

Seating Chart Generator for
Evening with Industry

June 10th, 2020

Team CSM SWE:​ ​Joel Bettis, Connor Pashak, Carly Arndt
Advisor: Dr. Wendy Fisher

Client: Kelly Knechtel, Annette Pilkington

1

Table of Contents
Table of Contents 1

Introduction 2

Functional Requirements 3

Non-functional Requirements 3

System Architecture 4
Import page 4

Import File 4
Display File 4
Table Preferences 4
Preassign People 4

Seating Chart Page 6
Export Dialog 7
Program Run 8

Technical Design 9
Flexible file imports 9
Seating Chart Algorithm 11

Software Quality Plan 13

Project Results 14

Lessons Learned 15

Appendix 17
Import Page 17
Seating Chart Page 18
Export Dialog 19

2

Introduction

The client for the project is one of Mines’s own organizations, the Society of Women
Engineers (SWE). They are the largest student organization on campus and the largest collegiate
section of SWE in the country. This section of SWE is focused on providing meaningful
professional development, networking, K-14 outreach, mentoring, leadership, and social
enrichment opportunities to over 700 members.

The Society of Women Engineers (SWE) at Mines hosts an annual Evening with Industry

event the night before career day. Between 300-400 students, recruiters, faculty, and VIPs attend
this networking event. The evening begins with an hour of networking followed by a sit down
dinner, with a formal program including a keynote speaker from industry. There are assigned
seats during the dinner, and the goal is to give students the opportunity to have longer, more
meaningful conversations with companies who are seeking students from specific majors. Our
Team would like to help the organizers of this event accomplish this goal making the process
easier for them.

The primary goal of this project is to streamline the generation of prioritized seating

assignments that have flexible inputs and outputs so that students may have more meaningful
networking connections with recruiters and faculty. Taking in data from client-provided excel
sheets, column headers must be dynamically read in order to generate a seating chart taking into
account each person’s major interests. The program will then allow manual editing until the user
decides to export the data using our flexible export options. Using our program, the Society of
Women Engineers will be able to quickly and efficiently generate seating charts for their
Evening with Industry Event, giving students and recruiters important networking opportunities
with the women at Mines.

3

Functional Requirements

● Be able to accept flexible data formats
○ Able to handle .csv, .xlsx, and .xls files
○ Robust error handling
○ Accept an arbitrary number of files

● Allow user to specify table preferences
○ Number of tables

■ Can be manually or automatically set
○ Number of seats per table

● Allow user to pre-assign people to a table
○ Search list of people from imported files
○ Select table number and assign

● Automatically generate seating charts
○ Evenly distribute faculty and recruiters
○ Give priority to higher-level students
○ Clump degree interests

● Ability to change seating after initial generation
○ Insert
○ Delete
○ Swap

■ With other people
■ With empty seats

● Ability to dynamically export data
○ Dietary restrictions, name and major, etc
○ Exporting name tags & place tags

Non-functional Requirements

● Intuitive for the user to use
● Easy to download and run
● Create a simple, modular GUI with Java
● Simple user’s guide and documentation
● Scalable
● Cross-platform compatibility

4

System Architecture

Import page

The import page is where the user can import files containing the people, and set the table
information. This page is split into four panels, as shown in our UML diagram in ​Figure 1​. For
the GUI display of our Import Page, see the appendix.

Each of these panels gives the user control to create a custom seating chart, including

choosing the number of tables and people per table, and choosing specific guests to place at each
table. These options were implemented so that there would be minimal manual assigning after
generation of the seating chart. When the user is done inputting information, they can press a
button to generate the seating chart and move on to the seating chart page.

Import File

This panel is used to select the file to import. The user selects what type of information
the file holds, which can be students, recruiters, faculty, or an existing seating chart. Then, the
user selects the file from a popup file menu, and presses the “Import File” button.

Display File

The Display File panel is used to show the files that have been imported. It displays the
name of the file, as well as the type of information contained in the file.

Table Preferences

In this panel, the user can set the table preferences. They can set how many seats are at
each table, and how many tables there are. The user can either manually set the number of tables,
or select the auto option. If the auto option is selected, the program will use the minimum
number of tables needed.

