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I. Introduction 
Medecipher is a Denver-based health IT start-up that aims to optimize clinical operations. 

They provide hospitals with forecasts of the expected number of patients in a given hour so that 
the hospital can appropriately allocate its resources. Medecipher’s current forecasting model, 
ARIMAX,  helps their hospitals to better match the number of needed nurses to the volume of 
patients. 

The goal of this project was to manage nurse staffing in the emergency environment more 
efficiently. In hospitals, there is currently a lot of variability in the input and output of patients. 
For this reason, it is difficult to predict the required amount of staffing for any given time. Using 
SageMaker, our first task was to create a more accurate and precise predictive model than the 
one Medecipher is currently using, working with years of hospital data. Nurses have 
variable-length shifts (8 hours, 10 hours, or 12 hours), and the rule-of-thumb in hospitals is to 
maintain a 4:1 ratio for patients to nurses. With this information, we created different suggestive 
nurse schedules, differentiated by how much the 4:1 ratio is violated by the model (20%, 15%, or 
5% ratio violation). 

Besides statistical modeling, we also worked on the front-end user interface of the 
Medecipher website. The current state of the Medecipher website allows for hospitals to select 
one given day for a few different staffing schedules. To better handle the problem, we designed a 
six-week calendar for clients to use, with color coding and possible alterations for the client to 
use. We also wanted the client (hospitals) to be able to filter specifications for what they would 
like in their schedule.  
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II. Functional Requirements 
 
Task 1 [Improve the Forecasting Model]: 
 

1. Set up AWS workflow to build & deploy models using SageMaker - Jupyter Notebooks  
2. Understand current ARIMAX forecasting model parameters, input, accuracy, and 

challenges 
3. Build models for producing hourly census & arrival forecasts using SageMaker 

a. Models to be built: Prophet, LSTM, N-Beats, Simple Feed Forward, DeepAR 
4. Publish code to AWS Code Commit using Jupyter notebook workflow 
5. Create a GUI to input parameter values 
6. Produce control charts for error monitoring 

 
Task 2 [User Interface/Front-end]: 
 

1. Create angular component that displays a schedule planner based on the forecasting 
model from Task 1  

2. Features: 
a. Filters: Fiscal Year (FY), block, day of week 
b. Printing: Ability to print the daily schedule (4a today thru 11a tomorrow) 

3. Data interface  
a. Incorporate static, hard-coded data to the front-end using JSON or other data 

objects.  
 
III.     Non-Functional Requirements 

1. The code for the forecasting model must be written in Python, R, or AMPL. 
2. The program must use the Jupyter Notebook development environment.  
3. The forecasting model must be built using AWS SageMaker. 
4. UI mockups must have a comprehensive workflow. 
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IV.     System Architecture and Technical Design 
 
Task 1 (Improve the Forecasting Model): 
 
DeepAR is a machine learning algorithm built into Amazon Sagemaker. DeepAR uses Recurrent 
Neural Networks to make both point and probabilistic predictions. Training data is inputted as a 
JSON file and prediction requests are made to an endpoint using JSON lines commands. The 
workflow for implementing the DeepAR model is shown below in Figure 1. 
 

 
Figure 1: DeepAR workflow 

 
Figure 2 below is the workflow for the Simple Feed Forward and N-Beats models. Both these 
models are built into the GluonTS toolkit for time series modeling, and therefore have similar 
workflows. Census data is read in from a CSV file and split up into training and testing data; 
these sets of data are then converted into ListDataSets objects so that they are in the correct 
format to make predictions. An estimator is created with all the hyperparameters for the model; 
this is the only part of the code that is different for the two models as each model has its own 
defined estimator class. A predictor is created from the estimator and is used to make forecasts. 
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Figure 2: Simple Feed Forward and N-Beats Workflow 
 
The Prophet model was developed by Facebook to predict website traffic. It uses Fourier 
analysis to fit seasonal (periodic) data. In addition there are other interesting features that the 
model can use in it’s predictions including: standard holiday’s from the country in which the data 
is taken from, weekly seasonality, specific Fourier orders for each regressor etc. In this 
application we are using Prophet to predict hospital ER patient arrivals. Figure 3 Below shows 
the workflow for Prophet.  
 

 
Figure 3: Prophet Workflow 

 
Task 2 (User Interface/Front-end): 
 
Ultimately, the front end of the project will be created by Medecipher in AngularJS. The website 
will be connected to the rest of the website via a python application, such as Flask, to update the 
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schedule planner and nursing forecasting model in real time. Each different component of the 
website will have its own corresponding type script, CSS and HTML so that everything is styled 
appropriately and located where it should be on the site. As of right now, we have created mock 
up models of potential designs to pursue with the website.  
 
