
Quick Quiz Grader

CSM Paone

Dagny Stahl, Grace Jung, Adam Sandstedt

https://mastergo.mines.edu/quickgrader

Fall 2020

1



1 Introduction

The current Canvas grading infrastructure is lacking and requires solutions such as Quick Quiz Grader

(QQG). The team developing this application worked for CSM Paone to create a better solution for grading

Canvas administered quizzes. While this project was under the direction of Dr. Paone, Quick Quiz Grader

is a tool for any TAs and professors at Mines wanting an easier way to grade Canvas quizzes.

Currently, quizzes can be graded through SpeedGrader, which is a native Canvas tool. The issue with Speed-

Grader is that the user can see a single student’s quiz submission on a page and must load the next page to

grade the next student’s submission. Rather than grading an entire quiz for one student, it’s generally more

efficient to grade one question at a time. In SpeedGrader, this method creates a lot of overhead because

the next page must load in between grading each student’s submission to a question. A more optimal user

flow is to see all the submissions for a question on a single page, so the grader can scroll through quickly to

grade without any downtime caused by changing pages. This is the basic principle behind Quick Quiz Grader.

Quick Quiz Grader is a web tool that communicates with Canvas to retrieve quiz data and display student

submissions in a per-question format. It also includes the ability to create a rubric for each question.

Then, when the user goes to grade a question, they can select which rubric items apply to each submission.

Grading information can be saved to the database in between sessions. After grading is completed, grades

and comments are calculated based on the applied rubric items applied. The grades and comments can be

previewed and then posted to Canvas.

2 Requirements

2.1 Functional Requirements

As was stated above, the overall goal of the application was to allow faster grading than using Speed Grader

or grading manually. More specifically, the application needs to:

• display pages of courses, quizzes, and quiz questions where user selects what to grade

• vertically display all the responses to one question at a time

• allow the user to build rubrics for each question that are then applied to all quiz submissions for grading

• have rubric items that are selectable for each submission

• calculate a grade is based on what rubric items are selected

• allow for easy re-grading if rubric items are modified after responses have been graded generate com-

ments based on the rubric item descriptions that were applied to that submission

• save rubrics and selected rubric items for each submission between sessions and be accessible to different

graders

• have a login page where users input a use code and an access token

2



• only allow approved graders have access to the tool

• allow for a rubric to be positive or negative

2.2 Non-Functional Requirements

The application must have a clear, concise, and nice-looking user interface with an intuitive flow. The

application must transfer grades to and from Canvas securely, and handle tokens securely. The end-goal is

to deploy on campus so that it can be used without the individual users needing to build it from source code.

Overall the tool must be more efficient than the existing speedgrader. For the sake of any future teams, the

code needs to be clean and easy to build locally. Thorough documentation will also ease future development

and start-up cost.

3 System Architecture

Two Field Session teams have previously worked on this project. The codebase that was handed off to us

used the .NET framework, but based on our experience of trying to get the outdated codebase functional,

our team started the project from scratch. We decided to start over for 3 main reasons: (1) We wanted

to update to ASP.NET Core 3.1 to be compatible on Linux, Windows, and MacOS, (2) there wasn’t much

code in the project and we could not get it functioning, and (3) we wanted to ensure the software design

was that of a typical .NET application. We choose to stick with .NET and not move to something like

Angular because it would be helpful to have a similar structure if we needed to reference the old code. A

large change from the original project is that ASP.NET Core uses the Razor Pages programming model,

which we fully embraced and will elaborate more on in section 4.2. Figure 1 depicts the web page hierarchy

of the application.

Figure 1: Web Page Hierarchy

3



Our application relies heavily on API calls to gather data. Figures 2 and 3 illustrate a simple end-to-end

flow of our application, including what calls are made to Canvas and our database.

Figure 2: Application Grading Sequence Diagram

Figure 3: Application Grade Posting Sequence Diagram

4



The application is deployed natively on Mastergo, but the database is hosted on Megasort. Both are Com-

puter Science Department servers, but Megasort requires the user to be on the Mines network to access it.

This provides more security for the database. Mastergo has access to Megasort, so users do not need to be

on a VPN to access and connect to the app. All external calls are made to the Mines Canvas Instance, which

is hosted by ITS. This setup is depicted in figure 4 and the arrows represent the external calls being made

by the application. The database schema is shown in figure 5.

Figure 4: Application Deployment Setup

4 Technical Design

4.1 Modifying Rubric Items

One client criteria was that rubric items can be easily modified after grading. Let’s say there was an item

worth +0.5 points, but afterwards the user wanted it to be changed to +1 point. The user should be able to

modify the rubric and then simply recalculate the grades without having to individually change each grade,

and we accomplished this via a specific database design. The database has two tables that pertain to rubric

items: GradedRubricItem and RubricItem as seen in the database schema in figure 5.

