

Laser-Cut Box Designer Application

Team Members:

Audrey Horne
Nolan Donaldson

Scott Oelkers
Michael Berg

Client:

Dr. Owen Hildreth

Date:
December 6, 2020

1

Introduction

Dr. Owen Hildreth is an assistant professor and researcher at the Department of Mechanical
Engineering in the Colorado School of Mines who works with small-scale additive
manufacturing. He has a Glowforge laser cutter in his lab (model: Basic), which he and his
students commonly use to create and engrave all manner of objects using PDF files as inputs.
One particular project that is seen frequently by the laser cutter is designing customized boxes,
primarily used for storing instrumentation and delicate lab equipment.

The necessity of a custom box designer stems from many factors; primarily, the lack of good
existing software for this specific application. Online or open-source apps often have limited
featuresets or design capabilities, lacking features such as saving/loading. On the flipside,
fully-featured parametric CAD software such as SolidWorks or AutoCAD are not specifically
designed for creating laser-cut parts. As a result, they require a mildly experienced user who
correctly accounts for laser-specific design constraints when making boxes, which gets
complicated. For example, a CAD user would be forced to model every feature of the box, such
as tabs or slots, to mesh with each other properly, and they would need to manually account for
design quirks such as the kerf of the laser they will cut the box with. Another factor necessitating
the existence of the box designer is our client’s desire to have the app developed for iOS and
MacOS for use with MacBooks and iPads.

This project was started in the summer of 2020 by a field session group of the time. Our goal was
to refactor their code, extensively document the project, and add essential features such as
one-button PDF file exporting or slotted joins between box walls. Debugging issues that crippled
the user experience of the app, such as the numerous issues plaguing the camera, were also
essential. As such, the hope for this project was to bring the app closer to its intended goal: a
fully-featured, open-source, freely available, simple, easy to use, and powerful app on the
MacOS/iOS platform.

2

Requirements

We were handed an initial version of the Box Designer application that had been developed by a
previous Field Session team in the summer of 2020. This version included a basic box design
and the accompanying GUI, basic user controls to modify box parameters, and a simple method
to write the design to a JSON or PDF file, which was capable of being read by the Glowforge
laser cutter. Our client, Dr. Owen Hildreth, initially gave our team a list of requirements for our
upcoming overhaul and expansion of the Box Designer application; for each requirement listed,
there is a note that describes either an issue with the initial version’s implementation or the lack
of implementation. Due to the three priority levels that our client outlined (“must haves”, “nice
to haves”, and “if you have time”), both the functional and nonfunctional requirements (below)
are divided into three categories according to priority. Red priority goals were an absolute
requirement of this project; they had to be done for the project to be designated as complete.
Yellow priority goals were stretch goals that the client wanted the team to complete as soon as
the red priority goals were finished. Finally, green priority goals were of the lowest necessity; the
client only expected these if all other goals were adequately completed. Additionally, our client
slightly adjusted our requirements throughout the semester -- the changes are noted if applicable.

Functional Requirements:
❖ Red priority goals:

➢ Keep the current camera angle, position, and zoom after changing one of the
box’s properties

■ This was a bug present in the initial version of the box designer
➢ Replace the PDF save features with Swift’s built-in archiving capabilities

■ The initial version did not use Swift’s capabilities (see “Technical Design”
section for more details on this requirement)

➢ Add button and associated code for exporting to PDF in GUI
■ There are Yellow Priority goals associated with this exporting button.
■ The initial version only had save options in the taskbar, not embedded in

the GUI
➢ Add the option for measurement units (inches or millimeters) in the GUI and

display the chosen unit
■ The initial version only had inches as an option, and the labels did not

display the unit.
❖ Yellow priority goals:

➢ The ‘Export to PDF’ button pop-up should also include an option for inputting
physical dimensions of the print area and adjusting the layout of box pieces
accordingly (ensuring individual components are not cut off). Additionally, there
should be an option to choose only one wall drawn on each PDF page.

3

■ The initial version did not have any of these options.
➢ Add the capability to create additional cutouts for holes in varying shapes (circle,

square, rectangle, triangle, etc.)
■ Note: Our client limited the shapes for cutouts to circle, rounded

rectangles, and rectangles later in the semester. However, our cutout
implementation allows the code to be easily extensible for adding
additional shapes.

■ The initial version did not have this functionality.
➢ Add capability to select and drag different box components with common snap

points (center, midpoint, end, etc.)
■ The initial version did not have this functionality.
■ While we were able to implement wall selection and snap points, we did

not have time to allow walls to move independently of each other, which
was a prerequisite to “dragging” a wall. Thus, we did not fully complete
this stretch goal (see “Results” section for more details).

