

12 / 08 / 2020
The Giving Child
Field Session Team Fall 2020

Andrew Faalevao,
Kenny Lieu,
Emelyn Pak,
Dane Pham,
Hannah Taylor

PAGE 2

TABLE OF CONTENTS

INTRODUCTION .. 3

High-level Product Vision ... 3

REQUIREMENTS ... 4

Functional Requirements .. 4

Non-Functional Requirements ... 5

SYSTEM ARCHITECTURE ... 6

Application Architecture ... 6

Technical Design Issues... 6

Design Diagrams.. 6

TECHNICAL DESIGN ... 9

Dynamic Font Sizing ... 9

Feelings Tracker ... 11

QUALITY ASSURANCE .. 13

User Interface Testing ... 13

Integration Testing .. 14

Code Reviews ... 14

User Acceptance Testing ... 14

Static/Dynamic Program Analysis .. 15

RESULTS ... 16

Summary of Testing ... 16

Testing Results... 16

Features We Did Not Implement ... 17

Future Work.. 17

Lessons Learned .. 18

APPENDICES .. 19

Appendix A1: App Flowchart ... 20

Appendix A2: Storyboards .. 21

Appendix A3: Navigation UML ... 28

Appendix A4: Feelings Tracker UML .. 29

Appendix A5: UILabelVariableDevice Implementation ... 30

Appendix A6: UIButtonVariableDevice Implementation ... 31

Appendix A7: Feelings Tracker Implementation .. 32

Appendix A8: Coding Conventions ... 34

PAGE 3

INTRODUCTION

The Giving Child is a 501(c)(3) non-profit organization focused on empowering
children to be the best global citizens they can be. After the Black Lives Matter protests
over the summer, The Giving Child recognized a need for addressing systemic racism
in our communities. This application in particular is The Giving Child’s effort to combat
implicit racial bias in our older neighbors and friends. After spending most of their
existence helping children grow in a healthy way, The Giving Child decided to pivot to
an overlooked segment of the population. Even though seniors are older doesn’t mean
they are done learning. What started as a need to educate the founder’s parents on
systemic racism against African Americans turned into a full-blown effort to educate
the masses of senior citizens against the implicit biases they have held and nurtured for
a majority of their lives.

This app is the first app The Giving Child is making that’s not a game. Instead, since the
intended audience skews older, The Giving Child wanted an intuitive, easy-to-use
application that directly links to their web resources about racial bias. On their website,
The Giving Child has resources like stories of racism, tea-time, and lists of local
minority-run businesses on their website. The application itself serves as an easy way
for seniors to access these resources. Our team created an intuitive, easy-to-use app
that makes it easy for users to navigate between the different pages of The Giving Child
website.

High-level Product Vision

Vision: “Let’s go on this
journey of internal bias
together with the baby boomer
generation.”
Mission: Create a simplistic
app that guides members of
older generations on lessons in
systemic racism and bias.
High-Level Description:
The clients want to create an
application that urges older
Americans to look inwards
concerning the ongoing racial
unrest in the country.

The app will have an
onboarding tutorial for the
new users. Every day, there
will be a notification for
journaling a word that
describes their feelings for each
day. Additionally, if they are
comfortable learning that day,
they will be redirected to the
client’s website for the daily
lesson. There will also be pages
dedicated to experts, the
community, about us,
developers, and a feelings
tracker.

PAGE 4

REQUIREMENTS

Functional Requirements
This app must allow users to navigate through the different pages that are
provided, track their progress, and access daily lessons.

First-Time User:
An introduction and tutorial to the app is shown for the users to click through. A couple
pop-ups will also appear. One will ask the user to allow notifications for the app, and the
other will display a disclaimer informing the user that the app cannot cure racism.

Finally, once the disclaimer is acknowledged, there is a tutorial with a short introduction
to the content of the app that the users can click through to learn how to use the app to
best motivate their learning experience. After completing the tutorial, the app will open
to the home page.

Returning User:
For returning users opening the app on their own or through following the daily
notification, the app opens to the home page which has a few buttons that lead to various
pages in the app. The first links to the menu page which holds links to all of the pages in
the app. The next allows the user to go straight to the Feelings Tracker to log their feelings
for the day before beginning their lesson. The final button opens an introduction video to
the app on YouTube from our clients.

