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I. INTRODUCTION 
Client Description 

Uber is a San Francisco based technology       
company most famous for their mobile app       
transportation service. Uber’s app is a taxi-like       
system in which a user requests a ride to a location           
and a Uber-partner driver will drive them to their         
desired location. Unlike taxi services, Uber drivers       
use their own cars and the prices are determined         
before the service is provided, not afterword. 

Since beginning the service in 2010, Uber has        
expanded their market to over 616 cities worldwide.        
This massive expansion around the world means Uber        
needs systems that scale incredibly well so they can         
continue to increase their production without      
recreating their systems. 

Uber’s primary market is tied to transportation, so        
Uber requires reliable databases—services that are      
always available when someone needs a ride. The        
market of transportation is heavily reliant on the        
geospatial information, so Uber’s scalable and      
reliable database must store information about the       
world. 

 
Product Vision 

The primary goal for the project is to build a          
service that allows for the storing and retrieval of         
geospatial data. There is a massive amount of data         
that needs to be recorded—an entire world of        
information—so the service needs to be built upon a         
system that can scale to query that much data in a           
reasonable time. 

RDBMSs do not scale well enough, and databases        
like MongoDB with built in geospatial indices are not         
reliable enough for a company like Uber which        
requires access to the database at all times. 

To solve these problems, this product is built on         
top of the NoSQL database Cassandra which has        

great stability and incredible scaling potential. The       
product must retain the scalability that Cassandra       
provides while still providing useful geospatial      
information. 

 

II. REQUIREMENTS 
The product must be a reliable, scalable database        

that allows developers to efficiently store and query        
geospatial data. This product consists of three parts:        
the Cassandra database, a client side interface, and the         
Service Layer which interacts with both the client and         
the Cassandra cluster. The Thrift compiler is used to         
facilitate communication between the service layer      
and the client application. This protocol allows data        
transportation to happen seamlessly between different      
programming languages. 

The client’s specification for the project made       
clear that the goal of the project is scalability of the           
final system. While the project must meet all of the          
functional requirements listed below, the project      
should focus on the non-functional requirements      
(specifically scalability). 

 
Functional Requirements 

The product must have a geospatial database       
whose data includes the following information: 
● Unique identifier (UUID) 
● Geometry/location 
● Additional geographic information 
The product must also have a web app which will          

make interfacing with the database easier for potential        
clients. These interfaces must include, but are not        
limited to: 
● Querying the database to receive geospatial      

data about a region 
● Modifying the data 
○ Adding features 
○ Deleting features 
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○ Modifying a feature 
● Running an historical query on a region which        

shows a prior database state 
To facilitate the interaction between the client-side       

and the database, a Java service layer will be designed          
that will query the database. The service layer and the          
web app, written in different languages, will       
communicate using Thrift. 

 
Non-Functional Requirements 

Most importantly, the geospatial database must be       
horizontally scalable. In this context, scalability      
means that changing the size of the database will not          
require changing in the codebase or upgrading the        
machine with larger memory and more expensive       
CPU. The only required change will be adding more         
machines to the cluster to fulfil the demand in         
increasing the size of the capacity and the throughput         
of the database cluster. 

 

III. SYSTEM ARCHITECTURE 
The system consists of three major components:       

the Cassandra database cluster, stateless service layer,       
and client interface. The Cassandra database stores       
the geospatial data. The service layer handles all        
interaction with the client, and provisions any queries        
or updates with the database. The client interface will         
be a web app created with end users in mind to make            
querying and modifying features simple. 

The client app and the service layer will        
communicate to each other using the Apache Thrift        
framework. Thrift is a software generation tool that        
allows for a single client-server contract that is        
written in the Thrift language to be distributed to any          
number of clients running different languages on       
unique architectures. 

A diagram of these three main pieces and their         
interactions can be seen below in Figure 3.1. Each         

component is described in greater detail as well. 
 