Preassign People

In the preassign panel, the user can assign specific people to specific tables before the
seating chart is generated. The user first selects a person that has been imported in one of the
files from a searchable list, then selects the table that they should be assigned to.

5

Figure 1: Import Page UML

6

Seating Chart Page

Our team has created an algorithm that properly weights the major interests for students,
recruiters, and faculty, which will be described in depth in the technical design section. Next, the
program must allow for manual editing by the user after seating chart generation. To accomplish
this, we created a simple GUI so the user has clear visuals of the seating chart and can perform
the edits. The GUI shows up to nine tables on the page at a time, and color codes students,
recruiters, and faculty so the distribution can be seen easily. A sample table is shown in ​Figure 2​.
In each seat the name of the person is displayed, followed by person-type specific data.

● Recruiter: name, company
● Student: name, year in school
● Faculty: name, job title

Additionally, by hovering the mouse over any person’s text box, their major preferences are
shown in a hovering text window.

Figure 2: Table display

This page also has the edit panel, shown in ​Figure 3​, where people can be swapped, inserted, or
deleted into the seating chart. To swap or delete people, the user selects the appropriate radio
button, clicks on a person to select them, and then presses the swap/delete button.

Figure 3: Edit panel

7

Export Dialog

Being able to export the seating chart in multiple formats was one of the main functional
requirements. Export options are split into two types: preset exports and custom exports.
Configuration for the preset export options was created based on predictions of the most
common desired export formats. For the custom export configuration, the user is able to change
the export formats to include all other columns.

Accessible from a “File” menu bar on the seating chart page, the export dialog appears
and gives the user a multitude of preset exports as well as a custom export option. When the user
presses “Export Table” a save file menu appears on the system where the user types in the name
of the file, chooses file type, and chooses the directory to save to. The export formats can be seen
in ​Figure 4​.

Figure 4: Export dialog

8

Program Run

Tying all of these components together, the process to run the program is clear and
user-friendly. A graphic use case is shown in ​Figure 5​ to walk the user through the entire process
as a whole.

Figure 5: Use case

9

Technical Design

Flexible file imports

An important aspect of this project for it to be successful is the operation of file
importing. The previous seating chart program only allowed .csv files after significant data
cleanup from the raw files that the client has with each person’s information. As per the client’s
requests, our program must support Excel files and take the raw survey data from the students,
recruiters, and faculty into the program. To accomplish this, the team’s program both supports
more file formats (.xls and .xlsx) and allows for dynamic file parsing in case the file format
changes or new data is collected.

A FileParser class was created that takes in a file as well as file type, and then reads and
parses it based on those two fields. Two functions, readCsv, and readExcel put the file data into a
two dimensional list of strings which are then parsed by separate functions. Reading csv files is
straightforward with an InputStreamReader and BufferedReader. In order to be able to read and
write excel files, we used the Apache POI API library, since this functionality is not built into
Java. Then, a new “workbook” is created through Apache that is used to do functions on the
excel file. Then, a for each loop is used to iterate through each row in the sheet, getting the value
of each cell as a String and adding it to the two-dimensional list.

After the files have been read and transformed into a workable format as a two

dimensional list of strings, they are passed to one of four parsing files that are called based on the
file type. The valid file types that were created are Student, Recruiter, Faculty, and Chart. The
“Chart” type is an existing seating chart that allows charts to be saved and worked on later. Each
parsing file looks dynamically for the column names it is expecting. For example, for each
recruiter row it looks for company name, major interests, names for all attendees, meal
preferences for all attendees, and job titles for all attendees. These columns indexes are then
stored, and used later to read the information from the columns. Additionally, all other columns
which the parser is not explicitly looking for are put into a HashMap stored in each person.
When the file parsers successfully finish reading the rows, they return a list of type Person, a
superclass to Student, Recruiter, Faculty shown in ​Figure 6​.

When all necessary files have been imported and the generate button is pressed, the list of
FileParsers is then handed to the SeatingChart class to run its algorithm.

