
1

Final Report

6/10/2020

CSM Williams (Dr. Tom Williams)

Benjamin Jessing, Jensen Eicher, and Daniel Garcia

Conference Cycle Visualization (CCV)

2

Introduction
Our client, Dr. Tom Williams, expressed his vision for our product as a web-based visualization
for conference details. Williams is an associate professor at the Colorado School of Mines, who
desires to upgrade his website with a conference visualization platform. Conferences in his field
of computer science repeat yearly and present potential attendees with various scheduling
dates to consider. With the large quantity of conferences that a researcher must track and
manage, organization and timing can be difficult. The desired program, being developed in
HTML and Javascript, will provide an easy-to-use interface with visual aids to communicate
details and provide researchers an easier way of keeping track of each conference and their
deadlines. Williams’s platform design describes concentric rings with bolded sections and a time
marker that revolves about the center point. By clicking a ring, users may easily view
automatically scraped conference details from WikiCFP, the site on which these conferences
exist. The initial project vision that guides the development of this project is shown in figure 1.

Figure 1. Initial Product Vision

Requirements

Functional Specifications

Data collection along with visual aid and display is essential to the functionality of this product.
There are currently two methods of collecting this data in order to display to the user. The first is
by scraping data from WikiCFP by URL to include in the visualization upon the user’s request;
the other option would be to input the data manually. The data then needs to be provided in
some visual form. To this effect, conferences are symbolized in the visualization as rings. Each
ring includes a bolded section representing the abstract/submission-to-decision period, along
with the submission deadline, if there is in fact an abstract, submission, and decision deadline.
Conference details are then provided in a separate portion of the web app by a simple click. In
this manner, conference data are efficiently navigated and categorized in intuitive, custom

3

formats. In parallel to considerations of functionality, ease of use is an important aspect of the
project as well. This was the reason the option to add a conference by URL was implemented. If
the conference is on WikiCFP, the user must simply copy and paste the web URL, and our
scraper will pull that data for them. In addition, the user may also delete a conference entirely
with the click of a button. This clear, user-friendly display communicates conference details in
an orderly and refined style.

Conferences are stored as an array loaded from an imported package. Packages store
conference details, ring sequence, and color preferences. Necessary conference information
includes relevant attributes collected from WikiCFP and the user’s combined edits. The public
data is either manually entered or searched through the app and pulled from WikiCFP.

Non-Functional Specifications

Data scraping is performed in JavaScript using libraries from NodeJS. Data scrapers, also
called crawlers, are programs written to collect information from structured websites. WikiCFP is
the website from which our code will scrape text in the form of a JavaScript object type.

The visualization is easy to use and understand for new users. UI/UX is attractive to view and
conference rings are distinguishable based on color and order from the middle. The navigation
interface is intuitive and natural to navigate without distraction, enabling unfamiliar users to
adjust quickly.

Overall, integration into an existing website is straightforward and effortless. The product acts as
a “widget” and can plug-in to existing HTML smoothly. The product is programmed in HTML and
JavaScript per the client’s request. The Definition of Done is formally met and the web app is
located in a public GitHub repository where all source code and documentation will be provided.

System Architecture
Figure 2 below explains the process non-admin users follow when interacting with the web app.
Upon website startup a file living on the domain that contains the stored conference data will be
used to populate the conference visualization. Simultaneously, conference objects will be
created along with associations to their relevant visualizations. This then allows non-admin
users to click on the created visualizations and view the relevant stored information.

Figure 2. (Non-Admin) User Interaction

Figure 3 explains the process admin-users follow when interacting with the application.
Following the diagram from the yellow Startup node along applicable paths demonstrates how
admin-users can manage what is revealed to non-admin users of our product. These various
options include the deletions and additions of new conferences along with scraping WikiCFP for
relevant conference data.

4

Figure 3. Admin-User Interaction

Figure 4 below shows the architectural design of saved conferences and their integration with
the larger web application. Text files will store data of conferences scraped from WikiCFP or be
edited by users manually. The data in each text file summarizes all added conferences and their
relevant information.