Database 

Apache Cassandra is an open-source, distributed      
NoSQL database designed by the Apache Software       
Foundation. The database is intentionally     
“masterless”, affording no single points of failure to        
the system. This feature is achieved by transparent        
data replication and automatic node failover. The       
intended system architecture for a production      
Cassandra cluster is a discrete collection of data        
centers each running “commodity” servers. The      
advantage of running these commodity servers is       
clear: rapid horizontal scalability. 

The Cassandra project has five clear objectives,       
each of which works to solve some of the more          
common issues experienced with other NoSQL      
databases: 

 
● Decentralization - Every node has exactly the       

same role in the cluster, and any node can service          
any client request. 

● Replication Support - Replication can be fine       
tuned for failover and disaster recovery under any        
topology, including multi-datacenter   
configurations. 

● Scalability - Read and write throughput increases       
linearly with the addition of nodes to the cluster. 

● Fault Tolerant - Since replication occurs      
automatically across nodes, failed nodes in the       
cluster may be replaced with zero downtime. 

● Adjustable Consistency - The consistency of a       
cluster may be adjusted to match the application,        
ranging anywhere from single node consistency      
all the way to full cluster consistency. 
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Due to the fact that provisioning a full datacenter is          
out of the scope of the this project, instead a          
production Cassandra cluster was simulated by      
internetworking personal computers together. Clusters     
of varying sizes were built and tested to analyze the          
feasibility and scalability of our design. This topic is         
discussed in much further detail in the Scalability        
section of the report. 

 
Service Layer 

The service layer is the interface that sits between         
the client and the Cassandra database. This layer        
services requests for geospatial data within some       

client-specified bounding box, and returns the      
appropriate data. 

Java was the language requested by the client for         
the implementation of this layer. The service layer        
connects to the database using the official Datastax        
Cassandra Java driver, which ensures minimal latency       
and optimal throughput. The service layer interfaces       
with the client using a Thrift-defined client-server       
contract, which dramatically simplifies updates and      
modifications to the API. 

The service layer contains practically all of the        
business logic for the system. The service layer is         
responsible for the process of loading the geospatial        
data into the database, which involves the       
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denormalization of the geospatial data into the       
database. It is also responsible for coordinating the        
reconstruction of data from multiple sources in the        
midst of a client request. The design of the service          
layer is in many ways the keystone of the system          
design. A block diagram of our service layer is shown          
in Figure 3.2. 

The service layer is able to handle four different         
types of client requests. These types are (1)        
Bounding-Box Queries, (2) Feature-Add Requests,     
(3) Feature-Update Requests, and (4) Feature-Delete      
Requests. 

For the bounding-box queries, the client supplies a        
geographical bounding box, using latitude and      
longitude coordinates, to match the visible portion of        
the map on the client’s screen. The service layer takes          
this box, estimates a practical level of detail (number         
of features) for the response, and performs queries        
against the database at the determined detail level and         
in the containing geographic boxes. The service then        
collects the results of these queries, filters duplicates        

from this collection, and returns a list of features to          
the client. 

For the feature-add requests, the client simply       
supplies a proposed feature to the service layer, and         
the service layer calculates an ID for the feature. The          
service layer then parses the feature and determines        
how to effectively denormalize the feature and add it         
to the database. 

For the feature-update requests, the procedure is       
roughly the same as the feature-add requests, save        
that the service layer is no longer required to calculate          
a new ID for the feature. It may instead use the           
existing ID that is assigned to the feature. Again, the          
service layer will parse the feature and denormalize it         
into the database. 

Finally, for the feature-delete requests, the client       
need only supply the ID of the feature. The service          
layer will then work to remove all instances of that          
feature from the database. 
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Client Application 
In order to make the system user friendly, a client          

application had to be developed. This application was        
developed as a web app that communicates with the         
service layer with the Thrift-defined client-server      
contract. A screenshot of the application is shown in         
Figure 3.3. 

The web app consists primarily of a map built on          
the Leaflet library for interactive maps. The Leaflet        
interface allows for significant customizability and      
has strong library support, allowing for more features        
more quickly. 