➢ Add capability to highlight a selected box component
■ The initial version did not have this functionality.

➢ Include the capability to delete and add box components
■ The initial version did not have this functionality.

➢ Add option for different lid joinings (tabbed, short slide, long slide, handle)
■ Note: Our client later limited this list to adding a handle to a wall.

● The initial version did not have this option.
➢ Add option for different side joinings (slotted, tabbed)

■ The initial version did not have the “slotted” join option.
➢ Add user control of the location of internal separators, as well as adding multiple

separators of different sizes
■ In the initial version, the user could add a maximum of two internal

separators, and they could not choose the plane or the location of the
added walls.

➢ Changing the application’s JSON saving and loading capabilities to Swift’s native
Encodable and Decodable protocols

■ The initial version could save as a JSON, but it did not utilize Swift’s
protocols. Additionally, the initial version could not load a box model
back into the application.

❖ Green priority goals:
➢ Add option to create text and specify placement on/in the box

■ The initial version did not have this functionality, and we were not able to
complete this stretch goal (see “Results” section for more details).

➢ Add optional settings for kerf, margin, stroke, and padding, taking into account
the width and taper of the laser

4

■ The initial version did not have this functionality.

Nonfunctional Requirements:
❖ Red priority goals:

➢ Documenting the code written by the Summer 2020 Field Session
■ The initial version had minimal documentation.

➢ Professionally writing an installation manual and user guide
■ Note: This was originally a requirement from our advisor, not our client.
■ The initial version did not include these documents.

➢ Ensuring GUI colors are sympathetic to color-blind users
■ The initial version did not address this.

➢ Ensuring GUI is sympathetic to users with low vision
■ The initial version did not address this.

❖ Yellow priority goals:
➢ Refactoring the code written by the Summer 2020 Field Session team

❖ Green priority goals:
➢ None

5

System Architecture

As stated in the introduction, this semester’s project was a continuation of CSCI370 Field
Session Summer 2020. Because of this, we had an existing architecture to work on. Figure A.1,
found in Appendix A, depicts the full UML diagram of the previous team’s finalized product.
When we analyzed the structure, we found a few major restructure and refactor tasks. Firstly, in
the GitHub repository, there were many old, unused classes that were not deleted. Our first step
to address the existing architecture was to thoroughly analyze which classes were unnecessary to
keep; our team wanted to ensure there would be no confusion for next semester’s (Spring 2021)
field session group that Dr. Hildreth plans on enlisting. Figure 1 showcases all of the classes in
the repository that we found to be obsolete. Once identified, they were removed from the
repository and the architecture was restructured.

Figure 1: This is a subsection of the previous team’s UML which shows a collection of classes that our team

analyzed and found to be unused. The full UML is in Appendix A (Figure A.1).

6

Additionally, our team addressed refactoring the existing architecture to better suit the new
requirements that needed to add functionality. For instance, one of our main requirements was to
redesign how the application exported the box model template to PDF -- the client wanted
Swift’s native archiving capabilities to be used. Because of this, the collection of classes that
addressed File Handling Control were completely refactored and, at times, deleted (Figure 2).
Additionally, the PathGeneration class -- which is essentially how the walls of the box are
constructed -- was bloated with functions that could be condensed once we understood the class’
purpose. Comparing Figures A.1 (original UML) and A.2 (our finalized UML) in Appendix A
will show the intense refactoring we completed on the PathGeneration class.

Along with refactoring, we added numerous classes that addressed the new requirements. We
ensured that these new classes complied with the Single Responsibility Principle and were
designed in such a way that next semester’s field session team could easily extend their
functionality, based on projected requirements from our client. Figure A.2, found in Appendix A,
depicts the full UML that is the result of our described efforts.

Figure 2: The left side of this figure is our team’s finalized collection of classes that address File Handling Control.

The right side of this figure is the original collection of classes, which we refactored or deleted to comply with a
top-priority requirement from our client. This refactor is discussed in detail in our Technical Design section.

7

In addition to redesigning and adding to the original code, we altered the GUI of the original
application. Figure 3 depicts the original application interface, whilst Figure 4 depicts the final
GUI for the application. Because our client wants to extend this application’s compatibility from
strictly macOS to both macOS and iOS in the future, we designed the GUI with the thought that
Apple phones and tablets will not have easy access to a menu taskbar, as they would on Apple
computers. Therefore, we put as much functionality in the GUI panels below the box view as we
could. This way, the future team that adds iOS-compatibility to the application can use most of
the existing GUI.

