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I. Introduction

Medecipher is a Denver-based health IT start-up that aims to optimize clinical operations.
They provide hospitals with forecasts of the expected number of patients in a given hour so that
the hospital can appropriately allocate its resources. Medecipher’s current forecasting model,
ARIMAX, helps their hospitals to better match the number of needed nurses to the volume of
patients.

The goal of this project was to manage nurse staffing in the emergency environment more
efficiently. In hospitals, there is currently a lot of variability in the input and output of patients.
For this reason, it is difficult to predict the required amount of staffing for any given time. Using
SageMaker, our first task was to create a more accurate and precise predictive model than the
one Medecipher is currently using, working with years of hospital data. Nurses have
variable-length shifts (8 hours, 10 hours, or 12 hours), and the rule-of-thumb in hospitals is to
maintain a 4:1 ratio for patients to nurses. With this information, we created different suggestive
nurse schedules, differentiated by how much the 4:1 ratio is violated by the model (20%, 15%, or
5% ratio violation).

Besides statistical modeling, we also worked on the front-end user interface of the
Medecipher website. The current state of the Medecipher website allows for hospitals to select
one given day for a few different staffing schedules. To better handle the problem, we designed a
six-week calendar for clients to use, with color coding and possible alterations for the client to
use. We also wanted the client (hospitals) to be able to filter specifications for what they would
like in their schedule.



II. Functional Requirements

Task 1 [Improve the Forecasting Model] :

1. Set up AWS workflow to build & deploy models using SageMaker - Jupyter Notebooks
2. Understand current ARIMAX forecasting model parameters, input, accuracy, and
challenges
3. Build models for producing hourly census & arrival forecasts using SageMaker
a. Models to be built: Prophet, LSTM, N-Beats, Simple Feed Forward, DeepAR
4. Publish code to AWS Code Commit using Jupyter notebook workflow
Create a GUI to input parameter values
6. Produce control charts for error monitoring
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Task 2 [User Interface/Front-end]:

1. Create angular component that displays a schedule planner based on the forecasting
model from Task 1
2. Features:
a. Filters: Fiscal Year (FY), block, day of week
b. Printing: Ability to print the daily schedule (4a today thru 11a tomorrow)
3. Data interface
a. Incorporate static, hard-coded data to the front-end using JSON or other data
objects.

III. Non-Functional Requirements

The code for the forecasting model must be written in Python, R, or AMPL.
The program must use the Jupyter Notebook development environment.
The forecasting model must be built using AWS SageMaker.

UI mockups must have a comprehensive workflow.

b=



IV. System Architecture and Technical Design

Task I (Improve the Forecasting Model):

DeepAR is a machine learning algorithm built into Amazon Sagemaker. DeepAR uses Recurrent
Neural Networks to make both point and probabilistic predictions. Training data is inputted as a

JSON file and prediction requests are made to an endpoint using JSON lines commands. The
workflow for implementing the DeepAR model is shown below in Figure 1.

DeepAR Model Training Workflow
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Figure 1: DeepAR workflow

Figure 2 below is the workflow for the Simple Feed Forward and N-Beats models. Both these
models are built into the GluonTS toolkit for time series modeling, and therefore have similar
workflows. Census data is read in from a CSV file and split up into training and testing data;
these sets of data are then converted into ListDataSets objects so that they are in the correct
format to make predictions. An estimator is created with all the hyperparameters for the model;
this 1s the only part of the code that is different for the two models as each model has its own
defined estimator class. A predictor is created from the estimator and is used to make forecasts.



Simple Feed Forward and N-Beats Model Training Workflow
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Figure 2: Simple Feed Forward and N-Beats Workflow

The Prophet model was developed by Facebook to predict website traffic. It uses Fourier
analysis to fit seasonal (periodic) data. In addition there are other interesting features that the
model can use in it’s predictions including: standard holiday’s from the country in which the data
is taken from, weekly seasonality, specific Fourier orders for each regressor etc. In this
application we are using Prophet to predict hospital ER patient arrivals. Figure 3 Below shows
the workflow for Prophet.