The menu page of the app holds buttons that link to the pages of the app:

Experts Page:
 Displays a link to the “Experts” section

of The Giving Child website

Community Page:

 Displays a link to the “Community”
section of The Giving Child website

Stories We Were Told Page:

 Displays a link to “The Stories” section
of The Giving Child website

Feelings Tracker Page:

 Allows user to view all their logged
feelings as well as the date they were
logged on

 Allows user to add a new feeling to the
log

Team Credits Page:

 Displays a link to the “Team Credits”
section of The Giving Child website

About Us Page:
 A page that displays a link to the

“About Us” section of The Giving Child
website

Time to Learn:

 Displays an option for the user to
either complete their lesson for the
day or take a break

 Links to “The Stories” section of The
Giving Child website

 Links to the “Meditations” section of
The Giving Child website

Library Sketch Page (stretch goal):

 A physical representation of the user’s
progress

 A sketchbook like drawing will be
displayed in black and white and each
lesson completed will color in a
portion of the drawing

The notification received by the user each day will remind the user to visit the app to log
their feelings and complete their daily lesson.

PAGE 5

Non-Functional Requirements
iOS development:
The app must satisfy the guidelines laid out by Apple to list on the app store.

The app must be written in Swift which is the language compatible with iOS app
development.

The app must be able to integrate with the content and website provided by The Giving
Child

PAGE 6

SYSTEM ARCHITECTURE

Application Architecture
Because iOS applications require a Mac for development, our team utilized MacinCloud,
a service providing cloud Mac servers, to gain access to the proper tools necessary for the
development of our application. Once we gained access to the Mac server, our team
utilized XCode, Apple’s IDE for iOS development, to create our application. XCode
utilizes the Swift programming language for the design of iOS applications and software.

Technical Design Issues
Since our access to iOS development tools was through a remote server, the main
technical issue that we faced as a team was dealing with server connection issues with
MacinCloud throughout the semester. MacinCloud takes a bit of time to initialize and
start the session, and there is visible lag as the mouse is moved. Along with this, our team
consistently experienced issues with logging in to our respective MacinCloud servers. This
issue proved to be a major hindrance to our work timeline as the only way to solve this
issue was either by contacting a MacinCloud representative or waiting until the server was
back online. Despite these issues, our team was still able to utilize MacinCloud to
complete the development of our application.

Design Diagrams
The following diagrams illustrate and describe the functionality of our app and the
interactions between the different aspects. Figure 1 below is the flowchart that shows the
functionality of the application and the interactions between the different pages. A more
readable image of the flowchart can be seen in Appendix A1.

Figure 1: App Flowchart

PAGE 7

The app’s pages can also be visualized through the storyboards in Figure 2 provided by
our clients. They illustrate the visual style of the app that The Giving Child wanted the
app to look like. Close up images of the storyboards can be seen in Appendix A2.

Figure 2: Storyboards

Each page within the app inherits from the Navigation Controller class. In the below
diagram, there are 3 child classes shown (Menu Scene, The Experts Scene, and Meditation
Web Scene). Each child inherits the properties needed to successfully navigate to the
previously accessed page or other pages within the app, when possible. As an example,
the Menu Scene page that is displayed can navigate to The Experts Scene page and vice
versa. The Meditation Web Scene can navigate to the Time to Learn Scene, which is not
shown in the diagram in Figure 3. The inherited function serves to construct the unique
navigation on each page. Every page within the app is a child class of the Navigation
Controller, however, only 3 of these are shown in order to reduce repetition. A readable
version of the UML diagram below can be seen in Appendix A3.

PAGE 8

Figure 3: Navigation UML Diagram

Each individual log is stored in an array in LoggerStorage. (See Appendix A7 for
LoggerStorage functions/implementation) The individual logs are accessed by a unique
logIndex and are then pushed to the UITableViewCell class for viewing. The Log class
stores a unique ID, the user’s feeling, and the time which they added/edited the feeling.
The four empty classes on the top of Figure 4 below represent the flow of the UI for the
Feelings Logger. There is a ChangeViewController which controls what view is shown to
the user. The three subviews underneath it represent the table view where the user can
see all their feelings logged, a detail view where they can click and see what they wrote,
and an individual cell where the user can edit their feelings. The only way the user can
access the individual cell is by clicking the “Edit” button on the detail view or the “+”
button when trying to create a new feeling to log. The diagram below can also be seen in
Appendix A4.