10

Figure 6: FileParser flow

11

Seating Chart Algorithm

The main part of our project is our seating chart algorithm. As described in the functional
requirements, the program must evenly disperse recruiters and faculty, and then assign students
where their major preferences match. But, before this is done, the program seats the people who
were pre-assigned to tables on the import page. Once this happens, it moves on to assigning
recruiters.

To assign the recruiters, they are first grouped by their major interests. Then, the program
goes through each of these interests. If there are enough recruiters with the same interest, the
algorithm tries to make tables that only contain recruiters with that interest, leaving room at the
table for students and faculty. When these tables are created, the program keeps track of the
recruiters’ other major interests, and tries to match them, so that these tables have as few
different interests as possible. It also makes sure that there are not any multiple recruiters from
the same company at the same table. Then, if there are any remaining recruiters, the algorithm
either waits to assign them if they have another interest that has not already been assigned, or
assigns them to a table that has enough room.

Then, to assign faculty, the program calculates the average number of faculty per table.
Going through the faculty members, it first assigns those who have a major interest that matches
any of the recruiters’ major interests who are already at the table, unless the table has already
reached the average number of faculty that was calculated. After all of the faculty with a major
interest are assigned, the rest are evenly dispersed until each table has the desired number of
faculty per table.

Finally, the program assigns students to seats. The students are first split into four groups:
seniors and graduate students, juniors, sophomores, and freshmen. Graduate students and seniors
are given the highest priority, followed by juniors, etc. Next, the program goes through these
groups, going through the highest priority group first, and the lowest priority group last. For each
one of these groups then, the program iterates through the students several times, and tries to
assign students to their first major interest. If there are students who were not able to be seated
with their first interest, the program goes through the group again and tries to assign them to
tables that have their secondary interest. This process repeats until either all the students in the
group have been assigned to their highest possible interest preference, or they have run out of
interest. When this happens, the program moves on to the next group. After it has gone through
all the groups, it then assigns all the students who were not able to be assigned to one of their
interests by evenly distributing them to available tables.

12

After all three assignment algorithms are run, the seating chart is complete. The resulting
chart has people grouped by their major interests, company attendees dispersed, and students
weighted by grade level. The GUI is then generated, complete with the edit panel and file menu
for exporting, as shown in ​Figure 7​.

Figure 7: Seating chart displayed

13

Software Quality Plan

In order to ensure our product is successful and isn’t shipped with bugs and is a pain to
use, the team implemented a software quality plan to guarantee a working, useful product. This
plan consists of unit testing, user interface testing, integration testing, weekly client input, and
documentation.

The first type of testing done was unit testing, which the team utilized JUnit for in Java in
order to test the backend functionality. These tests ensured that any of our implemented
functionality, such as our parsing functions and our seating chart algorithm worked as expected.
Because of the unit tests, the team was able to debug easily and find many “deep” bugs that
occur rarely, but are important to fix.

Next, the team completed user interface testing on all of the GUI elements, including the

import page, seating chart page, and the export dialog. While no automatic testing of the GUI is
necessary because it is a simple Swing program, manual walk throughs of the system were
completed for each piece of the GUI.

Another important form of testing done, integration testing, was done to ensure that the

program as a whole functions properly after each individual component was tested. For
example, after testing the file parsing functions and seating chart algorithm separately, we
integrated the two tests later on, feeding the list of people from the file parser into the seating
chart algorithm and viewed the results. For the GUI, integration testing comes in the form of
being able to transition between the three panels smoothly and ensure no bugs exist when using
the program as a whole.

With the above testing done, the program will be robust and bug-free. However, this

testing is useless if the client does not approve of our specific design decisions in trying to meet
their requirements. Therefore, every week the team conducted user acceptance testing with the
client so that the client knows our project direction and can ask for any modifications to the user
interface or any of the algorithmic design. Fixing issues that the client has while they are noticed
allowed for smoother development as the team did not have to go back through work finished
early and modify things, which tends to create unforeseen bugs.

Finally, because this is a team project with many working parts, documentation was

important for two reasons. First, any team member looking through and trying to use another
member’s code can be done much more efficiently. A comment at the top of each function
describing its inputs and outputs makes using other team members’ code much easier. Second,

14

because of the possibility of future programmers expanding on our project, documentation in this
scenario is invaluable for quick understanding of how the code functions. By implementing all
of the above steps, we are left with a professional product that is bug free, designed with the
client’s preferences in mind, and is easy to be expanded upon in the future.