Prophet model Training and Testing Workflow
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Figure 3: Prophet Workflow
Task 2 (User Interface/Front-end):

Ultimately, the front end of the project will be created by Medecipher in AngularJS. The website
will be connected to the rest of the website via a python application, such as Flask, to update the



schedule planner and nursing forecasting model in real time. Each different component of the
website will have its own corresponding type script, CSS and HTML so that everything is styled
appropriately and located where it should be on the site. As of right now, we have created mock
up models of potential designs to pursue with the website.

Final Website Mockup
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Model Description:

Schedule module:

This model is based on a more interactive spreadsheet style planner. It also is based on
the scheduling software used at golf courses.
Nurses Column:

Each nurse has their own row. Clicking on the [|] in the nurse row provides information
on the selected nurse. To register a nurse for a specific time, the user needs to just click on a box
in the grid, and the nurse will be scheduled for that time. Clicking on a box with a shift already
scheduled removes the shift for that hour.

Warning Row:

The colored row above the time is the warning indicator row. If there is no warning, it
will simply light up as a green box. If there is a warning, the respective column for the hour will
change color to the most severe warning and create a pulldown menu ( [|] ) containing a
description of all the warnings for a given hour.




Role Selector:

This selects which role to display the schedule for.

Week Selector:

This selects which week to display the schedule for.

Print Button:

Brings the user to the print screen.

Add Nurse Button:

The “Add Nurse” button creates a popup that will ask for information on the nurse being

added. After being added, a nurse will appear in a new role for the role(s) they were selected for.
The other information can be accessed from the [|] in the respective nurse’s row.

Limitations:

Shift must be punched in hour by hour.

Potential display issue from the end of a week to the beginning of the next.
Removing a nurse from one role could end up removing them from all roles. If not,
reregistering that nurse could create a duplicate.

Roles are in separate views and may be difficult to compare with each other.

Possible Small Changes:

Add a way to schedule a shift from a Start to Finish.

Connecting to a database that contains “Nurse” objects would make “ADD NURSE”
much easier.

Make it obvious how many nurses are needed at any given hour so the manager doesn’t
have to guess and get a warning first.



V. Quality Assurance

Task 1 (Back End):

- Code review
- During one meeting, we determined that the LSTM model was proving too
difficult to implement, due to lack of documentation and little versatility, so we
moved on to other algorithms such as simple feed forward and N-Beats.
- User acceptance testing
- Error metrics of new model should beat error metrics of previous model and work
well over time.
- Met with Medecipher and ran through Jupyter notebooks for validation.
- Each of us on the data science side met with Medeciphers data science specialist,
Kevin, one-on-one to ensure the quality of our jupyter notebooks. All of us were
told that the notebook code and documentation is acceptable for their use.

Task 2 (User Interface/Front-end):

- Design Mock-ups for review before implementing design

- A discussion and/or wireframe was thought through before the next stage of the
Ul is implemented.

- Weekly review meetings with Parker from Medecipher

- Every Thursday, we met with the main connection between us and Medecipher,
Parker, to ensure that we understood the task at hand and how to proceed with the
project.

- Meetings with Medecipher occur 2-3 times a week in order to make sure priorities
stay in line with expectations. Every other week there is a larger scale meeting
with Medecipher in which Task 1 and Task 2 work correlate with 10+ members of
Medecipher to produce a plan for the following weeks.

- Within these meetings, we also discussed the requirements of the final project, as
they changed on more than one occasion.



VI. Results

Task 1 (Forecasting/Back End):

Throughout trying to improve the forecasting algorithm, we experimented with 5 different
models: DeepAR, Prophet, Simple Feed Forward, N-Beats, and LSTM. The ultimate goal in each
of these models is to minimize the desired error metrics mean absolute percentage error (MAPE),
root mean square error (RMSE), and mean absolute error (MAE), and to reach better error
metrics than the current model Medecipher is using, called ARIMAX.