5



Figure 5: Database Schema

By splitting these tables, we track rubric item information in RubricItems and information about what rubric

items have been applied to student submissions in GradedRubricItems. This way, if the user edits a rubric

item, the raw data in RubricItem is updated, but the grading information stored in GradedRubricItems

stays the same.

When the user decides to prepare grades we reference the applied rubric items in GradedRubricItems, and

then pull the point and description info from the actual RubricItem table. This ensures that everything is

kept up to date with any rubric modifications. The same logic applies if the user deletes an item. We will

search for it, find nothing, and do nothing to the grade.

4.2 Razor Pages

As mentioned earlier, ASP.NET Core uses the Razor Pages programming model for the front-end. The

benefit of this model is that it is page-focused. The alternative to Razor Pages would be using a Model-

View-Controller format, which is popular, but requires information about a page to be in several locations.

For a small application like ours, where each page has just a few tasks, it’s very convenient to have each

page and its behavior contained when building the UI.

Each url endpoint in our application corresponds to an HTML file in the Pages directory of our code. Each

of these files contains a C# file within it. The C# file contains all the logic we need for our HTML. This

includes a model for the page and any handlers we need to make API calls. This page essentially defines

the behavior and gathers the information that we want to display in our HTML. Figure 6 shows a simplified

6



example of our pages directory and how the two files that makeup a page look. It’s best practice to do as

much of the logic in the C# file but as demonstrated in the top right file, we can include C# within our

HTML if needed. In this example, this page displays the list of quizzes. The bottom right C# file makes an

API call to gather the Quiz objects, then the HTML file uses C# to loop through these objects to display

each of them and their attributes.

Figure 6: Razor Page Hierarchy

4.3 Access Token Authentication

Although we attempted to redirect the login to ITS, so users could just use their multipass credentials, doing

so turned out to be a bit more complicated than we thought. We also didn’t have the time to go through

ITS’s security screen. So, we opted to keep the access token login so we could produce a functioning product.

See figure 7 for the flow of verifying access tokens.

7



Figure 7: User Authentication Sequence

Once we verify the access token, it needs to be stored so we can authenticate API calls to Canvas on behalf

of the user. We chose to store the token in session data. Session data is stored for the length of the session,

so after the user log outs, or the session times out, any session data lost. This is superior to storing tokens

in a database, which would be preserved forever.

5 Quality Assurance

5.1 Unit Tests

Our team completed unit testing for things like authenticating tokens, and authorizing access to certain

pages. Services were not tested on live servers, but rather given manufactured cases to run on, ensuring that

testing is isolated and data is protected. Every service implements an interface, which allowed us to swap

out services to return fake values for other services. See an example unit test in Appendix 7.3.

5.2 Integration Testing

As part of our testing, we did a first pass at vetting the API calls by running them in Postman before

implementing. This way we could see what JSON values were returned and make sure they aligned with our

object classes. Then we performed integration testing with Canvas. Since we could not test against active

courses, all tests were run against a sandbox canvas course with manufactured data. We tried to create data

with as much variation as possible to mimic a real course that’s not going to have “perfect” data. This

included:

• creating quizzes where fields were left blank

• using all the question types

• multiple attempt quizzes

8



• incomplete submissions

• quizzes with a lot of questions

• changing quizzes after grading had started

• resubmitting attempts after grading

5.3 User Testing

Our client was mainly concerned with the UI portion and user flow. As far as design and user testing, we

met with our client whenever we added a new page or feature to the application so he could give feedback

and reject anything early if it did not match his requirements. These meetings occurred every one to two

weeks, so we could assess our user interface often.

5.4 Code Review

Since we had not built a .NET application before, we recruited a software engineer familiar with the frame-

work to review our code. The goal of this was to ensure we met .NET coding and security standards.

Feedback we got included:

• keep .cshtml files short and implement the logic in the corresponding .cs file

• pass around the auth token via session data

• override connection string to database in user secrets

• organize app into multiple projects, and not just one mega-project

• use an in-memory database to test, or a JSON database to start or un-block teamates

• split up Entity Core Frameworks (database tables) to be more modular

• pass routing information via OnGet parameters

• utilize OnPost to push data from user on pages

• pass objects to API functions, not every parameter of the object

We were able to implement all these suggestions in the final product.

6 Results

6.1 Unimplemented Features

We were able to implement all essential features required to make Quick Quiz Grader usable end-to-end.

However, there was some functionality that we did not have time to complete. The tool works for grading

fill-in-the-blank and essay style questions, which was the main goal of the project, but we did not implement

grading for other question types (ie. multiple choice, true/false). Additionally, we planned on allowing the

user to login with their multipass so it was integrated like other Mines websites, however that would have

9



required an in-depth, lengthy security review by ITS that we did not have time for this semester. Lastly,

a grader can use the “save” button to store progress to the database, but it would be more ideal if data

was saved automatically as they graded to make the app more reactive. This would require modifying the

front-end to utilize JavaScript, as we cannot accomplish this in HTML.