Final Website Mockup 

 
 
Model Description: 
Schedule module: 

This model is based on a more interactive spreadsheet style planner. It also is based on 
the scheduling software used at golf courses. 
Nurses Column: 

Each nurse has their own row. Clicking on the [↓] in the nurse row provides information 
on the selected nurse. To register a nurse for a specific time, the user needs to just click on a box 
in the grid, and the nurse will be scheduled for that time. Clicking on a box with a shift already 
scheduled removes the shift for that hour. 
Warning Row: 

The colored row above the time is the warning indicator row. If there is no warning, it 
will simply light up as a green box. If there is a warning, the respective column for the hour will 
change color to the most severe warning and create a pulldown menu (  [↓]  ) containing a 
description of all the warnings for a given hour. 
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Role Selector: 
This selects which role to display the schedule for. 

Week Selector: 
This selects which week to display the schedule for. 

Print Button: 
Brings the user to the print screen. 

Add Nurse Button: 
The “Add Nurse” button creates a popup that will ask for information on the nurse being 

added. After being added, a nurse will appear in a new role for the role(s) they were selected for. 
The other information can be accessed from the  [↓] in the respective nurse’s row. 

 
Limitations: 

- Shift must be punched in hour by hour. 
- Potential display issue from the end of a week to the beginning of the next. 
- Removing a nurse from one role could end up removing them from all roles. If not, 

reregistering that nurse could create a duplicate. 
- Roles are in separate views and may be difficult to compare with each other. 

 
Possible Small Changes: 

- Add a way to schedule a shift from a Start to Finish.  
- Connecting to a database that contains “Nurse” objects would make “ADD NURSE” 

much easier. 
- Make it obvious how many nurses are needed at any given hour so the manager doesn’t 

have to guess and get a warning first. 
 
 
 
  

6 



V.     Quality​ ​Assurance 
 
Task 1 (Back End): 
 

- Code review 
- During one meeting, we determined that the LSTM model was proving too 

difficult to implement, due to lack of documentation and little versatility, so we 
moved on to other algorithms such as simple feed forward and N-Beats. 

- User acceptance testing 
- Error metrics of new model should beat error metrics of previous model and work 

well over time. 
- Met with Medecipher and ran through Jupyter notebooks for validation.  
- Each of us on the data science side met with Medeciphers data science specialist, 

Kevin, one-on-one to ensure the quality of our jupyter notebooks. All of us were 
told that the notebook code and documentation is acceptable for their use. 

 
Task 2 (User Interface/Front-end): 
 

- Design Mock-ups for review before implementing design 
- A discussion and/or wireframe was thought through before the next stage of the 

UI is implemented. 
- Weekly review meetings with Parker from Medecipher 

- Every Thursday, we met with the main connection between us and Medecipher, 
Parker, to ensure that we understood the task at hand and how to proceed with the 
project. 

- Meetings with Medecipher occur 2-3 times a week in order to make sure priorities 
stay in line with expectations. Every other week there is a larger scale meeting 
with Medecipher in which Task 1 and Task 2 work correlate with 10+ members of 
Medecipher to produce a plan for the following weeks. 

- Within these meetings, we also discussed the requirements of the final project, as 
they changed on more than one occasion. 
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VI. Results 
 
Task 1 (Forecasting/Back End): 
 
Throughout trying to improve the forecasting algorithm, we experimented with 5 different 
models: DeepAR, Prophet, Simple Feed Forward, N-Beats, and LSTM. The ultimate goal in each 
of these models is to minimize the desired error metrics mean absolute percentage error (MAPE), 
root mean square error (RMSE), and mean absolute error (MAE), and to reach better error 
metrics than the current model Medecipher is using, called ARIMAX.  
 
DeepAR 
 
Figure 4 shows the graph of a six-week forecast from DeepAR versus the test data. The DeepAR 
model has slightly worse error metrics than the ARIMAX model. This could be improved with 
more hyperparameter tuning. Because DeepAR takes a long time to train models and requires 
creating and using an endpoint, it is more time-consuming to tune than other models. 
 

 
Figure 4: DeepAR Prediction vs. Test Data 

 
After creating the error monitoring chart in Figure 5, we decided to try averaging the models 
together as shown in Figure 6 to see if it is more accurate than Arimax. The error metrics for the 
combined model were slightly better than both Arimax and DeepAR. It could be worth exploring 
combining the models to improve accuracy. 

 

 
Figure 5: Error monitoring chart for DeepAR vs. Arimax 
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Figure 6: DeepAR and Arimax Combined Average Prediction 

 
Figures 7 and 8 show the error metrics for DeepAR compared to Arimax for a six and two week 
forecast respectively. Due to time constraints, long training time, and model limitations the 
metrics for the combined model and some other data are missing. DeepAR did not perform better 
than Arimax over a one-year cycle. 
 

 
Figure 7: DeepAR vs. Arimax 6-week Error Metrics 

 

 
Figure 8: DeepAR vs. Arimax 2-week Error Metrics 
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Prophet 
 
Figure 9 below shows an example of a Prophet forecast (shown in orange) in comparison to the 
actual number of ER patients (shown in blue) for a six week period.  