The application also has a simple interface that        
allows the user to interact with the database. The         
panel in the top right of Figure 3.3 is used to initiate a             
query of the database. Both Region queries (which        
finds all features in the user’s window) and Point         
queries (which find the features in a single s2 cell          

located at the center of the window) are supported.         
Both queries support historical queries, showing a       
prior state of the database. 

Below the Query Panel is the Feature Modification        
Panel. Using this interface, a user can modify a         
feature (by changing, adding, or removing properties)       
or delete a feature. The selected feature is highlighted         
green. 

A second library, Leaflet.Draw, allows the user to        
create new GeoJSON geometries. Combined with the       
Feature Modification Panel, users can create new       
Points, Polygons, and Lines and fully customize the        
properties of each new feature. These new features        
are added to the editing layer, colored blue, to inform          
the user that they are not part of the database until           
they are submitted. 
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These features allow the web app to accomplish        
the goal of making interfacing with the database        
easier for the client. 

 

IV. TECHNICAL DESIGN: S2 
Google’s s2 library maps the world into unique        

cells. This functionality is beneficial to this project        
because the service will query the database with        
longitude/latitude information, which s2 can easily      
map into a cell. S2 cells have varying sizes, called          
levels, ranging from level 30 (0.48 cm2) to level 1          
(85,011,012 km2). A cell at level n is made up of four            
cells of level n+1. 

The s2 library determines these cells by mapping        
the globe onto a cube and then creating a Hilbert          
curve on each face. The Hilbert curve is a fractal          
space-filling curve which is notable because it       
somewhat retains spatial locality—i.e. if you stretch       
out the hilbert curve into a straight line, two points          
close together on that line will map to points close          
together on the face of the cube. The first six          
iterations of the Hilbert curve are shown in Figure         
4.1.  

The Cassandra database works best when the       
primary key has clear partitions, and the s2 library         
allows for those clear partitions. The preservation of        
locality by the Hilbert curve means that often, nearby         
cells will be stored on the same cluster, leading to          
more optimal queries on the database. In the final         
version of the service, features are placed into their         
corresponding s2 cell based on their coordinates and        
their size. 

Unfortunately, the cells of different levels overlap       
in physical space. This means that design of the         
database either needed to be limited to certain s2         
levels, or a system needed to be designed that would          
determine which levels to query on and which levels         
to place features into. Section V discusses the final         

design for how features were stored in the database         
and on which levels they were determined to be         
stored. 

  

V. TECHNICAL DESIGN: STORING 
The proposed database stores data in increments of        

S2 Cell. The planet is divided into cells that ranges          
from level 1 to level 30 with 30 being the smallest           
cell. The database only makes use of levels 13 to 4,           
which is an effective range of 1.9 km2 to 498108.4          
km2. The features are first extracted from the        
GeoJSON file and its size is approximated to its S2          
Cell level. Afterwards, that feature is mapped to the         
corresponding S2 Cell and level and stored into the         
database. For features that extend over multiple cells,        
there are three possible approaches to storing them:        
duplication into multiple cells, slicing a feature into        
the corresponding cells, and a combination of the two. 

 
Duplication 

The simplest approach to solving this issue is to         
store the feature on all the cells that it overlaps.          
Because the feature is stored on the level that is          
closest to its size, the worst case scenario is that a           

7 



 

feature overlaps the corners of four S2 Cells. This         
means any given feature within level 13 and 4 can be           
duplicated 4 times. Features under level 4 would be         
duplicated more while features beyond level 13 would        
not be duplicated at all.  

A more serious issue occurs when trying to query         
from this approach on the database. When the region         
query lands on a part of a feature, that entire feature           
has to be returned. This issue is very prominent near          
large borders, where the entire border has to be         
returned regardless of how small the overlap is. One         
potential solution is to apply a caching layer between         
the service layer and the database cluster to reduce the          
stress to the database directly. But applying the        
caching layer requires additional hardware resources      
which cannot be implemented with the current scope        
of the project. As a result, cutting large features to          
only return a portion of them became the solution. 

 
Cutting 

The second approach involves cutting features that       
cross S2 Cell boundaries into smaller features. This        
reduces the redundancy of the duplication method at        
the cost of increased overhead in the handling of         
features. 