Figure 4. UML Diagram of Saved Conference Data Integration with the Web App

Technical Design
The format for saved conference data is a text file. Figure 5 below demonstrates this concept:

5

Figure 5. Text File Format

The application’s homepage displays the conferences as concentric, uniquely-colored rings.
Title, dates, and other relevant information are displayed beside the visual aid with buttons for
adding and deleting conferences. The entire ring represents a calendar year and the bolded
sections represent time between deadlines. Figure 6 shows these representations below:

Figure 6. Conference Cycle Visualization Homepage (Admin)

When the “Add a Conference” button is pressed, the following pop-up window appears (shown
in figure 7). This window allows users to click a hyperlink that directs them to the WikiCFP
website. After the user finds their desired conference, they enter the URL into the specified box
to load all details automatically. For further customization of conference details, or if the
particular event does not appear on WikiCFP, the user may enter the details manually.

6

Figure 7. “Add a Conference” Pop-Up Window

7

Figure 8. Conference Cycle Visualization Homepage (User)

Figure 8 shows the forward-facing application viewed by a regular user. This version of the
program does not permit any customizations and simply displays the admin’s data and
preferences.

Software Quality Plan / QA

The table below describes all aspects of the plan to promote the software quality of this project:

Software Affect on end product

Dev-Quality

Detailed documentation High-quality documentation on all code will ensure ease of
understanding and aid in a quick integration process.

Concise, non-cluttered
code

Code that follows best practices will be easy to read, making later
additions or revisions possible.

Streamlined code Keeping code streamlined and simple will result in lower usage
costs and better user experiences.

Code reviews Peer-reviewed code creates opportunities to enhance the program.

Pair programming A collaborative work environment increases productivity and
velocity of development and well as the quality of the final product.

8

Security We aim to provide a program that limits the probability of a security
breach by following best practices, ensuring the safety of users'
emails and conference preferences.

QA

Unit testing Unit tests via MochaJS will prove our code is accurate, correct, and
robust, resulting in a high-quality product.

Client testing Client testing via MochaJS will ensure client satisfaction and allow
for revisions prior to the end of the course.

UX testing There will be tests for usability via MochaJS to provide
improvements on the application’s user-friendliness.

Disability
accommodations

Since the design is based around separating and distinguishing
conferences based on color, individuals who experience color-blindness
could find the UI challenging. In addition to color blindness, other visual
impairments might hinder the application’s usability as well. We
recommend additional investment in program development to address
accessibility issues.

Peer testing A mock client test will be performed during which a fellow computer
scientist (outside of Field Session) will download, run, and
implement the JavaScript from the public repository. This real-world
test will ensure the integration process is as easy as possible.

Course Documents/
Deliverables

Proper grammar All deliverables use proper grammar and professional verbiage.

Proper audience tone Deliverables accurately target the desired audience, providing
dense descriptions and high-level details, when necessary and/or
appropriate.

Highly informative and
properly conducted
presentations

Presentations provide an accurate, descriptive, engaging, and
professional overview of the necessary topics.

Overall document
quality

Documents and deliverables reflect a high standard of quality in
development and client satisfaction.

Project Documents

README An intuitive and descriptive README will provide proper context,
descriptions, and instructions for implementation.

Table 1. Software Quality Plan Details

9

Results

Features Deemed Out of Scope

Some initially-planned features were deemed out of scope, unnecessary, or unimplementable
by the client and/or our team. The final product will not store user data, overleaf links, or track
papers. A database of conferences will not be stored by our app due to storage constraints;
instead, this will be scraped on-demand. By removing these features from the project scope, our
product can stay within schedule.

Testing

Testing is important for ensuring the reliability and performance of a program. The following
subsections describe the approaches the CCV team has taken to thoroughly test and ensure
the utmost quality of the project.

Performance Testing Results

The UI is designed to be quick and responsive without allowing redundant files or functions to
disrupt runtime. Quick, direct, and simplified data-scraping procedures ensure fast and accurate
results of conference searches. Lag and latency are negligible, allowing full enjoyment of
workflow for program users.

