

AIpiphany Final Report

Field Session Fall 2020

Client:

Michelle Archuleta

Team Members:

Aiden Sweezey, Gavin Castaneda, Isabel Johnson, Joseph Granmoe, Abigail Moore

Introduction

What is the goal of the project?

An automated, updatable database that maps complex medical terms or phrases

to simple terms or phrases. The end goal is to be able to democratize medical

language in order to give everyone the ability to navigate through the healthcare

system.

How is “done” defined in this project?

A python project that can be deployed locally that is able to continually take in

input data (Wikipedia articles, etc.) and update and add entries to a database that

can associate complex phrases with simpler, more user-friendly, phrases. This

database should be stored locally using a Postgres database and be able to

interface with both our project and the company’s other applications. An

ambitious, but not required goal is to move the database online.

Specific Bullets:

- A thorough database that maps complex terms to simple ones

- Thorough can be defined as 90% or more medical Wikipedia

articles having a simple synonym for now

- A python script that is able to take Wikipedia data and choose complex

terms out of that data and map each chosen complex term to a simple term

- The database must be updateable through the same script

Use Cases

The tool is a back end implementation to a front end tool to be used by doctors.

The steps in the final tool look like:

1. Doctor submits medical note or record

2. The AI queries a database to create a simplified medical record

3. The database returns the simplified language from what the AI queried

4. The final note is reviewed by a doctor and sent to the patient

The client wanted us to specifically develop only the database mentioned in steps

2 and 3. A step-by-step use case for that looks like:

Setup (Done once, but must be set up to be able to be updated):

1. Import data from Wikipedia to a model that simplifies the phrases

a. This model uses web scraping with set phrases that catch

word associations.

2. Export the data into a Postgres database (locally stored, as per

client request)

a. Organize the database into two columns/tables (complex

language -> simple language) and have a key or relationship

between the two for each term.

1

Use (Done any time the front end tool is used):

A query of a complex term must return the simplified term in its place

2

Requirements

Functional Requirements:

- A python script that automatically generates simple synonyms for complex terms

using web scraping and input those values into a Postgres database.

- The script is able to process multi-word groups (3-4 max).

- The program is able to take in data (e.g. from Wikipedia articles or other sources

which have both the technical and common term) and create mappings between

the technical and common terms.

- A Postgres database that has words sorted into complex and simple categories

with relationships between them.

Non-Functional Requirements

- The program is a python script that takes file input and outputs to a database

- Data is be processed locally and pushed to a local Postgres database

3

System Architecture

Figure 1. System Architecture Diagram

As shown in Figure 1, there are several components to our overall system:

1. The Wikipedia Article Search: this component is responsible for finding a

Wikipedia article from the term supplied from the word list. The word list is a

compilation of thousands of medical terms so that we can more accurately and

efficiently search for medical articles. This component uses the Wikipedia Python

API to be able to search based on a word or phrase. The word list is provided by

the user of the program.

2. The web scraping component also uses the Wikipedia Python API to extract the

raw article text based on the search results. This goes through the article and tries

to match the text provided to key phrases like “also known as” or “referred to as”

4

to find the term mappings.

3. The Complexity Analysis component is able to reorder the term mappings. The

output mappings should be standardized, with the complex term listed first. The

web scraping data is often mixed up or swapped, so we need a process to

determine the complex term out of the two. This is done using NLTK data and the

wordfreq Python library. These two libraries are used to determine which word

would be more complex to an end-user, and put that word first.

4. Finally, the mappings must be cleaned. This means removing extraneous

quotation marks, parentheses, and references. This is in order to standardize the

terms that are being outputted and, eventually, given to the client.

5. There is also a database, set up with Postgres, that the client will use to host these

term mappings. The client wants the data in this format, so our group set up a

temporary database to be able to format and structure the data properly for

end-use. The database can be viewed/modified on the web using a custom Django

web application.

5

Technical Design

Web scraping and phrase matching

The primary component of this project was the Web Scraper, the work flow of

this component can be seen in Figure 2.

Figure 2. Web Scraper Diagram

As seen in Figure 2, the first input into the Web Scraper program was a word list.

A variety of sources were used to compile a list of words that would then be fed

into the Web Scraper. Some of these sources included the MeSH database, a

database that would return medical journals based on keywords. This database

was available in an XML format that contained a variety of keywords that were

contained in the medical journals. These keywords were extracted from the XML

file using a simple XML parser and then the words would be put into a text file.

Another resource for compiling these word lists was online medical dictionaries,

which offered similar downloads to the MeSH database and allowed for similar

extraction of the medical words. These keywords were assembled into text files,

this allowed for a uniform input to the Web Scraper, instead of passing it

different file types with different formatting.