DeepAR

Figure 4 shows the graph of a six-week forecast from DeepAR versus the test data. The DeepAR
model has slightly worse error metrics than the ARIMAX model. This could be improved with
more hyperparameter tuning. Because DeepAR takes a long time to train models and requires
creating and using an endpoint, it is more time-consuming to tune than other models.

DeepAR Forecasting Prediction of Training Set
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Figure 4: DeepAR Prediction vs. Test Data

After creating the error monitoring chart in Figure 5, we decided to try averaging the models
together as shown in Figure 6 to see if it is more accurate than Arimax. The error metrics for the
combined model were slightly better than both Arimax and DeepAR. It could be worth exploring
combining the models to improve accuracy.

Error Monitoring Chart for DeepAR vs. Arimax
DeepAR Error
—— Arimax Error
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Figure 5: Error monitoring chart for DeepAR vs. Arimax



DeepAR and Arimax Combined Prediction Compared to Test Data

—— Test Data
—— DeepAR and Arimax Combined Prediction
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Figure 6: DeepAR and Arimax Combined Average Prediction

Figures 7 and 8 show the error metrics for DeepAR compared to Arimax for a six and two week
forecast respectively. Due to time constraints, long training time, and model limitations the
metrics for the combined model and some other data are missing. DeepAR did not perform better
than Arimax over a one-year cycle.

Figure 8: DeepAR vs. Arimax 2-week Error Metrics

Arimax DeepAR

train_start_date train_end_date Forecast_end_date MAE RMSE MAPE OSE MAE RMSE MAPE OSE
2/3/2019 3/9/2019 4/20/2019 3.970865 5.245825 40.73% 4.127526 N/A N/A N/A N/A
2/3/2019 4/20/2019 6/1/2019 4.054594 5.368517 33.50% 4.721882 N/A N/A N/A N/A
2/3/2019 6/1/2019 7/13/2019 34.37% 4137305728  5.341498007  40.30% N/A
2/3/2019 7/13/2019 8/24/2019 34.27% 3.975303 4506043627  5.958352834  43.70% N/A
2/3/2019 8/24/2019 10/5/2019 4287671 5.71923| 31.10% 4.968171 [ 6.204389868  40.69% N/A
2/3/2019 10/5/2019 11/16/2019 4004722 5.272637 38.64% 4.658459 4725654492  6.153673043  44.28% N/A
2/3/2019 11/16/2019 12/28/2019 4.632309 6.012528 33.87% 5.207099 41.42% N/A
2/3/2019 12/28/2019 2/8/2020 36.39% N/A
2/3/2019 2/8/2020 3/21/2020 N/A N/A N/A N/A 4725333227  5.95833119  40.85% N/A
2/3/2019 3/21/2020 5/2/2020 N/A N/A N/A N/A 3.070691867  5.077239404| 54.20% N/A