When the features are added to the database they         
need to be divided along the boundaries for each S2          
Cell at each S2 level. When the service layer queries          
the database, the features need to be reconstructed        
into the master feature so the client has the entire          
feature and not only a segment. This additional        
processing needs to happen not only when a feature is          
loaded in, but when the service layer performs any         
interaction with the database, including modifying      
features. 

Despite the difficulty of the cutting method, it        
provides large benefits to the service. By reducing the         
amount of data that has to be returned on a particular           
query, large speed ups can be obtained especially on         

hotspot areas that would be queried by many people         
(like the U.S. border). With the cutting method, the         
service can run faster without additional elements       
outside the scope of the project, like a caching         
system. 

 
Combined 

The final database uses the duplicating method as        
the core of the database because it ensures        
correctness, while implementing the cutting algorithm      
to trim unwanted information. Trimming the data is        
important to send it back to the user at a reasonable           
speed and size. Implementing the cuts increases the        
amount of data that has to be duplicated. A feature          
stored on one level 4 cell is copied and cut in every            
level down to 13. The worst case scenario is a large           
feature being replicated 13 times. 

The duplications might seem excessive, but they       
are very effective. Data is transmitted back at a         
reasonable speed and all features a user would be         
interested to know about within a region are included. 

Contrary to this method, Uber chooses to use the         
pure duplication method in tandem with a massive        
caching layer to prevent querying the same large        
features multiple times. This is not possible with the         
equipment available during the field session. 

 

VI. TECHNICAL DESIGN: HISTORY 
One of the system requirements is to include a way          

to query the database and receive its state at a          
particular time in the past. The difficulties in this         
implementation occurred because any prior state      
needed to be reached (i.e. regular backups would not         
be sufficient) and because of difficulties in Cassandra. 

To be able to query for any prior state of the           
database, when features are modified or “deleted”       
from the database the old version of the feature must          
remain in the database. In order to keep track of          
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which version should be visible at a particular time,         
each feature was assigned a timestamp at entry into         
the database. 

The timestamp for a feature is defined as the time          
that that feature was last correct. This means that new          
features are added to the database with the maximum         
timestamp, and when a feature is deleted from the         
database its timestamp is updated to the moment it         
was deleted. In order to avoid the new feature         
showing up earlier than it ought to in an historical          
query, a second null feature must be added with the          
same osm_id and the current timestamp, but with a         
null json value. Modified features simply require       
changing the current database feature’s timestamp to       
the present and adding a new feature with the updated          
json. 

Cassandra only allows SELECT queries on the       
primary key, where every preceding level of the        
primary key is also constrained. This meant the        
timestamp had to be part of the primary key, as early           
as possible so as to make the historical queries         
efficient. As can be seen in Figure 6.1, time is the           
second entry of the primary key after the partition key          
of (level, s2_id). 

With this system, regional queries were able to be         
efficiently run at any point in time, simply by         
querying the database with the WHERE clause: 
 
time<=maxtimestamp(timestamp) 

VII. DECISIONS 
Geospatial Divisions: GeoHash vs. S2 

The method we are using to store the geospatial         
data in this project is known as bucketing. The two          
primary methods to perform bucketing are GeoHash       
and Google S2.  

After examining the high-level specification of      
both methods, it was found that GeoHash has more         
restricted levels than Google S2—for certain zoom-in       
levels, Google S2 has a better resolution.       
Additionally, Google S2 uses the Hilbert space-filling       
curve, which encodes 2D coordinates to 1D. This        
makes it easy to obtain the adjacent buckets. All that          
is required is to slightly offset the 1D distance         
because two points close to each other in 1D is          
mapped close to each other in 2D as well.  

Due to all the advantages associated with Google        
S2, the final decision was to proceed with the Google          
S2 library. The library’s more flexible mapping and        
more extensive API make it the logical choice for this          
project. 

