

Datava 2: Hardware Control from the Internet

Guilherme Alves, Andrew Hupp, Julius Kaminski, Nicholas Karst

Date: June 12th, 2020

Page 1

Table of Contents

Introduction 1

Specifications 2

Functional Specifications 3

Non-functional Specifications 3

Architecture 3

Front-End Architecture 3

Back-End Architecture 4

Technical Design 5

Interacting with Hardware 5

UI Design with Ext JS 6

Quality Assurance 7

Code Reviews 7

User Acceptance Testing 7

Results 8

Unimplemented Features and Future Work 8

Summary of Testing 8

Results of Usability Tests 8

Lessons Learned 8

1. Introduction

Page 2

 Datava Inc. is a software company specializing in business software for other companies.

One of their clients is Purakal Cylinders, an Oregon-based pneumatic and hydraulic cylinder

manufacturer. As the cylinders are manufactured they are marked with tags that hold information

about the cylinder such as serial number, specifications, and a QR code. These tags are created

using a laser marker (shown in Figure 1). The marker takes a template and then loads the

required information into certain fields. While the marker comes with software to operate the

hardware, it does not match up with how Purakal wishes to structure their workflow. Luckily, the

interface implements an API that allows for a great deal of control over the hardware, such as

allowing a user to set template parameters, request previews, and query the marker’s status in

several ways. With this API, Datava has been hired to build a custom interface for the laser

marker that will match Purakal’s wishes and allow them to create these tags easier and faster.

 This custom interface would use the API created by the laser marker’s manufacturer, as

well as various database tables specifying the necessary information to simplify Purakal’s

process. To further optimize this process, job information would be loaded by scanning QR

codes that are already in use throughout their manufacturing process. The process of scanning

this QR code would query the relevant database tables for necessary information and display this

data to the user. This project was then passed on to this field-session team for implementation.

This implementation had the main goal of making the process of completing these jobs more

seamless and easy enough for a first time user to operate.

Figure 1: TYKMA Minilase™ Laser Marking System

2. Specifications

Page 3

Functional Specifications

The system loads the initial data of the templates and the marks from an interface that is

Purakal specific. From there, the user is shown what cylinders are a part of a particular order and

can choose to do all available marks or only certain marks. Then the system will take the selected

jobs and will pass the information to the laser marker through the TCP/IP interface. At this point,

the operator will only need to load the material to be marked and start the laser marker.

 In order for this system to be flexible, the database holds some configuration regarding

the marker. As implemented, the tables hold the marker’s address and default request timeout,

but other configuration information may also be added later if necessary. This configuration has

the advantage of allowing a single marker to move within the network and allows multiple

markers to be used if future expansion is deemed appropriate.

Non-functional Specifications

The user interface is designed to be simple to use and easy to understand. The application

displays to the user the available jobs to mark in a table. This table displays the order in which

marks will be made, the name of the template, and the parameters that will be used to mark the

template. The user can choose to mark all or mark only the top row, which can be changed by

dragging and dropping the desired row to the top. The top row will also be previewed to the right

of the table so the user is informed of what the mark should look like. At any point, the user can

stop the process after the current part is done or immediately using two buttons on the interface.

Since our application was built upon Datava’s existing codebase we had to use the same

languages and technologies as their other applications. For the client-side work, we used

JavaScript and the framework Ext JS. This framework allowed our user interface to handle all

the requests to the server-side of the project and facilitated extensible code. On the server-side,

PHP was the programming language of choice, with the database used to store and load data

being a Microsoft SQL server. For version control we use Subversion. Most of the coding

standards being used are standard practice for each language.

3. Architecture

This system architecture was built largely in two parts: the user interface and the back-

end. The following subsections describe the architecture of each of these parts in detail.