Figure 7: DeepAR vs. Arimax 6-week Error Metrics
Arimax DeepAR

train_start_daitrain_end_date Forecast_end_date MAE RMSE MAPE OSE MAE RMSE MAPE OSE
2/3/2019 3/9/2019 4/20/2019 4.641726 6.253371 36.83% 5.328114 4577913 6.428014 36.67% 5.129406
2/3/2019 3/23/2019 5/4/2019 3.868851 4.98159  47.63% 3.942981 5.152294 44.87% 4.260974
2/3/2019 4/6/2019 5/18/2019 7 38.54% | 3.450859 4.542004 33.96% 3.961448
2/3/2019 4/20/2019 6/1/2019 4.112255 5.321028 31.17% 4.965964 4212521 5.476437  29.65% 4.818447
2/3/2019 5/4/2019 6/15/2019 3.774999 5.075884 35.22% 4.402476 4.530396 5.960262 35.98% 5.183719
2/3/2019 5/18/2019 6/29/2019 4.129066 5.423194 34.73% 4.530314 4717063 6.072318  40.60% 5.452853
2/3/2019 6/1/2019 7/13/2019 40.09% | 3.455317 | 3.525897 4.542754 34.42% 3.960403
2/3/2019 6/15/2019 7/27/2019 4290358 5.482396 32.13% 4.284823
2/3/2019 6/29/2019 8/10/2019 38.49% 3.704166 4778711 5.962936 38.74% 5.290088
2/3/2019 7/13/2019 8/24/2019 29.14% 4.040852 5.220482 33.23% 4.360231
2/3/2019 7/27/2019 9/7/2019 3.974292 4.908665 40.38% 4.593085 4.553524 5.664458  46.57% 4.279112
2/3/2019 8/10/2019 9/21/2019 3.602525 4.744205 33.74% 4.120096 3.688016 4.751617 33.44% 4.18879
2/3/2019 8/24/2019 10/5/2019 4219245 5.499023  37.11% 4.472741 5.455346 44.37% 6.383374
2/3/2019 9/7/2019 10/19/2019 4.364492 5.977777  27.71% 5.617539 5.142691 6.417587 39.65% 5.748491
2/3/2019 9/21/2019 11/2/2019 4.124374 5.490373  28.21% 4.893389 5.003778 6.255517 37.70% 5.269568
2/3/2019 10/5/2019 11/16/2019 3.929425 5.176763  26.82% 4.875929 4.930213 6.580542 31.12% 5.755078
2/3/2019 10/19/2019 11/30/2019 4.338509 5.638421 37.07% 4.704612 4562522 5.826792 38.48% 5.166528
2/3/2019 11/2/2019 12/14/2019 3.782253 4.988676| 53.07% 4.275124 4.489563 5.877741 44.47% 5.152025
2/3/2019 11/16/2019 12/28/2019 3.931613 5212834 33.39% 4.358782 5.06729 6.251068 44.17% 5.589082
2/3/2019 11/30/2019 1/11/2020 4.621461 5.862759 33.97% 5.452583 5.025123 6.553467 35.56% 6.05732
2/3/2019 12/14/2019 1/25/2020 5.261619 6.769603 33.65% 5.699577 41.20% | 7.144514
2/3/2019 12/28/2019 2/8/2020 : 31.25% 6.574973 39.16% 6
2/3/2019 1/11/2020 2/22/2020 4.72063 6.197763 36.79% 5.488804 . 8 46.53% 6.375005
2/3/2019 1/25/2020 3/7/2020 4.680371 6.081747 30.34% 5.587294 5.073153 6.333538 39.12% 5.799868
2/3/2019 2/8/2020 3/21/2020 4.529023 5.676341 38.35% 5.085731 4709822 5.804439  39.13% 5.340497
2/3/2019 2/22/2020 4/4/2020 4.754054 5.959338  27.93% 5.030718 4.19746 5.325074 4.535315
2/3/2019 3/7/2020 3/21/2020 4.444443 5.682591  42.89% 3.877165 4.262154 5.516081 40.64% 5.128018



Prophet

Figure 9 below shows an example of a Prophet forecast (shown in orange) in comparison to the
actual number of ER patients (shown in blue) for a six week period.
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Figure 9: Example Prophet Prediction vs Test Data

A benefit of the Prophet model is that it uses Fourier transforms to fit each model, instead of
gradient descent like other machine learning methods; this means that it doesn’t take very long to
train a model for testing. Because of this convenient fact many different possible combinations
of hyperparameters could be tested to see which ones performed best. Overall, 540 different
combinations of hyperparameters were tested. Error metrics for each 6-week testing period were
collected for all 540 combinations of the following hyperparameters: 9 different training period

lengths, 20 different hourly Fourier orders, whether or not a day-of-the-week integer was

included, and whether or not U.S. holiday data was included. Figure 10 below shows the best
possible combination of hyperparameters for each 6-week period.

