plan. Primarily, the code is

regularly deployed to a testing server where all the elements are integrated together to ensure all

components properly communicate. This helps to ensure that each of the components works

together as they developed, to prevent the elements from making invalid assumptions about other

components. It also helps to ensure that all the code properly compiles and functions as intended in

the real world.

To help ensure that all the code is of sufficiently high quality, can be easily understood, and

functions correctly, all code must undergo code review before being merged into the master branch.

This was accomplished by requiring all code to be pushed to a new branch and then requiring the pull

request to be reviewed and approved by a team member who didn't write any of the code before it

was merged into the master branch. This ensured that all code committed to the master branch was

of sufficiently high quality.

It was very important during the development of this project to ensure that all the solutions

found for the technical problems were acceptable to PS Technology. As such, during development,

the product was regularly demonstrated to the client to ensure it would meet their expectations and

follow their vision for the project. This also helped to keep the project on track, following the client

requirements, and helped to prevent scope creep from unneeded features.

Since maintaining the security of the website was important for the project, being a live

website, we employed two forms of static code analysis. This is primarily the fact that the git

repository being regularly scanned for libraries and dependencies with security holes, as well as

checking for common coding errors that can introduce security holes into the project. This helps to

ensure that the product we ship meets a high level of quality for the security of data on the website

and the web server and that the website doesn't put users or their information at risk.

12

Results
Due to time constraints on this given project, we had to choose to cut out some content for

the final release. One of these included the addition of a moderator or admin to create buttons and

bind actions to these buttons for each individual game page directly through the website UI instead of

manually programming buttons through the HTML files. Another feature we had to stop on

development was creating a system to display a thumbnail for a given simulation on the dashboard

page. These thumbnails would provide more context to the user about each simulation, but as it

stands, we can hope to integrate thumbnails in the future. Furthermore, transitioning to the Azure

web servers would have been possible with more time, but due to the minimal time on the project,

we decided it would be best to stay on the OVH servers.

All performance testing was based on small-scale stress tests on the OVH server. Since the

web server that was used to host our framework was relatively low powered, we had to ensure

communications between multiple users and the website were stable. This was tested with multiple

users sending requests to the website at once, which the server handled with relative ease.

Since our project did not use any form of automated testing, all tests were done manually.

One of these tests included modifying a specific simulation built for dynamic loading that will cause

the next instance of the Unity simulation to load the proper assets according to the changes on the

web server files. A second test was observing if our front end was properly loaded in from the web

server and displayed properly on the main server page. Both of these tests were performed by acting

similarly to a user of the website, and the results were that the code and systems functioned properly.

Other forms of testing included our results of usability tests which were also tested manually.

Some of the results of our usability tests included that we manually navigated through our web pages

to ensure that all of our router links worked correctly, that the layout of the website itself was not

complicated, and that the website provided a user ease of accessibility. Following this testing, we

concluded that the layout and format of the website were acceptable. We created a simple UI using a

navigation bar so the user could access any page with no problems. Each of these systems was also

created with the intent to give our clients a base to use and/or extend them in the future.

To expand on our project in the future, we can implement additional features to our website

such as reformatting to different devices or screen sizes. These will be updated according to the user’s

resolution. As of now, we currently have one simulation being loaded into a webpage, but in the

future we can include the embedding of multiple simulations into a single webpage and having the

two simulations interact with each other as well as interacting with the website. Additionally, we can

improve the server of the website in the future. As user traffic grows, we can conduct large-scale

13

stress testing on the website to ensure the servers can handle a large number of users at the same

time.

Over the course of the field session, we have learned several lessons while developing this

project. One of these lessons included that scope creep can cause elevated stress in a project. Even

though we had a project timeline planned out for our tasks, we did not guarantee that they would be

finished at the exact deadline given to them. We also learned that we could not assume how long a

task would take, instead we could only give a rough estimate and plan accordingly if things pan out to

take much longer than expected. Lastly, after going through the learning process of new technologies

and beginning to designate responsibilities, we were open to exchanging tasks with group members

as we became more comfortable with using different software and technology.

14

Appendices

Documentation

The full documentation for this project is linked below. This was not embedded in the report

as it is a nearly 30-page long document. It is an HTML document that was compiled from markdown

using the marked command-line tool.

Included in the documentation are deployment instructions for the codebase, a project

summary, as well as descriptions of how each component is implemented and how each component

is interlinked. The documentation webpage contains internal links to aid with the navigation of the

document.

https://14erc.com/PSTechnologyWebGLDashboardDocumentation/

15

https://14erc.com/PSTechnologyWebGLDashboardDocumentation/

Website Layout

Figure 5: Website Layout

Each arrow represents where clicking on the specified button will take you within the application.

16