Figure 4: Feelings Tracker UML Diagram

PAGE 9

TECHNICAL DESIGN

Dynamic Font Sizing
Since a large part of our motivation for choosing how to implement the app was centered
around accessibility, it was important that our app be optimized for all different Apple
devices and screen sizes. In order to dynamically size the text, we created two classes, one
for dynamically sizing labels and one for dynamically sizing buttons.

Figure 5: Dynamic Font Sizing UML Diagram

Figure 5, the above diagram, illustrates the classes created to facilitate the adjustment of
font sizes. Due to the differences between UILabels and UIButtons, the creation of two
classes with almost identical implementations was necessary. UILabel and UIButton
store their font information differently, so the classes differ only in how the changes are
stored when adjusting them to the screen size. Beyond this, the theory behind the
implementation is the same. Within adjustFontSize() the current font name is stored so
that the updated font stays the same, a new font object is created to store the updated font
and font size before storing it in the appropriate label or button object. Additionally, the
current screen width is found from the bounds of the UIScreen and stored to be a part of
a switch statement which is a simple way to differ the functionality of adjusting the font
size when the width of the screen is different.

Once the width of the screen is known, the switch statement matches with each of the
known widths of iPhones, iPods, and iPads. With our implementation, we chose the
default font size to match the size of the iPhone 12. The other switch cases either size the
label or button down if the width of the screen is smaller or up if the width of the screen
is larger than our default in order to keep the text readable on all devices. This new font
size is then stored with the original font name in the label or button object being altered.
The implementations of these classes can be seen in Appendices A5 and A6.

PAGE 10

Figure 6: Dynamic Font Sizing at work on 3 different iOS devices

Figure 6 illustrates these classes at work, ensuring the readability of the text on our app.
The adjustment of font sizes in our application was included mainly to make sure that our
app is accessible on all devices. With the existing functionality available in XCode, the text
was either cut off on smaller devices and/or too small to read on larger devices. Due to
these limitations, the creation of these classes was necessary.

PAGE 11

Feelings Tracker
A key feature our clients wanted implemented was a logger for users to track their daily
feelings. This was by far the most technical aspect of our project. To save the data, we use
the Core Data Framework to cache data locally on a single device. An equivalent structure
to Core Data would be something like a SQL database. Within the Core Data model, we
created a single entity called note where multiple attributes are defined such as date and
feelings. To track each unique Core Data entity, we assigned it a random ID number and
added it to an array of notes. We use the UITextView and UITableView classes to display
the data stored in the Core Data model. The first view the user sees, seen in Figure 7, is a
table view with all the feelings the user has saved.

Figure 7: Feelings Tracker Table View

PAGE 12

To add a feeling the user can press the “+” button in the top right. To edit a note the user
just has to click the note they want to edit. There is a back button in the top left to return
the user to the main menu. When creating a feeling, the user can add their feelings and
elaborate on them. This view can be seen in Figure 8 below. The date and time are
automatically filled in, so the user does not have to manually add them. When editing a
feeling, the user just needs to edit the text and click the OK button on the bottom. The
time and feeling will automatically update accordingly. If the user wants to go back to the
main menu, they just need to click the back button on the logger page, and the app
seamlessly switches back. The main portion of the implementation of the Feelings Tracker
can be seen in Appendix A7.

Figure 8: Feelings Tracker Editing View

PAGE 13

QUALITY ASSURANCE

User Interface Testing
The process of testing the functionality of the user interface to make sure that it is working
according to our decided upon specifications.

 Page Navigation
o Ensured that the buttons on the menu page take the user to the

corresponding page on the app
o Made certain the back button on each page successfully navigated back to

the previous page in the app
 Notification Readability

o Kept the notification wording concise and to the point so that it wasn’t so
wordy that the user was deterred from following through to the app

 Feelings Tracker Accessibility and Content
o Tested the navigation between the different pages within the Feelings

Tracker
o Implemented a back button to the Home page if the user accessed the

Feelings Tracker from the button on the Home page
o Implemented a back button to the Menu page if the user accessed the

Feelings Tracker from the button on the Menu page
o Ensured input was logged and displayed correctly

 Link Checking
o Ensured that when a link is clicked, the application redirects the user to the

appropriate webpage
 Navigation Checking

o Ensured the proper button in the home menu brings up the associated page
o Made sure there are no “dead-ends” in our application navigation