Forecast ‘Weekday U.5. Holiday Hourly

|Start Train End Train Start Forecast End Forecast Duration Regressor Information Seasonality

:(datetime] (datetime) (datetime) (datetime) (# weeks) RMSE Included? Included? Fourier Order
2/3/2019 0:00 3/9/2019 23:00 6 3/10/2019 0:00 4/20/2019 23:00 6 5.7303211 no no 6
2/3/20190:00  4/20/2019 23:00 12 4/21/2019 0:00 6/1/2019 23:00 6 5.3751443 no no 7
2/3/2019 0:00 6/1/2019 23:00 18 6/2/2019 0:00 7/13/2019 23:00 6 4.7787651 no yes 2
2/3/20190:00  7/13/2019 23:00 24 7/14/2019 0:00 8/24/2019 23:00 6 4.7061014 no yes x
2/3/20190:00  8/24/2019 23:00 30 8/25/2019 0:00 10/5/2019 23:00 6 5.4260013 no no 12
2/3/20190:00  10/5/2019 23:00 36 10/6/2019 0:00 11/16/2019 23:00 6 6.5879429 no no i
2/3/20190:00 11/16/2019 23:00 42 11/17/2019 0:00 12/28/2019 23:00 6 6.7311590 no yes 3
2/3/20190:00  12/28/2019 23:00 43 12/29/2019 0:00 2/8/2019 23:00 6 nfa nfa nfa nfa
2/3/2019 0:00 2/8/2019 23:00 54 2/9/2019 0:00 3/21/2020 23:00 6 7.5966248 no no 18

Figure 10: The best RMSE value for each combination of hyperparameters using the Prophet

model

Only one of the 6-week period’s RMSE value outperformed ARIMAX as shown in Figure 11
below:
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|Start Forecast End Forecast Prophet Beat

|(datetime} (datetime) RMSE Arimax RMSE  ARIMAX?
3/10/2019 0:00 4/20/2019 23:00 5.7303211 5.245825404 no
4/21/2019 0:00 6/1/2019 23:00 5.3751443  5.368516515 nao

6/2/2019 0:00 7/13/2019 23:00 47787651 4.450025875 no
7/14/2019 0:00 8/24/2019 23:00 4.7061014  4.629061942 no
8/25/2019 0:00 10/5/2019 23:00 3.4260013 3.71923031 yes

_ 10/6/20190:00  11/16/2019 23:00 6.5879429  5.272636799 no
11/17/20190:00  12/28/2019 23:00 6.7311590  6.012528363 no

_ 12/29/2019 0:00 2/8/2019 23:00 n/fa 6.59297977 n/a
2/9/2019 0:00 3/21/2020 23:00 7.5966248 n/a n/a

Figure 11: The best RMSE value for each 6-week testing interval: Prophet vs Arimax

Thus, even when fully tuned, the Prophet model rarely beats ARIMAX. The conclusion is that
Prophet is not a better model than ARIMAX for this application.

Simple Feed Forward

The client’s current model outperforms this model in terms of all three reported error metrics;
therefore, this model does not meet our client’s functional requirements. Figure 12 shows the
error metrics for six-week forecasts using the Simple Feed Forward model and compares it to the
error metrics from ARIMAX. The green indicates that a model produces better error metrics than
the other for that training period, while red indicates the model performs more poorly.

| ARIMAX Simple Feed Forward

|Start Train End Train End Forecast MAE RMSE MAPE OSE MAE RMSE MAPE
2/3/2019 6/1/2019 7/13/2019 3.460312 4.450026 0.343689 3.691305 4.182697 5.28795 0.446977
2/3/2019 7/13/2019 8/24/2019 3.607251 4.629062 0.342711 3.975303 3.999596 5.127083 0.380638
2/3/2019 8/24/2019 10/5/2019 4.287671 5.71923 0.31099 4.968171 4.500581 5.989576 0.359334
2/3/2019 10/5/2019 11/16/2019 4.004722 5.272637 0.386437 4.658459 4.980046 6.26155 0.543905
2/3/2019 11/16/2019 12/28/2019 4.632309 6.012528 0.338734 5.207099 4.964541 6.438376 0.35246
2/3/2019 12/28/2019 2/8/2020 5.022607 6.59298 0.322758 5.911756 5.433798 6.691014 0.530985
2/3/2019 2/8/2020 3/21/2020 5.098894 6.421074 0.463298

Figure 12: Simple Feed Forward vs. ARIMAX 6-week Error Metrics

Due to time constraints, two-week forecasts over a one year period were not produced for the
Simple Feed Forward model.