 
Formats: XML vs. GeoJSON 

By default, OpenStreetMap exports an XML file.       
The file on its own is sufficient for loading basic          
nodes, but quickly becomes unusable when dealing       
with anything that has more than two points. An         
alternative is GeoJSON, which has greater readability       
and the support of the JSON format. GeoJSON also         
takes up less space than XML—requiring only half        
the space.  

The biggest advantage of GeoJSON over XML is        
that it encodes the geo data in a logically independent          
way (i.e. a road is independent of another node on the           
map), while XML represents the data in a relational         
manner (a way consists of multiple node, etc.).        
GeoJSON naturally fits better with our NOSQL       
database design. GeoJSON also has significant      
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support in web map APIs, while the XML data would          
be more difficult to work with. 

Proceeding with GeoJSON means that all data       
exported from OpenStreetMap must be converted      
before loading onto the database. As a bulk load onto          
the database should only happen very rarely, the        
conversion issue is of lesser importance. The end user         
of the database is affected very little by the initial          
conversions once the database is up and running. As         
the loading difficulties only affect the developers, and        
GeoJSON makes other aspects of development easier,       
GeoJSON became the format of choice to represent        
the data rather than XML. 

 
Libraries: Leaflet vs. GoogleMaps 

We decided to switch to using the Leaflet map API          
instead of the Google Maps API. Both have similar         
base features, but Leaflet has a more flexible        
implementation especially in the tilesets to use and        
further libraries built on the Leaflet framework.       
Leaflet also has a more helpful GeoJSON       
implementation.  

Additional libraries for Leaflet make parts of the        
web app implementation much simpler. In particular,       
Leaflet.draw makes creating new features with      
complex geometry significantly easier compared to a       
Google Maps implementation. Because it has already       
implemented features that the project requires on the        
client-side, the logical choice is to convert our        
existing code to use the Leaflet and Leaflet.draw        
APIs. 

 

VIII. RESULTS 
The final database, service layer, and front-end       

design each met and exceeded the basic requirements        
of the project. The system stores and queries        
Geospatial data from both the present and the past.  

The final database design successfully makes use       
of both the cutting algorithm and the duplication        
algorithm. Combining the two approaches allow the       
system to selectively return data to the user,        
eliminating the need for a caching system and        
avoiding the challenge of reconstructing features from       
cut pieces.  

As a demonstration of the system’s scalability, a        
Cassandra cluster was built on the Alamode Lab        
machines at the Colorado School of Mines. This        
system will be discussed further in the following        
section.  

Geospatial data of the entire world was loaded into         
the cluster to demonstrate its effectiveness. The       
cluster, with the help of the service layer and client, is           
able to: 
● Store given data in a GeoJSON format 
● Query for features within a region 
● Provide information about a feature of interest 
● Append or remove information about a feature       

using the client 
● Add/Remove a feature using the client 
● Perform a historic query on the data, revealing        

a previous state of the database 
 

IX. PROVING SCALABILITY 
The non-functional requirement of scalability is      

essential to the success of the project. The designed         
geospatial database was tested for this scalability to        
prove that it retains the benefits of NoSQL databases         
that Cassandra provides. 

To facilitate the analysis of these systems, a second         
Web App was developed that would rapidly query a         
database at specified intervals, recording the amount       
of data that was received and the time it took to           
execute the query.  

The tool analyzes the throughput of a specific        
query as a dependent variable based on the load         
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placed on the server. Using this data, the tool         
generates a plot of load (client queries per second)         
against throughput (kB per second). 

This web app was run in two cases: on a database           
cluster with a single machine, one with four        
machines, and one with twelve machines. This creates        
a good estimate of the scalability of the system,         
because an twelve machine cluster should be faster        
than a four machine cluster, which will be        
significantly faster than a one machine cluster (all        
with the same code). 

 

 
 
 
 

 

Running the experiment on both clusters produced       
the graph shown below in Figure 9.1. The throughput         
of the four and twelve node clusters greatly exceeded         
the throughput of the single node cluster, and the         
twelve node cluster had a sizable speedup over the         
four node cluster. The speed increase from the four         
node to the twelve node cluster is less substantial than          
the one-to-four node increase because while the       
system scales well, the returns are still limited. 
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