Figure 3: This is the finalized GUI from Field Session Summer 2020. This image was extracted from their final

report, as we did not procure an image of the application when we first began to work.

8

Figure 4: This is our finalized GUI. It showcases some of the new functionality that we added -- slot joins, wall

selection, unit display and selection, and shape cutouts.

9

Technical Design

While we refactored, redesigned, and newly designed a lot of functionality in order to comply
with our requirements, two designs were the most exciting to us. These included 1) the
refactored design for how the box model was exported to PDF and JSON formats, as well as the
new design for how a saved box model was loaded back into the application, and 2) the new
design for shape cutout capabilities (see Figure 4 above for visualization on a circle cutout from
a box model wall). We chose these topics because we think they are the epitome of extensibility
and efficiency -- throughout our process, we continued to remind ourselves that developers
would be working on this project next semester. Thus, we wanted to ensure that they could easily
extend these designs.

I. Using Swift’s Native Capabilities for Exporting and Loading

Our client wanted to completely overhaul the original design for exporting a box model to PDF
and JSON, and for loading a saved box model template from a JSON file into the application.
For the PDF exportation, the original code converted the wall paths to one long string and wrote
that string to a .pdf file. This design was inflexible, and sometimes resulted in walls of the model
getting cut off on the PDF; there was no way to add another page to the PDF, because it
technically was not a PDF document. Thus, if the box model was too large for a single PDF
page, the code could not mitigate walls getting cut off. Therefore, we redesigned the method of
PDF exportation by incorporating custom classes that inherited from Swift’s native objects and
libraries (Figure 5).

Figure 5: This image depicts the inheritance of our custom classes that guided our design for exporting box model’s

to the PDF.

10

This design allows a lot more flexibility and user choice; because Swift understands it is a PDF
document, the user can now choose:
❖ PDF width
❖ PDF height
❖ PDF margin (how far from the edges of the document?)
❖ PDF padding (distance between individual wall drawings)
❖ PDF stroke (how thick should the line be?)
❖ One component per page (there is either the default layout, which ensures no walls are

cutoff, but tries to put as many walls as possible on a page and only adds a page out of
necessity, or the user can choose to put each wall component on separate pages of the
PDF document)

One of the “happy byproducts” of this design is that the option for PDF stroke can address some
small issues with the laser that had previously happened. The laser that cuts these boxes out has
both a width (albeit small) and a taper (the laser loses small amounts of energy as it cuts further
from the source, which leads to a slightly sloped wall edge). The ability to change the stroke of
the walls’ lines could help account for the width of the laser, ensuring the box walls fit together
snugly when put together. Figure 6 is a sample PDF document from this new design.

Figure 6: This is a sample PDF export of a slot-join box model with cutouts. For this sample, we adjusted the size of

the PDF page so that all walls would fit and the stroke so that the lines were finer. This adjustment would not be
possible without the new design. We also updated the drawing to accommodate curved lines, as originally the code

could only draw straight lines.

In addition to redesigning PDF exportation, we redesigned saving to a JSON file and loading a
saved JSON box model back into the application. Originally, the code manually converted all

11

necessary box model information into a long string and saved it as a JSON, and while there were
functions addressing opening a box model from a JSON, they were skeleton code. To redesign
this, we used a built-in Swift protocol called Codable that can encode custom classes into a
JSON format, and subsequently decode a JSON file to initialize the saved box model. Figure 7 is
an example of an encoded JSON file that can be loaded into the application to revert to the saved
box model.

Figure 7: This is a sample JSON file that was encoded in an application session and can be decoded to revert the

application to this saved box model’s specifications.

In order to use Swift’s protocol, we had to enable numerous custom classes to conform to
Codable. If a variable type did not conform to Codable in the custom classes, we had to either
save the necessary information for that variable to be instantiated after decoding, or we had to
extend the type so that it could be encoded. As an example: integer and double types already
conformed to Codable, and no alterations were needed for variables of that type. The
SCNVector3 type did not conform to Codable, so we had to extend its functionality. Finally,
NSBezierPaths did not conform to Codable, and we could not extend its functionality, so we had
to save specific data that allowed the wall’s paths to be generated after decoding. Overall, this

12

design was more efficient and simpler than the original design, and its outcome added
functionality to the application. Furthermore, it was implemented with extensibility in mind -- if
future developers add variables to the BoxModel or WallModel classes, they simply need to
add them to the Codable functions in order to encode and decode the new variables.