N-Beats

This model produces slightly worse error metrics than the ARIMAX model for some of the
six-week blocks. Given more time to tune the hyperparameters for specific blocks in the fiscal
year, this model could produce improved metrics. Figure 13 shows the graph of a six-week
forecast from N-Beats and the test data.
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N-Beats Forecasting Prediction of Testing Set
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Figure 13: N-Beats Prediction vs Test Data

error metrics for each forecast length compared to the error metrics for ARIMAX. These figures
are color-coded such that the model with the better error metric for that training period is
highlighted green, and the model with the worse error metric is highlighted red. From Figures 14

and 15, it is clear that ARIMAX outperforms N-Beats for both the two-week and six-week

forecasts over a one year cycle.

ARIMAX N-Beats

End Train  End Forecast MAE RMSE MAPE OSE MAE RMSE MAPE OSE
4/20/2019 6/1/2019 4.054594 5.368517 0.335044 4.721882 4.677483 6.074822 0.331355 5.50209

6/1/2019 7/13/2019 3.460312 4.450026 0.343689 3.691305 3.938129 5.11222 0.335147 4.541053
7/13/2019 8/24/2019 3.607251 4.629062 0.342711 3.975303 4.029145 5.16964 0.339115 4.49488
8/24/2019 10/5/2019 4.287671 5.71923 0.31099 4.968171 4.65502 6.162937 0.330648 5.297149
10/5/2019 11/16/2019 4.004722 5.272637 0.386437 4.658459 4.386376 5.74175 0.422951 4.943494
11/16/2019 12/28/2019 4.632309 6.012528 0.338734_ 5.207099 5.040016 6.595489 0.335575 5.790252
12/28/2019 2/8/2020 5.022607 6.59298 0.322758 5.911756 6.573953 8.425699 0.364757 7.50885
2/8/2020 3/21/2020 5.105865 6.3732 0.394469 5.313599
3/9/2019 3/23/2019 6.188164 8.308201 0.413328 7.30406°

Figure 14: N-Beats vs. ARIMAX 6-week Error Metrics
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ARIMAX N-Beats

