

Geospatial Database
Advanced Software Engineering

June 21, 2017

Client: Ricky Walker

Khanh Duong, Ryan Hunt, Tim Walker, Huan Wang

Colorado School of Mines
Golden, CO

I. INTRODUCTION
Client Description

Uber is a San Francisco based technology
company most famous for their mobile app
transportation service. Uber’s app is a taxi-like
system in which a user requests a ride to a location
and a Uber-partner driver will drive them to their
desired location. Unlike taxi services, Uber drivers
use their own cars and the prices are determined
before the service is provided, not afterword.

Since beginning the service in 2010, Uber has
expanded their market to over 616 cities worldwide.
This massive expansion around the world means Uber
needs systems that scale incredibly well so they can
continue to increase their production without
recreating their systems.

Uber’s primary market is tied to transportation, so
Uber requires reliable databases—services that are
always available when someone needs a ride. The
market of transportation is heavily reliant on the
geospatial information, so Uber’s scalable and
reliable database must store information about the
world.

Product Vision

The primary goal for the project is to build a
service that allows for the storing and retrieval of
geospatial data. There is a massive amount of data
that needs to be recorded—an entire world of
information—so the service needs to be built upon a
system that can scale to query that much data in a
reasonable time.

RDBMSs do not scale well enough, and databases
like MongoDB with built in geospatial indices are not
reliable enough for a company like Uber which
requires access to the database at all times.

To solve these problems, this product is built on
top of the NoSQL database Cassandra which has

great stability and incredible scaling potential. The
product must retain the scalability that Cassandra
provides while still providing useful geospatial
information.

II. REQUIREMENTS
The product must be a reliable, scalable database

that allows developers to efficiently store and query
geospatial data. This product consists of three parts:
the Cassandra database, a client side interface, and the
Service Layer which interacts with both the client and
the Cassandra cluster. The Thrift compiler is used to
facilitate communication between the service layer
and the client application. This protocol allows data
transportation to happen seamlessly between different
programming languages.

The client’s specification for the project made
clear that the goal of the project is scalability of the
final system. While the project must meet all of the
functional requirements listed below, the project
should focus on the non-functional requirements
(specifically scalability).

Functional Requirements

The product must have a geospatial database
whose data includes the following information:
● Unique identifier (UUID)
● Geometry/location
● Additional geographic information
The product must also have a web app which will

make interfacing with the database easier for potential
clients. These interfaces must include, but are not
limited to:
● Querying the database to receive geospatial

data about a region
● Modifying the data
○ Adding features
○ Deleting features

2

○ Modifying a feature
● Running an historical query on a region which

shows a prior database state
To facilitate the interaction between the client-side

and the database, a Java service layer will be designed
that will query the database. The service layer and the
web app, written in different languages, will
communicate using Thrift.

Non-Functional Requirements

Most importantly, the geospatial database must be
horizontally scalable. In this context, scalability
means that changing the size of the database will not
require changing in the codebase or upgrading the
machine with larger memory and more expensive
CPU. The only required change will be adding more
machines to the cluster to fulfil the demand in
increasing the size of the capacity and the throughput
of the database cluster.

III. SYSTEM ARCHITECTURE
The system consists of three major components:

the Cassandra database cluster, stateless service layer,
and client interface. The Cassandra database stores
the geospatial data. The service layer handles all
interaction with the client, and provisions any queries
or updates with the database. The client interface will
be a web app created with end users in mind to make
querying and modifying features simple.

The client app and the service layer will
communicate to each other using the Apache Thrift
framework. Thrift is a software generation tool that
allows for a single client-server contract that is
written in the Thrift language to be distributed to any
number of clients running different languages on
unique architectures.

A diagram of these three main pieces and their
interactions can be seen below in Figure 3.1. Each

component is described in greater detail as well.

Database

Apache Cassandra is an open-source, distributed
NoSQL database designed by the Apache Software
Foundation. The database is intentionally
“masterless”, affording no single points of failure to
the system. This feature is achieved by transparent
data replication and automatic node failover. The
intended system architecture for a production
Cassandra cluster is a discrete collection of data
centers each running “commodity” servers. The
advantage of running these commodity servers is
clear: rapid horizontal scalability.

The Cassandra project has five clear objectives,
each of which works to solve some of the more
common issues experienced with other NoSQL
databases:

● Decentralization - Every node has exactly the

same role in the cluster, and any node can service
any client request.

● Replication Support - Replication can be fine
tuned for failover and disaster recovery under any
topology, including multi-datacenter
configurations.

● Scalability - Read and write throughput increases
linearly with the addition of nodes to the cluster.

● Fault Tolerant - Since replication occurs
automatically across nodes, failed nodes in the
cluster may be replaced with zero downtime.