Front-End Architecture

 To accomplish these tasks, the team used a version of Ext JS to create an interface that

would be pleasing to the end-user and was also able to communicate effectively with the back-

end. The goal of this interface is to display information to the user in an understandable and

pleasing way, and receive input and send it along to the back-end. The user interface is largely a

table that displays the template ID and the parameters for that template. The information of this

table will be gathered by an outside system. For efficiency, this table has a drag and drop feature

that allows users to change the order that parts are marked in. The UI is set up so that the specific

template of the first item automatically appears in a Preview Panel to the right of the table with

Page 4

any mutable fields set to the row’s parameters. The interface features Ext JS buttons to allow the

user to control the applications. Those elements use various event listeners to update its interface

dynamically. When directed by the user, the interface would generate Ajax requests to direct the

back-end to perform certain actions. These actions could simply update the interface or control

the laser marker and what gets loaded into it. The functions would then carry out their respective

actions until the system has been updated or the next user input is required. Importantly among

these actions is the ability to choose which jobs to send to the laser marker. This is done by either

choosing to mark the first job in the drag and drop grid or choosing to mark all available jobs.

This lets the user be flexible in what they want to achieve and how.

Back-End Architecture

The backend of the system handles all requests from the front-end. One such request is if

the front end requests a preview, the back-end will load the correct template to the laser marker,

set its parameters, and request the preview. The resulting image will then be passed back to the

front-end, where it can be displayed to the user.

Interaction with the laser marker is done through a TCP/IP interface. This interface was

designed to accept GET parameters passed to specific files at its IP address. To facilitate using

this interface, the back-end also provides an API wrapper, allowing requests to be forwarded to

any marker made by the same manufacturer. This API wrapper uses the Templates, Parameters,

and Job Info tables to validate that all necessary data is present and that the provided data is safe

to use (I.E. a user is not attempting to inject code to the server). All of the requests to the

hardware are stored in their own control class that could be reused for any projects that require

interaction with the laser marker. The back-end also handles all interactions with Datava’s

database. Though the feature was not able to be implemented in time, the back-end would do

tasks such as logging what marks took place, at what time, and by whom. For this purpose,

several tables were created to hold all necessary information.

These tables were arranged as displayed in the figure below. Each box represents a

separate table, where its name is in bold, and each column is the text below it. The Templates

table is required to hold any information about templates that could be used for the laser marker.

Each template has a foreign key to the Parameters table, where its parameters are stored. These

two tables allow multiple templates with different parameters to both work in the system. A Job

Info table holds the currently selected jobs that need to be marked. This table has a foreign key

referencing the templates table to match jobs with their required template. The Log table holds

information about what jobs were done and when to let Purakal better keep track of their daily

work. This table has a foreign key to the “Job Info” table for the job the log entry is referencing.

Lastly, we have a Lasers table that is responsible for holding each laser marker’s name and

address within the network. Figure 2 shows a model of the relevant tables in the database.

Page 5

Figure 2: Database Model

4. Technical Design

 Interacting with Hardware

 The focus of this project was a laser marker manufactured by TykmaLaser. This laser

marker and its software allow parameters to be set using a TCP/IP interface to load parameters

and query for the marker’s status. This TCP/IP interface is actually built as an HTTP server, such

that specific ‘files’ direct the marker to perform certain actions, and additional parameters are

passed as GET variables (The variables passed to a web server after the question mark ‘?’ in a

URL). Unfortunately, using these directly is both difficult and possibly unsafe. Therefore, an

interface was built in PHP to manage communication with the marker.

 This layer of abstraction was built to take in parameters from an Ajax request and route

that information to the correct API function. This API is a thin wrapper on all of the marker’s

functions, allowing them to be called from PHP functions. On each request received from the

user, a new control object is created. This control object contains the rest of the necessary

information to generate a call to the laser marker (IP address and timeout). After the creation of

that object, cURL is used to call the corresponding action on the laser marker and retrieve its

response. Each call may generate a different type of response. For example, some calls request

Page 6

the status of the machine, while others set a template to be used, and others retrieve the

parameters that are currently set. All of these responses are then packaged up in JSON objects,

either containing an error or the result of a query and passed back to the client. Overall, the

system is designed as shown in Figure 3.

Figure 3: Information Flow Diagram

 UI Design with Ext JS

 The front-end also proved to have technical challenges with designing the UI. Datava’s

existing documentation and applications used a specific version of Ext JS for User Interfaces.

Keeping with the client requests and consistency, we had to make sure that all the design and

technical features in the front-end followed the Ext JS classes and formats. The Ext JS version

documentation was very helpful in describing different features and how we can implement

them. The trouble lied mainly in inexperience with JavaScript. We had a design plan to follow

the Ext JS documentation but had to change most of the plan because of the way JavaScript

works and handles code.