:Start Train  End Train End Forecast MAE RMSE MAPE OSE MAE RMSE MAPE OSE
2/3/2019 3/9/2019 3/23/2019 4.64173 6.25337 0.36827 5.32811 5.85301 7.94032 0.4204 7.03587
| 2/3/2019  3/23/2019  4/6/2019 3.86885 4.98159 0.47634 3.03492 3.9488 5.03903 0.49055 3.58578
2/3/2019 4/6/2019 4/20/2019 3.35974 4.25488 0.38538 3.1652 3.50909 4.78523 0.33517 3.86542
| 2/3/2019  4/20/2019  5/4/2019 411226 5.32103 0.31167 4.96596 5.85829 7.57776 0.36779 6.69467
2/3/2019 5/4/2019 5/18/2019 3.775 5.07588 0.3522 4.40248 471986 6.1426 0.38129 5.46029
| 2/3/2019 5/18/2019 6/1/2019 412907 5.42219 0.34726 4.53031 5.04603 6.67431 0.37739 5.99783
2/3/2019 6/1/2019 6/15/2019 3.31714 4.15765 0.40088 3.45532 3.63709 4.75849 0.34795 4.19971
| 2/3/2019 6/15/2019 6/29/2019 3.53597 4.80339 0.2401 3.73995 485584 6.18373 0.23839 5.44989
2/3/2019  6/29/2019 7/13/2019 3.45599 4.24979 0.38491 3.70417 422641 5.2094 0.40681 4.86017
| 2/3/2019 7/13/2019 7/27/2019 3.21441 4.14975 0.29137 3.23014 3.6532 4.65981 0.2051 4.22684
2/3/2019  7/27/2019 8/10/2019 3.97429 490866 0.40385 4.59309 4.88294 6.15142 0.40695 5.6005
| 2/3/2019 8/10/2019 8/24/2019 3.60252 4.74421 0.33741 4.1201 3.96818 5.31245 0.301 4.45545
| 2/3/2019  8/24/2019  9/7/2019 421925 5.49902 0.37109 4.47274 4.84816 6.37018 0.40424 5.51008
2/3/2019 9/7/2019 9/21/2019 436449 5.97778 0.27712 5.61754 497698 6.44312 0.35246 5.80822
2/3/2019  9/21/2019 10/5/2019 4.12437 5.49037 0.28206 4.89339 5.18765 6.675 0.304 5.7266
| 2/3/2019 10/5/2019 10/19/2019 3.92942 5.17676 0.26816 4.87593 460075 6.02774 0.33191 5.37577
| 2/3/2019 10/19/2019 11/2/2019 4.33851 5.63842 0.37071 4.70461 468147 6.13047 0.37808 5.12344
2/3/2019 11/2/2019 11/16/2019 3.78225 4.98868 0.5307 4.27512 3.68205 4.78437 0.44857 3.94353
| 2/3/2019 11/16/2019 11/30/2019 3.93161 5.21283 0.33388 4.35878 4.82578 6.44155 0.31377 5.87683
2/3/2019 11/30/2019 12/14/2019 4.62146 5.86276 0.33967 5.45258 5.77677 7.26453 0.36048 6.62355
| 2/3/2019 12/14/2019 12/28/2019 5.26162 6.7696 0.33648 5.69958 5.81207 7.52422 0.35551 6.18918
2/3/2019 12/28/2019 1/11/2020 5.68899 7.37231 0.31249 6.57497 5.73377 7.31147 0.31577 6.71084
| 2/3/2019  1/11/2020 1/25/2020 472063 6.19776 0.3679 5.4888 5.89992 7.5936 0.45047 6.32192
2/3/2019  1/25/2020  2/8/2020 4.68037 6.08175 0.3034 5.58729 6.2476 7.93726 0.34638 7.11459
| 2/3/2019 2/8/2020 2/22/2020 452902 5.67634 0.38353 5.08573 4.88132 6.16737 0.41945 5.21899
2/3/2019  2/22/2020  3/7/2020 4.75405 5.95934 0.27934 5.03072 5.39278 6.65085 0.30835 6.00078
| 2/3/2019 3/7/2020 3/21/2020 4.44444 568259 0.42892 3.87716 4.4461 57254 0.37622 4.76332

Figure 15: N-Beats vs. ARIMAX 2-week Error Metrics

Task 2 (Ul/ Front End)

The overarching goal of the user interface side of the project was to develop a potential model
for Medecipher to implement into their current website to help schedule and adjust hospital
nursing schedules. Originally, we were expected to code and develop a website in AngularJS, but
after discussing our lack of web development experience with our clients, our project was
changed to help them think of design ideas for the current website. We have developed a few
different models, all with different layouts and user interface options, and gone through the
strengths and limitations of each of them to assist Medecipher in deciding what to fully
implement.

Unimplemented Features
Task 1 (Forecasting model):

- Explore combining models to improve error metrics
Task 2 (Ul/Frontend):

- We did not end up using Angular]JS for our final project, as learning and implementing
Angular]S was a little out of our experience area.

Lessons Learned
- Training deep learning models takes a long time. Increasing the number of epochs
produces more accurate forecasts, but it can also result in the model taking hours to train;
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this is also true for several other hyperparameters. In general, we can create pretty
accurate forecasts but the tradeoff is increased training time.