 Dynamic Font Sizing
o Used different devices on the built-in emulator to check for automatic font-

size adjustments
o Ensured the application scaled appropriately depending on the screen size

1. Manual Testing: manually test the user interface using the simulator tools built

into XCode
a. The iOS device simulator built into XCode was used to navigate through the

app, checking the functionality, mainly of the page navigation and Feelings
Tracker page content

b. Notification readability was tested by editing the content of the notification
to be as concise as possible and then ensuring it displayed correctly when
the notification was sent

Using this type of testing was not too tedious with our application since its functionality
is relatively simple. Since the tools are built right into XCode, it allowed us to continually
test the user interface as changes were made. This allowed us to make sure the changes
we made did not break the current user interface.

PAGE 14

Integration Testing
The process of testing the combined functionality of separate components of software.

 Notification:
o Create the notification
o Set a time for the notification to be sent
o Send calls to the application to open and run when pressed

 Feelings Tracker:
o Save input globally
o Display input on feelings tracker page
o Display input on the feelings tracker page

1. Bottom-Up Testing: testing lower-level components of a process first and using

these components to test higher-level functionalities.
a. Notification: We implemented each step (listed above) before implementing

the next (i.e. create the notification before testing the trigger)
b. Feelings Logger: The same concept applies here. We tested the text box

parameters (using user interface testing) before running tests on saving
input globally. Tests were run to ensure that the input was saved correctly
before trying to display it on the Feelings Tracker page, etc.

Using this type of testing ensured that each lower-level functionality worked correctly,
thus creating a solid foundation for more complex functionalities. Testing in this way
allowed us to focus on a single component at a time to make sure that the respective
component was error-free before building on top of it.

Code Reviews
Code review is a quality assurance activity in which software engineers examine other
engineers’ code either after the code is implemented or while it is in the process of
implementation.

 Weekly Code Reviews
o Our team conducted weekly code reviews on newly implemented aspects of our

application to ensure that the functionality/design was approved by the entire
team.

o Through these meetings, our team was able to ensure that all new features were
functional both by themselves and when implemented into the application.

User Acceptance Testing
The process of testing a product amongst a group of targeted users to ensure the quality
of software.

 The initial release of our application was tested amongst a small group of older
Americans and individuals, including our friends and family members with visual
impairments, to test the readability and accessibility of the application.

 From this test, we received feedback that allowed us to gather valuable information
 These tests will allow the team to ensure that our application is easily navigable,

making certain that the lessons present on the app are heard by our targeted
audience.

PAGE 15

Static/Dynamic Program Analysis
The process of analyzing our product during development (Static Program Analysis) and
during runtime (Dynamic Program Analysis).

 Static Program Analysis
o SwiftLint is the software that was utilized by our team to conduct Static

Program Analysis.
o SwiftLint is a free and open-source XCode plugin that allowed us to set

coding style rules that we agreed on as a team.
o SwiftLint enforced these coding style rules by displaying warning/error

messages if the rules were broken during development.
o Consistent coding styles across the board allowed for future

changes/updates to be implemented in a much easier manner.
o Some examples of the coding conventions we used can be seen in Appendix

A8.
 Dynamic Program Analysis

o XCode Instruments are the tools that were used for Dynamic Program
Analysis

o Instruments are a series of tools built-in to XCode that allowed us to check
our code for performance issues, memory issues, reference cycles, and other
issues that could have occurred at runtime.

o Instruments helped us to locate potential issues that could have “broken”
our application, causing it to fail to compile.

PAGE 16

RESULTS

Summary of Testing
We tested our project with a variety of methods as explained above in our Quality
Assurance plan to ensure accessibility and functionality. We completed as many of our
client’s functional requirements as possible within the time frame, and through
discussions with our team and our clients deemed some features as future work to be done
for the app in the future. Notifications, feelings tracking, and all other functionalities work
as expected. We had run into issues regarding editing the feelings once it is saved to the
application, but it is now implemented and working.

We kept navigation simple and linear, stemming from the menu page where each path is
clearly listed. A majority of the pages contain a link that is displayed clearly and concisely
in order to deviate from confusion. We successfully integrated these links as in-app
browsers linking to the corresponding pages of our clients’ website. Dynamic font sizing
is also a key feature that we focused on, given that our target audience is likely to require
a larger font size in order to take advantage of this app's full benefits. This addition allows
the readability of the app to be maintained regardless of the device it is being accessed
from.