 
Figure 9: Example Prophet Prediction vs Test Data 

 
A benefit of the Prophet model is that it uses Fourier transforms to fit each model, instead of 
gradient descent like other machine learning methods; this means that it doesn’t take very long to 
train a model for testing. Because of this convenient fact many different possible combinations 
of hyperparameters could be tested to see which ones performed best. Overall, 540 different 
combinations of hyperparameters were tested. Error metrics for each 6-week testing period were 
collected for all 540 combinations of the following hyperparameters: 9 different training period 
lengths, 20 different hourly Fourier orders, whether or not a day-of-the-week integer was 
included, and whether or not U.S. holiday data was included.  Figure 10 below shows the best 
possible combination of hyperparameters for each 6-week period.  
 

 
Figure 10: The best RMSE value for each combination of hyperparameters using the Prophet 

model 
 
Only one of the 6-week period’s RMSE value outperformed ARIMAX as shown in Figure 11 
below: 
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Figure 11: The best RMSE value for each 6-week testing interval: Prophet vs Arimax 

 
Thus, even when fully tuned, the Prophet model rarely beats ARIMAX. The conclusion is that 
Prophet is not a better model than ARIMAX for this application. 
 
Simple Feed Forward  
 
The client’s current model outperforms this model in terms of all three reported error metrics; 
therefore, this model does not meet our client’s functional requirements. Figure 12 shows the 
error metrics for six-week forecasts using the Simple Feed Forward model and compares it to the 
error metrics from ARIMAX. The green indicates that a model produces better error metrics than 
the other for that training period, while red indicates the model performs more poorly. 
 

 
Figure 12: Simple Feed Forward  vs. ARIMAX 6-week Error Metrics 

 
Due to time constraints, two-week forecasts over a one year period were not produced for the 
Simple Feed Forward model.  
 
N-Beats 
 
This model produces slightly worse error metrics than the ARIMAX model for some of the 
six-week blocks.  Given more time to tune the hyperparameters for specific blocks in the fiscal 
year, this model could produce improved metrics. Figure 13 shows the graph of a six-week 
forecast from N-Beats and the test data.  
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Figure 13: N-Beats Prediction vs Test Data 

 
N-Beats was used to run both two-week and six-week forecasts. Figures 14 and 15 show the 
error metrics for each forecast length compared to the error metrics for ARIMAX. These figures 
are color-coded such that the model with the better error metric for that training period is 
highlighted green, and the model with the worse error metric is highlighted red. From Figures 14 
and 15, it is clear that ARIMAX outperforms N-Beats for both the two-week and six-week 
forecasts over a one year cycle.  
 

 
Figure 14: N-Beats vs. ARIMAX 6-week Error Metrics 
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Figure 15: N-Beats vs. ARIMAX 2-week Error Metrics 

 
Task 2 (UI/ Front End) 
 
The overarching goal of the user interface side of the project was to develop a potential model 
for Medecipher to implement into their current website to help schedule and adjust hospital 
nursing schedules. Originally, we were expected to code and develop a website in AngularJS, but 
after discussing our lack of web development experience with our clients, our project was 
changed to help them think of design ideas for the current website. We have developed a few 
different models, all with different layouts and user interface options, and gone through the 
strengths and limitations of each of them to assist Medecipher in deciding what to fully 
implement.  
 
Unimplemented Features 
 
Task 1 (Forecasting model): 
 

- Explore combining models to improve error metrics 
 
Task 2 (UI/Frontend): 
 

- We did not end up using AngularJS for our final project, as learning and implementing 
AngularJS was a little out of our experience area. 

 
Lessons Learned 

- Training deep learning models takes a long time. Increasing the number of epochs 
produces more accurate forecasts, but it can also result in the model taking hours to train; 
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this is also true for several other hyperparameters. In general, we can create pretty 
accurate forecasts but the tradeoff is increased training time. 

- To code in AngularJS, the user must be completely organized in every aspect of their 
project. It is very difficult to develop a website that is actually worth implementing just 
because of how many different files are required for one page.  

- Between efficiently communicating, understanding clear goals, and delivering a product, 
working for a real-world client is not easy. 

- Staying organized over the course of a project is very helpful in determining what is 
feasible by the end of the project. 

- Communicating with your client is truly the best way to progress in the project. If there 
are any questions at all, asking our client would immediately clear up issues and 
problems.  

- Make sure your client understands what you are capable of so that they have realistic 
expectations. 

- Python is a very useful language for constructing deep learning models. The 
programming language offers several libraries and packages with pre-existing deep 
learning models already built in.  
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VII. Appendix 
 
All Front End Mockups 
 
Design 1 

  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Design 2 
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Design 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Design 4  
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Error Metrics 
Mean Absolute Error: 

 
Root Mean Squared Error: 

 
Mean Absolute Percent Error: 

 
Mean One-Sided Error: 
 

max(Actual Count - Forecast, 0) / (number of positive values) 
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