Data Scraping Test Results

Meticulous tests were run to assert the validity of the information presented to users of our app.
The NodeJS server runs as intended, allowing the HTML code to speak to the JavaScript node
server effectively. The Search by URL field scrapes data from WikiCFP almost instantaneously.
“Undefined” is returned instead of a JS object if the URL searched for does not exist on
WikiCFP. If an invalid URL is entered into the previously mentioned field, an error is yielded; the
checks performed for this test make sure that manual entry cannot break the visualization by
analyzing the input string for correct formatting. The JS object returned by the data scraping
method is complete and accurate to its crawled source. Inputted and scraped strings are
trimmed of leading and trailing whitespace. Lastly, the top-five-URL method in the back-end
scraper does, in fact, return the top five conferences from WikiCFP’s homepage. MochaJS unit
tests ensure the accuracy and robustness of the web app. The back-end code loads and stores
data that is good for use and the front end displays it accurately and completely. All of these
tests demonstrate the precision and accuracy of our web app.

Usability Test Results

Workflow and speed-of-understanding are integral parts of our web app. The user experience
and interface are easily navigated. The program has not been found to be “crashable” by typical
methods of usage. Lag and latency are negligible, providing a smooth user experience. The
workflow is fluid and adaptable to a user’s preferences. Auto-filled data upon searching for

10

conferences are manually editable if the user desires changes. These important results prove
the ease-of-use to users of the app.

Front- and Back-End Compatibility Test Results

Our visualizer app relies on the flawless presentation of back-end data by the front end. After
text file imports were clear, it was verified that arrays populated conference instance members.
Variables were not null, if applicable, and angle values were clamped from zero to two-times-pi.
Date values were clamped between zero and 366 as necessary for the circular nature of the
generated diagram. Conference dates were converted to numbers and vice-versa without error.
The date object was returned when convertNumToDate was called; similarly, an integer was
returned when convertNumToDate was called. The text file export button correctly formatted the
text file and placed data in the correct positions for later reading. Most importantly, the
conference radii were evenly spaced.

Recommended Future Work

If work is to continue on this project, a few design additions might improve it. If user- and admin-
facing apps shared a database, security could be monitored and users could save personalized
data such as notes, ring colors, and links to papers and external articles. Animations would
improve the visual quality of the app by providing smoother transitions and UI feedback. Lastly,
email notifications could be beneficial to remind users about approaching deadlines. It is
recommended to implement these and any other design features that would make this app more
enjoyable to administrate and use.

Lessons Learned

This project was full of moments during which new skills were needed in order to continue
forward with its scope. Because of this, the time spent was both difficult and rewarding. Our
team overcame significant issues during development. Specifically, we realize that, while
temporal skills vary, it is essential and beneficial for the team to consistently communicate.
Along with this, attempting to develop and implement a plethora of features will never be of
greater reward than getting a small number of features to work perfectly. In other words, always
go for quality over quantity when it comes to delivering products to clients.

Understanding the aspects of the project that are unimplementable in the relative time frame is
also essential. Without this, teams could spend long hours working on code that is never
implemented. Time saved can be used to write documentation, comments, slideshows, and
other deliverables. Without comments and documentation, even small projects become
incomprehensible.

A unique perspective and lesson learned could also be taken from the current climate we are
working in. As a computer scientist, most of your work is done behind a screen and keyboard,
however, communication is more important now than ever before. Without the ability to meet
face-to-face, many concepts and ideas about discrete components of the project are lost in
translation. Inability to communicate quickly and effectively can lead to larger issues: team
morale, project workflow, and agile velocity. Overall, this field session project has helped us
learn and experience things we would not have had the chance to learn elsewhere.

11

Appendix

Links Relevant to Development & Libraries Used

 WikiCFP
 Web Scraper (Browser Extension)
 NodeJS
 Puppeteer
 Cheerio
 Request
 JavaScript
 W3Schools
 HTML
 CSS
 MochaJS