6.2 Lessons Learned

We learned a few lessons from this semester. One being that we should have focused on the most important

features first. We spent a lot of time on configuring dev keys for Canvas with ITS, which we did not end

up implementing. Instead, we should have been concerned with getting the product working in any matter,

and use an access token login from the start.

We also learned that interfaces and temp classes were a great way to unblock teammates and keep forward

momentum. For example, lets say one person was ready to work on the front-end portion of rendering grad-

ing information pulled from the database. We would write an interface for that service and whip up a fake

temporary class for them to use that pulled manufactured data from a JSON file. Then another teammate

could work on the real class that would actually pull from the database. When it was done, we could easily

swap in the real class and integrate the work. However, because the interfaces are defined before the real

functionality is fully thought-out, the closer the starter interface is to the end result makes integration easier.

It is worth it to take more time to plan these out with teammates first, to avoid large changes later.

A lesson we knew going into the project was to utilize git to keep teammates on individual branches to

accomplish specific goals. Branches can be merged as features are completed. This was very beneficial when

we had different database versions on separate branches.

6.3 Achievements

There was quite a lot we achieved to create a deployable version of Quick Quiz Grader that we feel confident

in. The user interface and flow of the application is much more intuitive than the previous version. The user

is able to login with their access token and see all courses they have a grading role in, then choose a quiz

and question to begin grading. The grader can create a positive or negative rubric to add to or subtract

from the point value, respectively. When grading, you can hide students’ names to grade anonymously.

Rubric and grading information is stored in a database hosted by the CS department. After grading, the

user can preview grades and comments that will be posted to Canvas so they can double check and feel

confident about the grades they’re submitting. The finished version of Quick Quiz Grader is available at

https://mastergo.mines.edu/quickgrader.

10



7 Appendix

7.1 Application Page Images

Figure 8: Home Page

11



Figure 9: Login Page

Figure 10: Courses Page

12



Figure 11: Quizzes Page

Figure 12: Questions Page

13



Figure 13: Grading Page

Figure 14: Grade Posting Page

7.2 Start Up Instructions

Part 1 has instructions on how to build the program from the source code locally. If you already have it

running or if someone else is running it for you, skip to Part 2

Part 1

14



1. Clone the project to your computer

2. Switch to branch FieldSessionF20

3. Open Visual Studio and choose “open a local project, solution, or file”. Then open Canvas-Speed-

Grader+.sln

4. There are several options to run. Make sure to select QuickGraderCoreF20 when you hit build

5. In order to connect to the database, you will need to add the DB connection string to your user secrets

to overide the existing string in appsettings.json. This will allow you to connect to the live database.

The connection string in appsettings.json is to a local DB we used during development that you do not

have. Anything in our user secrets file will overide whats in appsettings.

• If you’re using VS on Windows, simply right click on the “QuickGraderCoreF20” project and

choose “manage user secrets” then put the following json in that file: { “ConnectionStrings”:

{ “postgresConnectionString”: “Host=megasort;Username=enterusername;Password=enterPW”

}}

• On Mac, open the command line, navigate to the QuickQuizGrader folder and run the following

command with the correct information filled in: dotnet user-secrets set

“ConnectionStrings:postgresConnectionString”

“Host=megasort;Username=enterusername;Password=enterPW;Database=canvasquickgrader”

Part 2

1. To log in, you will need a personal access token from Canvas. Go to canvas: Account - Settings -

Approved Integrations - New Access Token

2. When making the token, the purpose can anything and the expiration can be any date/time but the

ultra safest option is to make a token with a quick expiration (a few hours) and generate a new token

each time you use the program.

3. Once logged in, you will be automatically directed to the courses page where you can select which

Canvas course you would like to start grading. If a course isn’t showing up, make sure that you are

assigned as either a TA or Instructor for that course on Canvas.

7.3 Example Unit Test

//proves that authorized web routes will redirect you to login

[Fact]

public async Task Get_SecurePageRedirectsAnUnauthenticatedUser()

{

// Arrange

var client = _factory.CreateClient(

new WebApplicationFactoryClientOptions

{

AllowAutoRedirect = false

15



});

// Act

var response = await client.GetAsync("/Quizzes");

// Assert

Assert.Equal(HttpStatusCode.Redirect, response.StatusCode);

Assert.StartsWith("http://localhost/Identity/Account/Login",

response.Headers.Location.OriginalString);

}

16


	Introduction
	Requirements
	Functional Requirements
	Non-Functional Requirements

	System Architecture
	Technical Design
	Modifying Rubric Items
	Razor Pages
	Access Token Authentication

	Quality Assurance
	Unit Tests
	Integration Testing
	User Testing
	Code Review

	Results
	Unimplemented Features
	Lessons Learned
	Achievements

	Appendix
	Application Page Images
	Start Up Instructions
	Example Unit Test