Project Results

The primary goal of this project is to streamline the generation of prioritized seating
assignments that have flexible inputs and outputs so that students may have more meaningful
networking connections with recruiters and faculty. Students, faculty, and recruiters are assigned
based on common major interests using a seating chart algorithm that our team has created.

All of the primary and secondary goals the client requested were met during the
development period. Additionally, the stretch goal for flexible file import/export formats with
.xls and .xlsx files was also completed. However, two stretch goals asked for by the client were
not met, which was to include a waitlist as well as the ability to use the program for events other
than Evening with Industry such as Girls Lead the Way.

While working through the project using Java along with Swing as our development
tools, we discovered that Swing is not ideal for making GUIs. Considerable time was spent
creating and designing the layouts for each JPanel that was created. However, tools to
automatically help with GUI generation were found to save time and frustration, such as the
Java Swing tools in the Netbeans IDE. We also learned that reading and writing Excel files was
much easier then we expected, due to the Apache POI library.

For future development, we would like to see the next team implement waitlist
functionality. The events that SWE hosts have high attendance, so automatic waitlist generation
could be a necessary feature for the program. We also hope that the next team will be able to
refine the UI, and make the flow of the program better. An additional feature that could be added
is the ability to remove files that have been already imported, in case the user accidentally
imports the wrong file.

15

Lessons Learned

For our product, we learned many valuable technical and non-technical skills that are
essential for software development. Our team was new to designing a full-stack product for a
client, and navigated many trials and errors through the development process.

Our team decided on using Java for our program, as we all had experience with the

language from previous classes. This decision was made because we had less than 5 weeks for
development, and needed to create a new, fully functional product. If we had more time, it would
have made more sense to use a different framework, such as Electron JS. Java Swing, which is
Java’s library for graphical user interfaces, had a few drawbacks that impacted our project. The
first is that Swing does not make beautiful applications, and the complexity increases
dramatically as more components are added. If we had used something like Electron JS, the
result would have been a cleaner, more user friendly application using HTML, CSS, and
JavaScript. This would come at the cost of making a robust backend, since we would have had to
focus our attention on the frontend. In the end, our team decided that creating a functional
backend was more important than having an elegant user interface.

With our decision to use Java, we also learned the complexity of designing a good user

experience. While creating the design, we encountered many issues with making consistent
layouts in Java. Swing has lots of layout options, but many of them did not work for our needs so
many of the button and panel locations are hard coded. Creating a static size for our application
is a risk, as our program could be too big for some screen sizes. The other option, creating a
dynamic size for our program, also has some risks as the changing button and text field sizes
make it more difficult to understand what is happening in our program. Aside from the visual
component, it was also challenging to anticipate how the user would want to use the program. To
us as developers, our design made sense as we are the ones who created it, but it may not be clear
to a user who has no context on how the system was built.

Another challenge our team faced with our seating chart generator was project scope. At

the beginning of our project, we assumed that our project scope was relatively small compared to
other teams projects. We had high expectations that we would meet all of our goals and most of
our stretch goals. In reality, our project was more complex than we thought. Because we were
starting from scratch, we had to learn to create a functioning backend with a usable frontend.
Connecting these two components was more complex than anticipated; each button, checkbox,
and text field needed to be linked to the right functions. We were able to accomplish the main
project goals, but had to leave some of our stretch goals out because of our project scope and
time constraints.

16

Possibly the most important lesson we learned was how important communication is

throughout the development process. Being able to communicate well to other teammates, our
client, our advisor, and to other field session students was crucial to creating a working product.
On our team, we worked individually to make each component, so relaying information by using
comments and video conferencing regarding what each component was doing was the key to
making our project successful. In the future, it would be beneficial to practice paired
programming and periodically doing code reviews. The components each of us have created are
designed differently, though the output is consistent, it could be improved with uniformity.

Even with the hurdles of current events preventing us from meeting in person, we

successfully completed our project, and are proud of the finished product.

17

Appendix

I. Import Page

18

II. Seating Chart Page

19

III. Export Dialog