II. Cutout Technical Design

Because our client originally wanted more cutout shapes than we implemented, we wanted to
ensure that adding new shape types was easy for future developers. In addition, we had to design
the cut outs in a way that allowed them to be encoded and decoded via Codable (see above). As
previously mentioned, NSBezierPaths (which are essentially the paths that define the walls)
cannot conform to Codable. Because of that, the shapes needed to be defined by their attributes
that do conform to Codable, and they also needed to be associated with the wall they are cut out
from. Figure 8 shows the finalized design for cutouts that addressed these necessities.

Figure 8: This UML depicts the abstract class “Shape,” which any cutout shape must inherit from, and the

enumerated “ShapeType,” which is a list of allowed shapes.

As Figure 8 shows, the Shape class is essentially an abstract class (we say “essentially” because
Swift does not have an “abstract” keyword). The classes that inherit from Shape must implement
the draw() function -- all shapes will draw themselves differently, and it is up to them to know
how to draw themselves. Additionally, the enumerated ShapeType is simply a list of allowed
shapes. This design allows extremely easy extensibility of the application’s allowed shape
cutouts; as long as the shape knows how to draw itself, future developers can simply add the
enumerated shape type, implement the new shape’s class that inherits from Shape, and tell it how
to draw itself. In addition, all of the Shape class variables conform to Codable. Future developers
need not worry about addressing new shapes’ saving and loading capabilities. However, we still

13

need a way to associate the cutouts on a wall with the wall itself. Due to the design of cutouts,
this is extremely easy: the instantiated wall simply has an array of Shapes ([Shape]) that can be
drawn with it. This means that the wall-shapes data structure will not need to be updated if future
developers add possible cut out shape types. We believe that this design is the most efficient and
extensible way to add and associate cutouts with their walls.

14

Quality Assurance

Because our client initially expressed his desire to release this application as open-source
software in the future, we knew that Quality Assurance was of the utmost importance. Whenever
our team implemented new functionality, we extensively manually tested the application to
ensure that previous features were still working and new features were bug-free. If we ran out of
time to fix a minor bug (for our purposes, “minor bug” means it won’t crash the application), we
made sure to note the bug in our GitHub repository’s “Issues” tab for future developers.
Furthermore, we completed a user guide that is up-to-date with all functionality in the
application (Appendix B). If our client releases this application as open-source software, new
users will be able to quickly learn the controls and featureset via the user guide.

As we believe quality assurance should also be applicable to future developers of the project, we
wanted to note that we thoroughly documented all of the classes in the current system
architecture. Additionally, we set up GitHub Pages (https://hildrethresearchgroup.github.io/Box-
Designer/index.html) for our repository and a GitHub workflow that updates the documentation
any time a developer pushes commits to the remote master branch. The documentation will be
current and accessible for next semester’s team, and they will be able to update GitHub Pages
automatically -- with the stipulation that they document their code using Apple MarkUp syntax.

Unit Testing
Because the main purpose of this application is to be easy to use, we put most of our efforts in
user interface testing (see below). As long as the application was visually responding correctly,
the only testing outside of user interface testing we felt the need to do was verifying that the
dimensions of the box template on the PDF correspond correctly to the user-inputted dimensions
in the application. After all, there is no point for the user to adjust the dimensions if the resulting
PDF (which the box is laser-cut from) is not accurate. To test this, we printed out the PDF of a
box that, according to the application, should be 4 x 4 x 4 inches. After measuring with a ruler,
the printed box passed this test.

User Interface Testing
Our group decided to continually test any new functionality that we added in order to 1) make
sure that the original functionality continued to work correctly and 2) make sure that new
implementations did not have obvious, app-crashing bugs. These are the behaviors and questions
that we addressed while conducting our tests:
❖ Ensuring that changing UI elements does not break expected behavior, such as box

dimensions or the information displayed by UI elements
❖ Box dimensions - does resizing the box cause visual errors or errors with the PDFs

created by the program?
❖ Changing the features of the box under certain conditions:

15

❖ Exporting PDFs with extreme box features or dimensions
❖ Tabs - varying tab count, tab width(s), etc.
❖ Camera: testing varying camera angles (box rotation), the effect of changing box features

and dimensions on the camera, any possible camera clipping through the box, keeping the
box in frame, testing for any lighting glitches that make the box seem 2D instead of 3D,
etc.

❖ Identify any edge cases or outliers, test them, and address if the test does not visually pass
❖ Bad/invalid inputs handled? How does the program react?
❖ Do all functions work as expected with all combinations of settings?

Integration Testing:
While integration testing will be more prominent for the field session team that expands this
application to iOS, we did find a few tests to perform. They are:
❖ Testing trackpad/touch gestures to ensure iOS compatibility

➢ Although we were only working on the macOS application, we wanted to ensure
that app users on laptops had intuitive camera controls with their trackpad. We
manually tested this, as some of our members had trackpads. Because the
trackpad is similar to touch gestures on a smartphone or tablet, we believe the
motions for camera control will translate easily to iOS.