After these word lists were inputted to the Web Scraper, the Web Scraper would

use Wikipedia’s API to search a given term and return the Wikipedia article

relevant to that term. If a Wikipedia article is found, it would then analyze the

text of the article to find synonyms for the medical term. Often, a medical term’s

6

Wikipedia article will mention the simplified term following a phrase such as

“also known as”. If we look at the Wikipedia article for Myocardial Infarction, we

see the medical term “myocardial infarction”, the phrase “commonly known as”,

and the simplified term, “heart attack”.

Using this format and a variety of template phrases like “also known as” and

“referred to”, the Web Scraper can pick out the simplified term from the article’s

text and match it to the medical term. After the term was returned, it would be

cleaned up (as it may have had extraneous words and symbols) so it has a

standard format that can be entered into the Postgres database used in this

project.

Figure 3. Database UML

The database is very simple. As seen in figure 3 it stores the complex word and

the simple word. These are primary keys in their table, so only unique mappings

can exist.

Word Complexity Analysis

The web scraping part of the program could generate word mappings, but relying

on the order in which words are found in a sentence is not enough to make a

statement about the complexity of a word.

To do this, some kind of complexity analysis must be included in the program.

There are many ways to analyze and define the “complexity” of a word, and the

team discussed several different approaches. The approach that was ultimately

chosen was to check how often a word is used in the English language. The more

the word has been historically used, the “simpler” the word is. The python

7

wordfreq library by the creators of the PyPi project does this. If the word isn’t in

the English language, or it isn’t recognized by the wordfreq library, another

approach is used to generate this score.

Figure 4

The approach that is taken is to analyze substrings and characters of words with

probability maps. Essentially, the word is built on a rolling basis, and with each

past substring, a map of the characters that could follow and their probabilities is

built. Then, the score up to that point is multiplied by the probability of the letter

that follows the substring appearing. For example, if the word “banana” were

being analyzed in this way, and the substring “ban” had already been scored up to

this point with a score of 0.75, the score would then be multiplied by the

probability of the letter ‘a’ following “ban.” The same follows for the substring

“bana” and ‘n’ and “banan” and ‘a’ until the word is done being scored. Figure 4

helps to visualize this. It is important to note that every word being scored this

way starts with a score of 1 and can only decrease in score as letters are being

added. This leads to a bias against long terms being considered simple which is

intentional.

8

Quality Assurance

Code Quality

In order to ensure code quality, we have performed regular code reviews with

each other to go over the functionality of each new piece of code, as well as to

ensure that it meets the coding standards. Along with that, we have regularly

tested the code both through automated testing and manual verification to ensure

that new functionality works as intended and does not break any previous

functionality.

Code Metrics

The client did not specify any specific code syntax rules or style guidelines to

follow, so we have followed general programming best practices: clear variable

and function names, simple and readable code layout wherever possible, minimal

monolithic functions, and clear documentation.

Data Verification

All entries generated by our program are uploaded to a database, which can then

be viewed and verified from a web interface. Any errors can be manually

corrected from this interface as well.

Unit tests

We have implemented unit tests which verify the following criteria:

- Articles are retrieved properly from article name

- Articles are properly encoded

- Articles handle errors correctly if names cannot be found

- Terms are correctly pulled from articles

- Scoring of words and phrases for english words is handled correctly

- Character-based markov chains are built correctly from articles

- Markov chain mappings are used correctly to score words which do not

appear in the reference database for word frequency

User Acceptance Testing

Our client is the only user of our product as it is to be used as an internal tool to

supplement their other software. We engaged in frequent discussions with our

client regarding their vision for the product, as well as any modifications we

needed to make to the final product, to ensure everything was kept to the client’s

standards.

9

Results

General Results

From our program, we have been able to extract about 2000 terms so far. We

have been able to web scrape the simplified terms for the medical terminology

lists we have and find several matches. We have also implemented several

programs and processes to refine these terms and have been able to determine

the relative complexity of two terms, in order to order them properly.

When given a sample article, our web scraping program is easily able to find the

terms stated in the article. For example, given the article on Edema (Figure 5),

Figure 5. Wikipedia Edema Article

Our software extracts the terms fluid retention, dropsy, hydropsy, and swelling,

and associates them with edema.

We cannot build a program that can grade the medical correctness of these terms

because it takes a significant medical understanding to confirm or deny these

mappings. Because we do not want to provide the end-user with inaccurate

information, we built a website that allows the doctors from AIpiphany to accept,

reject, or modify the term mappings presented to them.

What We Did Implement

● A Python script that generates word mappings of complex words to simple words

● Approximately 2,000 word mappings

● Postgres database with word mappings in relational tables

● Local Django website that the client can use to view/modify mappings

Features We Did Not Have Time to Implement

● Implementing an absolute complexity measurement in terms of reading level

10

● Automatically recursively looking up terms. We want to be able to simplify the

simple term, to recursively simplify a complex term to different reading levels.