To code in AngularJS, the user must be completely organized in every aspect of their
project. It is very difficult to develop a website that is actually worth implementing just
because of how many different files are required for one page.

Between efficiently communicating, understanding clear goals, and delivering a product,
working for a real-world client is not easy.

Staying organized over the course of a project is very helpful in determining what is
feasible by the end of the project.

Communicating with your client is truly the best way to progress in the project. If there
are any questions at all, asking our client would immediately clear up issues and
problems.

Make sure your client understands what you are capable of so that they have realistic
expectations.

Python is a very useful language for constructing deep learning models. The
programming language offers several libraries and packages with pre-existing deep
learning models already built in.
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VII. Appendix

All Front End Mockups
Design 1
WARNINGS (in order of pririty)
FY: L .
A START TIME: END TIME:
FY20
BLOCK: [} RN SELECT L || To0 many RNs scheduled on MMDD
JILL does not work enough hours
Weekda]@. Week X
Not enough nursing experience on
MM/DD
Week MM/DD - MM/DD ;
Week 2 Monday iTuesday
01234567891011 12 13 14 15 16 17 18 19 20 21 2223‘:01234567’8910
= I e
Role: TR
Week 4 _ Skills: ACLS, TNS, HAZ
Experience: 8 years
Week 5 _ Shift: 11 -22 Type: 11
Total hours this week: 36
Week 6 [ oaNn ] Notes
Design 2

WARNINGS (in order of priority)
BLOCK: RN NOTES:
Experience, work filters, part time/full time, etc. Too many RNs scheduled on MM/DD

TIFFANY does not work enough
Weekdm@ hours Week X

Not enough nursing experience on
MM/DD

Qualifications Fri | sat | sun f
ACLS, ECRN

D9

TNCC, HAZ
ACLS, ECRN, TNCC
ACLS
ACLS, TNCC
TNS
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Design 3

FY:
June 2020 < > FY19 x Go Tc‘i , NO
EY20 etz CONFLICT
] M T w T F 5
M 1 2 a3 4 § g Week of . - _ WARNING Not enough nursing experience on
MM/DD
7 [e (8) 10 11 12 13)
15 16 17 18 19 20
‘ 6/8/2020 [Mon] 6/9/2020 [Tues]
Fal 2z 23 24 25 26 27
28 29 30 1 3 ] ?
1] 7 ] 10 n 2
3
RN SELECT & 4
5
6
STARTTIME: __ Weekday: 7 Name: Kyle
8 Role: TR
END TIME: _ 9 Skills: ACLS, TNS, HAZ
10 Experience: 8 years
i Shift: 11 - 22 Type: 11
= BLOCK: i
‘ SHIFT TYPE ‘ ‘ 11 Total hours this week: 36
12 Notes
RN NOTES: 13
Experience, work filters, part 14
time/full time, etc. 15
16
_ -
il

Design 4

FY:
FY19 x
FY20

WARNING

oV FED

Week 1 | REC COUNT 2 =2l 2| El2 12222z 2
COUNT 2 A e
Week 2
0 3 /a5 6|7 |8 ]9 [10]11]12]13
Week 3 [gmmy |
Jimmy J}
Week 4 Jimmy &
[week s |-
H Jimmy J}
[Wook o | o |9 I
Jimmy J}
Jimmy J}
Jimmy {l”
T 4
Name: Big Jimmy o
Role: TR
Skills: ACLS, TNS, HAZ &
Experience: 8 years Ll
Total hours this week: 36 il
Motes
_|[@
Jimmy 4
Jimmy J}
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Error Metrics
Mean Absolute Error:

1
MAE = = ) eryn
= lersal

Root Mean Squared Error:

RMSE = | =) "(erss)?.

Mean Absolute Percent Error:

1 Tk
MAPE = — T4kl
= > Iprnl

" h=1

Mean One-Sided Error:

max(Actual Count - Forecast, 0) / (number of positive values)
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