Testing Results
Navigation:
The navigation between pages of our app as well as the navigation to the correct page on
our clients’ website was tested manually using the iPhone and iPad simulators built into
XCode. Testing on all of the device simulators manually, we navigated through each link
on our home page, menu page, and any pages with in-app browsers and verified that they
navigated to the correct/expected location.

Dynamic Font Sizing:
Unit Testing could have been useful for this aspect of the application, but due to the fairly
minimal scope of our application, we manually tested this with the XCode iPhone and
iPad simulators. We implemented two class mentioned in the technical design section of
this report that match the width of the different screen sizes to a size factor that can be
applied to the chosen font and font size. Manually testing these classes of labels and
buttons, the text they were applied to correctly size up or down on all of the available
simulators of various iPhone and iPad screen sizes.

Notification:
The daily notifications were tested by temporarily setting the trigger to the next minute
with respect to the current time. This ensured minimal delay when testing. The
notification is clearly displayed, regardless of whether the app is running in the
background and regardless of what state the device is in. This functionality was manually
tested using the simulators that XCode provides.

PAGE 17

Feelings Logging:
The main testing mechanism for the logging feature was to type a word or message and
save it to the log. Even after closing and reopening the app, the word/message still
appears in the logger. Clicking on a message successfully allows the user to update the
message or delete it. After manually testing the functionality of the logger, all functionality
of this feature is working as expected.

Features We Did Not Implement
Library (Stretch Goal):
The library page was a suggested visual board displaying all the lessons learned in an
artful way, where books representing certain lessons would be filled in after the
completion of those lessons. This was a stretch goal and was to be implemented if we had
extra time after completing the more important parts of the app and finishing the testing.

Calendar (Revised by Client):
 In the beginning, the clients wanted us to create a calendar where the user could log their
feelings each day and look back to previous days. After talking with them more, the clients
decided to pursue a feelings tracker that is not dependent on a calendar for functionality
due to time constraints. Instead, they decided on a logger that was similar in feel and
appearance to the iOS Notes app.

Login (Canceled by Client):
Originally the team suggested to the client that we could put in a login page in order to
view lessons learned on multiple devices. The client later decided that we should not
implement this because it might make it difficult for some elderly people to remember
their usernames and passwords.

Future Work
A large portion of the future work that can be done on the application involves
implementing features that we were unable to complete within the time frame of this
semester.

Library page including a visual of lessons completed by the user
A specialized graphic could be created to track the user’s lesson progress in a creative and
artistic way. The library page would be stylized as a library containing books or other
artful graphics. The individual lessons would be able to be clicked in order to revisit that
lesson.

User login prior to entering the app
There could be a login page where users could enter their username and password in order
to access their lesson learned progress across multiple devices. A database would be used
to store the usernames and passwords.

Adding a calendar as a visual component to view one's feelings
A page with an interactive physical calendar could be created. Pressing on an individual
day on the calendar would bring up a page that would allow users to input, edit, and view
their feelings on any issues on that given day. There could also be a prompt at the
beginning of every session asking users to log how they are feeling that day, adding their
answers to the calendar.

PAGE 18

Make application available on multiple platforms
In addition to being on the iOS app store, this app could also be developed for Android
and put on the Play Store. The features would all be the same, and the lessons would be
transferable between the two platforms when a user logs in.

Lessons Learned
1. Accessibility within an educational application is extremely important. If the

content of the application cannot be reached by varying audiences, the purpose of
the application loses its value.

2. Learning XCode in one semester is difficult without background knowledge in app
development. We had a difficult time implementing certain features because a new
version of iOS and XCode was released this year, and most of the documentation
found was irrelevant and invalid for iOS14.

3. What the client says and what the client envisions are two completely different

things. Balancing the shifting needs of the clients and our own ability to work on
the product is extremely important to its success.

4. Basic application features (navigation, notifications, etc.) are easily implemented

in XCode using built in templates, but modifying them to fit the specific needs of
the application can be a lot more difficult as there are very few resources on how
to do so.

5. The iOS device emulator built into XCode is very useful for testing features such as

app navigation, notification alerts, font sizing/readability on different devices, and
many other front-end features of the application.