We did not have time to implement the logic in order to do this.

● Using other websites and medical databases (largely due to licensing and legal

issues as well)

Future Work/Stretch Goals

Much of the suggested future work coincides with the features we were unable to

implement in this amount of time. These stretch goals include:

● Recursive term lookup and intermediary words and phrases

● A robust scoring system for each medical word or phrase

● Granular sorting tags, filters, or score values stored in the database for

ease of implementation on the front end

Lessons Learned

● Web scraping and multithreading are hard to use together. The lack of reliability

of internet functions often causes problems with multiple threads working

together. It was much faster to use several threads to process the information, but

often the program would freeze several thousand terms in, seemingly for no

reason. Because of this, it was much more reliable to just set a single process

running this software and leave it overnight.

● It is important to save the outputs as you go. When processing large amounts of

data, we shouldn’t expect the program to be able to connect to every URL

perfectly and then save all the outputs. There were several times when the web

scraping process crashed or the internet disconnected, and we lost the data that it

had in memory, waiting to be saved. The implementation of saving outputs as the

program runs also helps save memory. If it writes the output to the file every so

often, it doesn’t have to keep all the found terms in memory and we can clear up

unnecessary memory use.

● We should have clarified our final project plan with the client earlier. We didn’t

understand exactly what the project output was or what code we had to write to

implement the client’s specifications until late in the semester, which caused a lot

of confusion and bottlenecked our software design. We had to change the course

of our project midway through (from Machine Learning to Web Scraping) which

caused a lot of our progress to be reset.

11

Appendix

Table 1.

A sample of word mappings generated by the program

12

cytosine arabinoside : cytarabine

cytisine : sophorine

baptitoxine : cytisine

cytidine monophosphate : simply cytidylate

cytidine monophosphate : 5'-cytidylic acid

cytopempsis : transcytosis

mimosa pudica : sensitive plant

touch keyboarding : touch typing

touch type : touch typing

malolactic fermentation : malolactic conversion

deadliness : lethality

perniciousness : lethality

nandrolone : 19-nortestosterone

endoscopic laser cordectomy : kashima operation

beheading : decapitation

decarboxylases : carboxy-lyases

radioactive decay : nuclear decay

lymphoedema : lymphedema

lymphatic edema : lymphedema

passivity : deference

deference : submission

alopecia unguium : onychoptosis defluvium

calumny : defamation

oxydimorphine : pseudomorphine

dehydromorphine : pseudomorphine

dejerine–sottas neuropathy : dejerine–sottas disease

juvenile offending : juvenile delinquency

delirium : acute confusional state

meperidine : pethidine

demodicosis : red mange

demodicosis : demodectic mange

methylated spirits : denatured alcohol

toothache : dental pain

divinization : apotheosis

apotheosis : deification from latin

follicular cyst : dentigerous cyst

dentistry : dental medicine

13

dentistry : oral medicine

hydroxocobalamin : vitamin b12a

hydroxocobalamin : hydroxycobalamin

epilation : hair removal

depilation : hair removal

thessalonica : thessaloniki

selegiline : emsam among others

l-deprenyl : selegiline

dermanyssus gallinae : the red mite

eczema : dermatitis

dermatophilosis : rain scald

dermatophytosis : ringworm

deuterium : heavy hydrogen

devonshire : devon

pantothenol : panthenol

carbamide : urea

proflavine : proflavin

diaminoacridine : proflavine

methandrostenolone : metandienone

methandienone : metandienone

perspiration : sweating

osteopetrosis : albers-schönberg disease

osteopetrosis : marble bone disease

asymmetric synthesis : enantioselective synthesis

electronic heating : dielectric heating

mechlorethamine : chlormethine

dicyclomine : dicycloverine

dideoxycytidine : zalcitabine

etidronate : etidronic acid

dienoestrol : dienestrol

amfepramone : diethylpropion

dihydromorphinone : hydromorphone

root canal treatment : endodontic treatment

root canal treatment : endodontic therapy

quezon city : kyusi

latrepirdine : dimebolin

latrepirdine : sold as dimebon

dimercaprol : british anti-lewisite

dimethazine : mebolazine

metocurine chloride : dimethyltubocurarinium chloride

dimethyltubocurarine chloride : dimethyltubocurarinium chloride

14

diminazen : diminazene

hymenolepis diminuta : rat tapeworm

meticillin : methicillin

diphthongia : diplophonia

propanoic acid : propionic acid

diprosopus : craniofacial duplication

dirofilaria immitis : dog heartworm

dirofilaria immitis : heartworm

phenoxymethylpenicillin : penicillin vk

phenoxymethylpenicillin : penicillin v