● Adjustable Consistency - The consistency of a
cluster may be adjusted to match the application,
ranging anywhere from single node consistency
all the way to full cluster consistency.

3

Due to the fact that provisioning a full datacenter is
out of the scope of the this project, instead a
production Cassandra cluster was simulated by
internetworking personal computers together. Clusters
of varying sizes were built and tested to analyze the
feasibility and scalability of our design. This topic is
discussed in much further detail in the Scalability
section of the report.

Service Layer

The service layer is the interface that sits between
the client and the Cassandra database. This layer
services requests for geospatial data within some

client-specified bounding box, and returns the
appropriate data.

Java was the language requested by the client for
the implementation of this layer. The service layer
connects to the database using the official Datastax
Cassandra Java driver, which ensures minimal latency
and optimal throughput. The service layer interfaces
with the client using a Thrift-defined client-server
contract, which dramatically simplifies updates and
modifications to the API.

The service layer contains practically all of the
business logic for the system. The service layer is
responsible for the process of loading the geospatial
data into the database, which involves the

4

denormalization of the geospatial data into the
database. It is also responsible for coordinating the
reconstruction of data from multiple sources in the
midst of a client request. The design of the service
layer is in many ways the keystone of the system
design. A block diagram of our service layer is shown
in Figure 3.2.

The service layer is able to handle four different
types of client requests. These types are (1)
Bounding-Box Queries, (2) Feature-Add Requests,
(3) Feature-Update Requests, and (4) Feature-Delete
Requests.

For the bounding-box queries, the client supplies a
geographical bounding box, using latitude and
longitude coordinates, to match the visible portion of
the map on the client’s screen. The service layer takes
this box, estimates a practical level of detail (number
of features) for the response, and performs queries
against the database at the determined detail level and
in the containing geographic boxes. The service then
collects the results of these queries, filters duplicates

from this collection, and returns a list of features to
the client.

For the feature-add requests, the client simply
supplies a proposed feature to the service layer, and
the service layer calculates an ID for the feature. The
service layer then parses the feature and determines
how to effectively denormalize the feature and add it
to the database.

For the feature-update requests, the procedure is
roughly the same as the feature-add requests, save
that the service layer is no longer required to calculate
a new ID for the feature. It may instead use the
existing ID that is assigned to the feature. Again, the
service layer will parse the feature and denormalize it
into the database.

Finally, for the feature-delete requests, the client
need only supply the ID of the feature. The service
layer will then work to remove all instances of that
feature from the database.

5

Client Application
In order to make the system user friendly, a client

application had to be developed. This application was
developed as a web app that communicates with the
service layer with the Thrift-defined client-server
contract. A screenshot of the application is shown in
Figure 3.3.

The web app consists primarily of a map built on
the Leaflet library for interactive maps. The Leaflet
interface allows for significant customizability and
has strong library support, allowing for more features
more quickly.

The application also has a simple interface that
allows the user to interact with the database. The
panel in the top right of Figure 3.3 is used to initiate a
query of the database. Both Region queries (which
finds all features in the user’s window) and Point
queries (which find the features in a single s2 cell

located at the center of the window) are supported.
Both queries support historical queries, showing a
prior state of the database.

Below the Query Panel is the Feature Modification
Panel. Using this interface, a user can modify a
feature (by changing, adding, or removing properties)
or delete a feature. The selected feature is highlighted
green.

A second library, Leaflet.Draw, allows the user to
create new GeoJSON geometries. Combined with the
Feature Modification Panel, users can create new
Points, Polygons, and Lines and fully customize the
properties of each new feature. These new features
are added to the editing layer, colored blue, to inform
the user that they are not part of the database until
they are submitted.

6

These features allow the web app to accomplish
the goal of making interfacing with the database
easier for the client.

IV. TECHNICAL DESIGN: S2
Google’s s2 library maps the world into unique

cells. This functionality is beneficial to this project
because the service will query the database with
longitude/latitude information, which s2 can easily
map into a cell. S2 cells have varying sizes, called
levels, ranging from level 30 (0.48 cm2) to level 1
(85,011,012 km2). A cell at level n is made up of four
cells of level n+1.

The s2 library determines these cells by mapping
the globe onto a cube and then creating a Hilbert
curve on each face. The Hilbert curve is a fractal
space-filling curve which is notable because it
somewhat retains spatial locality—i.e. if you stretch
out the hilbert curve into a straight line, two points
close together on that line will map to points close
together on the face of the cube. The first six
iterations of the Hilbert curve are shown in Figure
4.1.