PAGE 19

Appendices

PAGE 20

Appendix A1: App Flowchart

PAGE 21

Appendix A2: Storyboards

PAGE 22

PAGE 23

PAGE 24

PAGE 25

PAGE 26

PAGE 27

PAGE 28

Appendix A3: Navigation UML

PAGE 29

Appendix A4: Feelings Tracker UML

PAGE 30

Appendix A5: UILabelVariableDevice Implementation

import UIKit

class UILabelVariableDevice: UILabel {

 @IBInspectable
 var fontSize: CGFloat = 0 {
 didSet {
 self.adjustFontSize(size: fontSize)
 }
 }

 func adjustFontSize(size:CGFloat) {
 let fontName = self.font.fontName
 var newFont: UIFont?
 let bounds = UIScreen.main.bounds
 let width = bounds.size.width
 print(width)
 print(fontName)
 switch width {
 case 320.0: //iphone 4s iphone se 1st gen and ipod touch 7th gen
 newFont = UIFont(name: fontName, size: size * 0.81)
 self.font = newFont
 case 375.0: //iphone se 2nd gen, iphone 7/8, iphone 11 pro, 12 mini
 newFont = UIFont(name: fontName, size: size * 0.95)
 self.font = newFont
 case 390.0: //iphone 12, 12 pro
 newFont = UIFont(name: fontName, size: size)
 self.font = newFont
 case 414.0: //iphone 7+/8+, iphone 11, 11 pro max
 newFont = UIFont(name: fontName, size: size * 1.05)
 self.font = newFont
 case 428.0: //iphone 12 pro max
 newFont = UIFont(name: fontName, size: size * 1.10)
 self.font = newFont
 case 768.0: //ipad 9.7"
 newFont = UIFont(name: fontName, size: size * 1.55)
 self.font = newFont
 case 810.0: //ipad 8th gen
 newFont = UIFont(name: fontName, size: size * 1.60)
 self.font = newFont
 case 820.0: //ipad air 4th gen
 newFont = UIFont(name: fontName, size: size * 1.65)
 self.font = newFont
 case 834.0: //ipad 10.5", 11"
 newFont = UIFont(name: fontName, size: size * 1.68)
 self.font = newFont
 case 1024.0: //ipad pro 12.9"
 newFont = UIFont(name: fontName, size: size * 1.70)
 self.font = newFont
 default:
 break
 }
 }
}

PAGE 31

Appendix A6: UIButtonVariableDevice Implementation

import UIKit

class UIButtonVariableDevice: UIButton {

 @IBInspectable
 var fontSize: CGFloat = 0 {
 didSet {
 self.adjustFontSize(size: fontSize)
 }
 }

 func adjustFontSize(size:CGFloat) {
 let fontName = self.titleLabel?.font.fontName
 var newFont: UIFont?
 let bounds = UIScreen.main.bounds
 let width = bounds.size.width
 print(width)
 switch width {
 case 320.0: //iphone 4s iphone se 1st gen and ipod touch 7th gen
 newFont = UIFont(name: fontName!, size: size * 0.9)
 self.titleLabel?.font = newFont
 case 375.0: //iphone se 2nd gen, iphone 7/8, iphone 11 pro, 12 mini
 newFont = UIFont(name: fontName!, size: size * 0.95)
 self.titleLabel?.font = newFont
 case 390.0: //iphone 12, 12 pro
 newFont = UIFont(name: fontName!, size: size)
 self.titleLabel?.font = newFont
 case 414.0: //iphone 7+/8+, iphone 11, 11 pro max
 newFont = UIFont(name: fontName!, size: size * 1.05)
 self.titleLabel?.font = newFont
 case 428.0: //iphone 12 pro max
 newFont = UIFont(name: fontName!, size: size * 1.10)
 self.titleLabel?.font = newFont
 case 768.0: //ipad 9.7"
 newFont = UIFont(name: fontName!, size: size * 1.55)
 self.titleLabel?.font = newFont
 case 810.0: //ipad 8th gen
 newFont = UIFont(name: fontName!, size: size * 1.60)
 self.titleLabel?.font = newFont
 case 820.0: //ipad air 4th gen
 newFont = UIFont(name: fontName!, size: size * 1.65)
 self.titleLabel?.font = newFont
 case 834.0: //ipad 10.5", 11"
 newFont = UIFont(name: fontName!, size: size * 1.68)
 self.titleLabel?.font = newFont
 case 1024.0: //ipad pro 12.9"
 newFont = UIFont(name: fontName!, size: size * 1.70)
 self.titleLabel?.font = newFont
 default:
 break
 }
 }
}