 These design changes we had to make were to ensure robust communication with the

back-end. Waiting for returns from the back-end was a significant issue with this

communication. The UI had to be loaded in a way that didn’t rely on the initial result value of

Ajax requests, as Ajax requests are asynchronous. However, the requests could load data in the

background by using callbacks. An example of this would be the Preview Panel. Since we

wanted the image shown to change depending on which part was first in the completion order, an

Ajax request and response had to be made for the Base64 encoded image. In our original plan,

we made the code so that when the table refreshes after a change, the image would load in the

same function. We learned that designing it this way would cause delays because of the way

Ajax requests are loaded in JavaScript. The code we ended up using loaded the images through a

callback, allowing the image to appear whenever the result came back. This allowed the

interface, shown in Figure 4, to refresh and load while working within the asynchronous model

of Ajax requests.

Page 7

Figure 4: User Interface

5. Quality Assurance

Code Reviews

Throughout our development process, we used informal code reviews with our main

contact from Datava to ensure we were writing higher quality code. These reviews helped us to

better understand security implications, standard practices, and the expected structure of our

project based on an existing codebase. As such, code reviews often highlighted necessary

revisions to code architecture and prompted refactoring of the system.

Our main reason for doing code reviews was to ensure that our code meets quality

expectations for applications built within Datava’s system. However, code reviews also allowed

Datava to guide development so that it reflects their latest decisions regarding their codebase.

This prevented the unintentional use of legacy code practices used by older applications,

allowing them to move the codebase in the desired direction.

In addition, having our code reviewed by someone more familiar with Datava’s codebase

and web development as a whole allowed us to more easily debug and prevent potential issues.

User Acceptance Testing

 Throughout our time working with Datava, we have had weekly meetings with Purakal

Cylinders, the end-user of our application. The main goal of these meetings was to learn more

about their workflow and discuss the direction our development was going. This allowed us to

get initial feedback from the end-user about what they do and don’t want from the application

and gave us a chance to discuss design decisions that had not previously come up. In addition,

Page 8

we demonstrated our product to Purakal so that they could verify the application matches their

product vision.

6. Results

Unimplemented Features and Future Work

 Due to time constraints, some features were dropped from the project but are still planned

to be implemented in the future by Datava. Firstly, usage information is not currently being

logged to the database. The tables are set up to allow logging, but the backend is not able to

handle it yet. Secondly, the QR scanning functionality was dropped to focus on polishing the

interactions between our application and the marker. However, adding QR code integration

should be relatively easy with the existing project structure.

Summary of Testing

 Our team primarily used Google Chrome, Safari, and Firefox to access our web

application. Since our application is based inside Datava’s existing system, much of testing that

aspect is out of our hands. Communication with the server, and by extension the laser marker,

was tested using debugging tools in both Google Chrome and Visual Studio Code. The client-

side UI elements were also tested using Google Chrome's debugging tools.

Results of Usability Tests

 For our Usability Tests, we had meetings with both clients to get a list of wants for the

project and put together a list of TODOs based on those wants. This included items like an

interactable table to custom load parts, a preview of the template that will be marked, buttons to

mark the next part or all parts, and buttons to cancel the process for safety and accuracy of the

parts. However, in order for all of these UI functions to work, the back-end needed to be set up in

a way that allowed for direct communication with the laser marker. This includes proper

connections and code that the laser can understand and implement.

 The conclusion of this test proved that our product would be a much-appreciated

efficiency item for our client. While the client was not able to test the application before this

report due to VPN issues, the main goals that were agreed upon were met. Our other client was

able to test the functionalities of the back-end as he was able to see that the product not only

communicates with the front-end and laser but is also robust.

Lessons Learned

1. It is not necessary to understand an entire codebase to add to it. This project was

developed within Datava’s existing codebase, but we didn’t need to know how the entire

system worked to create a new application within it.

2. Behavior and assumptions are not always well-documented. Multiple sections of the

TCP/IP interface documentation contained incorrect information, which is why testing is

important.

Page 9

3. Always have a good understanding of available libraries before writing code. Knowing

about helpful functions other people have written prevents you from reinventing the

wheel and speeds up development.

4. Frameworks used by the client can sometimes be more difficult to learn than the

languages they are written for. For example, Ext JS was much more complicated than

JavaScript.