❖ Resizing the window of the app to ensure compatibility on varying screen sizes,
resolutions, and aspect ratios

❖ Importing and exporting files that are supported by devices that will run the program

16

Results

Incomplete Requirements:
Our group was able to address and adequately complete almost all of the requirements requested
by our client -- from all priority levels. The only two requirements we did not complete are:
❖ Dragging to snap points: while we did address snap points (there is foundation code that

will make a snap point appear at edges and midpoints if the user hovers their cursor over
the snap point area), we were not able to allow the user to drag a specific wall and snap it
into a location. As of now, adding walls is a slightly more in-depth process for the user:
they have to specify the location in the GUI panels, instead of being able to just drag to a
snap point.

❖ Adding text to walls: we were not able to address this requirement at all, at least with
something concrete. We did a lot of research about the best way to do this, but each
avenue we attempted turned out to be a dead end. In the future work, we list a couple of
ideas that we had, but did not have time to implement.

Future Work:
Firstly, if we had knowledge of minor (non-app-crashing) bugs in the application that we did not
have time to fix, we made sure to post these issues in the GitHub repository “Issues” tab for
future developers. Secondly, we have quite a few ideas for future refactors, implementations, and
functionality. They are:
❖ Text: To address adding text to the box, we have two ideas. The first, which we explored

the least, is to use CGGlyphs to display the text on the SCNNode of the text-added wall.
The NSBezierPath of CGGlyphs can apparently be extracted, which is necessary for
drawing on the PDF. Our second idea was to simply implement the viewing and
PDF-drawing of the text independently. We were able to view text on walls in the
application via SCNText, but there is no way that you can extract an NSBezierPath from
an SCNText object. Therefore, if future developers kept track of the “where and what” of
strings the user wants, they could simply use the NSString.drawInRect() method when
exporting the text to PDF.

❖ Cutouts: There are a few ideas for future work with the cutouts. While there is currently
code that removes a cutout if the user decreases the dimensions such that the cutout will
not fit, the cutouts do not translate logically if the user increases the dimensions of the
box. This should be addressed after considering how the user would want their cutout
placements to change when altering dimensions. Additionally, as of now, the rounded
rectangle cutout’s “roundness” can only be changed symmetrically -- it would be easy to
split this up so that the user could cut out an asymmetrical rounded rectangle.

❖ Adding walls: The major issue with how the “adding components” is currently designed
is that there cannot be four equal compartments; the code deals with intersections of
internal walls by chronological order (older walls do not change, while newly added

17

walls adjust their dimensions according to an imminent intersection). Additionally, all
walls are drawn relative to the origin. Due to this combination, there is no way to
“continue” a wall after an intersection on the other side of the intersected wall. One idea
we had to address this was for users to input a negative number for the placement of an
internal wall, which would indicate they want to draw from the walls that are opposite the
local coordinate system’s origin.

❖ Apple Help: while there is an accompanying user guide for the application, we attempted
to incorporate the user guide into the in-built Apple Help, which would enable the user to
use Spotlight to search for their desired topic. This feature could easily be found under
the “Help” menu in the taskbar. However, it was absurdly strange to implement this
feature, and we decided to focus on more important requirements at the end of the
semester.

❖ Conversion to SwiftUI: Our client has expressed a desire to rewrite the application in
SwiftUI to help commercialize the product and improve device intercompatibility. Proper
documentation will be essential moving forward.

Learned Lessons:
We think the most important, career-pertinent lesson that we learned for this project was the
increased difficulty of working on pre-existing code -- especially pre-existing code that is not
documented well. It is easier to address issues if you have worked on the code from the
beginning and intricately understand the design. However, all of our members had to get caught
up on Swift and XCode before we could adequately understand all of the existing code. This
project (even with the initial learning curve) was a great experience though, as most of us will
have to be the “future developer” for a project in our career. We also learned that Swift is an
extremely capable and fun language with fantastic GUI support, and XCode is a capable IDE as
well -- although there are some issues with its Git capabilities. Finally, we have all learned that
procrastinating merges with the master branch in Git will lead to even bigger headaches later on.

18

Appendix A - UMLs

Figure A.1: This UML describes the previous team’s finalized product; it was the initial architecture when we

started working on the project.

19

Figure A.2: This UML describes our finalized system architecture that addresses most of the requirements from our

client (see “Results” for requirements that were not completed).

20

Appendix B - User Guide

21

22

23