PAGE 32

Appendix A7: Feelings Tracker Implementation

import CoreData

class ReallySimpleNoteStorage {
 static let storage : ReallySimpleNoteStorage = ReallySimpleNoteStorage()

 private var noteIndexToIdDict : [Int:UUID] = [:]
 private var currentIndex : Int = 0

 private(set) var managedObjectContext : NSManagedObjectContext
 private var managedContextHasBeenSet : Bool = false

 private init() {
 // we need to init our ManagedObjectContext
 // This will be overwritten when setManagedContext is called from the
view controller.
 managedObjectContext = NSManagedObjectContext(
 concurrencyType:
NSManagedObjectContextConcurrencyType.mainQueueConcurrencyType)
 }

 func setManagedContext(managedObjectContext: NSManagedObjectContext) {
 self.managedObjectContext = managedObjectContext
 self.managedContextHasBeenSet = true
 let notes =
ReallySimpleNoteCoreDataHelper.readNotesFromCoreData(fromManagedObjectContext
: self.managedObjectContext)
 currentIndex = ReallySimpleNoteCoreDataHelper.count
 for (index, note) in notes.enumerated() {
 noteIndexToIdDict[index] = note.noteId
 }
 }

 func addNote(noteToBeAdded: ReallySimpleNote) {
 if managedContextHasBeenSet {
 // add note UUID to the dictionary
 noteIndexToIdDict[currentIndex] = noteToBeAdded.noteId
 ReallySimpleNoteCoreDataHelper.createNoteInCoreData(
 noteToBeCreated: noteToBeAdded,
 intoManagedObjectContext: self.managedObjectContext)
 // increase index
 currentIndex += 1
 }
 }

 func removeNote(at: Int) {
 if managedContextHasBeenSet {
 // check input index
 if at < 0 || at > currentIndex-1 {
 return
 }
 // get note UUID from the dictionary
 let noteUUID = noteIndexToIdDict[at]
 ReallySimpleNoteCoreDataHelper.deleteNoteFromCoreData(
 noteIdToBeDeleted: noteUUID!,
 fromManagedObjectContext: self.managedObjectContext)
 // update noteIndexToIdDict dictionary
 // the element we removed was not the last one: update GUID's
 if (at < currentIndex - 1) {
 // currentIndex - 1 is the index of the last element

PAGE 33

 // but we will remove the last element, so the loop goes only
 // until the index of the element before the last element
 // which is currentIndex - 2
 for i in at ... currentIndex - 2 {
 noteIndexToIdDict[i] = noteIndexToIdDict[i+1]
 }
 }
 // remove the last element
 noteIndexToIdDict.removeValue(forKey: currentIndex)
 // decrease current index
 currentIndex -= 1
 }
 }

 func readNote(at: Int) -> ReallySimpleNote? {
 if managedContextHasBeenSet {
 // check input index
 if at < 0 || at > currentIndex-1 {
 return nil
 }
 // get note UUID from the dictionary
 let noteUUID = noteIndexToIdDict[at]
 let noteReadFromCoreData: ReallySimpleNote?
 noteReadFromCoreData =
ReallySimpleNoteCoreDataHelper.readNoteFromCoreData(
 noteIdToBeRead: noteUUID!,
 fromManagedObjectContext: self.managedObjectContext)
 return noteReadFromCoreData
 }
 return nil
 }

 func changeNote(noteToBeChanged: ReallySimpleNote) {
 if managedContextHasBeenSet {
 // check if UUID is in the dictionary
 var noteToBeChangedIndex : Int?
 noteIndexToIdDict.forEach { (index: Int, noteId: UUID) in
 if noteId == noteToBeChanged.noteId {
 noteToBeChangedIndex = index
 return
 }
 }
 if noteToBeChangedIndex != nil {
 ReallySimpleNoteCoreDataHelper.changeNoteInCoreData(
 noteToBeChanged: noteToBeChanged,
 inManagedObjectContext: self.managedObjectContext)
 }
 }
 }

 func count() -> Int {
 return ReallySimpleNoteCoreDataHelper.count
 }
}

PAGE 34

Appendix A8: Coding Conventions

Opening braces appear on the same line as the previous line.

Closing braces appear on their own line.

Title case without spaces for names of files and class names.

Header comment at the beginning of every page of code.