The Cassandra database works best when the
primary key has clear partitions, and the s2 library
allows for those clear partitions. The preservation of
locality by the Hilbert curve means that often, nearby
cells will be stored on the same cluster, leading to
more optimal queries on the database. In the final
version of the service, features are placed into their
corresponding s2 cell based on their coordinates and
their size.

Unfortunately, the cells of different levels overlap
in physical space. This means that design of the
database either needed to be limited to certain s2
levels, or a system needed to be designed that would
determine which levels to query on and which levels
to place features into. Section V discusses the final

design for how features were stored in the database
and on which levels they were determined to be
stored.

V. TECHNICAL DESIGN: STORING
The proposed database stores data in increments of

S2 Cell. The planet is divided into cells that ranges
from level 1 to level 30 with 30 being the smallest
cell. The database only makes use of levels 13 to 4,
which is an effective range of 1.9 km2 to 498108.4
km2. The features are first extracted from the
GeoJSON file and its size is approximated to its S2
Cell level. Afterwards, that feature is mapped to the
corresponding S2 Cell and level and stored into the
database. For features that extend over multiple cells,
there are three possible approaches to storing them:
duplication into multiple cells, slicing a feature into
the corresponding cells, and a combination of the two.

Duplication

The simplest approach to solving this issue is to
store the feature on all the cells that it overlaps.
Because the feature is stored on the level that is
closest to its size, the worst case scenario is that a

7

feature overlaps the corners of four S2 Cells. This
means any given feature within level 13 and 4 can be
duplicated 4 times. Features under level 4 would be
duplicated more while features beyond level 13 would
not be duplicated at all.

A more serious issue occurs when trying to query
from this approach on the database. When the region
query lands on a part of a feature, that entire feature
has to be returned. This issue is very prominent near
large borders, where the entire border has to be
returned regardless of how small the overlap is. One
potential solution is to apply a caching layer between
the service layer and the database cluster to reduce the
stress to the database directly. But applying the
caching layer requires additional hardware resources
which cannot be implemented with the current scope
of the project. As a result, cutting large features to
only return a portion of them became the solution.

Cutting

The second approach involves cutting features that
cross S2 Cell boundaries into smaller features. This
reduces the redundancy of the duplication method at
the cost of increased overhead in the handling of
features.

When the features are added to the database they
need to be divided along the boundaries for each S2
Cell at each S2 level. When the service layer queries
the database, the features need to be reconstructed
into the master feature so the client has the entire
feature and not only a segment. This additional
processing needs to happen not only when a feature is
loaded in, but when the service layer performs any
interaction with the database, including modifying
features.

Despite the difficulty of the cutting method, it
provides large benefits to the service. By reducing the
amount of data that has to be returned on a particular
query, large speed ups can be obtained especially on

hotspot areas that would be queried by many people
(like the U.S. border). With the cutting method, the
service can run faster without additional elements
outside the scope of the project, like a caching
system.

Combined

The final database uses the duplicating method as
the core of the database because it ensures
correctness, while implementing the cutting algorithm
to trim unwanted information. Trimming the data is
important to send it back to the user at a reasonable
speed and size. Implementing the cuts increases the
amount of data that has to be duplicated. A feature
stored on one level 4 cell is copied and cut in every
level down to 13. The worst case scenario is a large
feature being replicated 13 times.

The duplications might seem excessive, but they
are very effective. Data is transmitted back at a
reasonable speed and all features a user would be
interested to know about within a region are included.

Contrary to this method, Uber chooses to use the
pure duplication method in tandem with a massive
caching layer to prevent querying the same large
features multiple times. This is not possible with the
equipment available during the field session.

VI. TECHNICAL DESIGN: HISTORY
One of the system requirements is to include a way

to query the database and receive its state at a
particular time in the past. The difficulties in this
implementation occurred because any prior state
needed to be reached (i.e. regular backups would not
be sufficient) and because of difficulties in Cassandra.

To be able to query for any prior state of the
database, when features are modified or “deleted”
from the database the old version of the feature must
remain in the database. In order to keep track of

8

which version should be visible at a particular time,
each feature was assigned a timestamp at entry into
the database.

The timestamp for a feature is defined as the time
that that feature was last correct. This means that new
features are added to the database with the maximum
timestamp, and when a feature is deleted from the
database its timestamp is updated to the moment it
was deleted. In order to avoid the new feature
showing up earlier than it ought to in an historical
query, a second null feature must be added with the
same osm_id and the current timestamp, but with a
null json value. Modified features simply require
changing the current database feature’s timestamp to
the present and adding a new feature with the updated
json.

Cassandra only allows SELECT queries on the
primary key, where every preceding level of the
primary key is also constrained. This meant the
timestamp had to be part of the primary key, as early
as possible so as to make the historical queries
efficient. As can be seen in Figure 6.1, time is the
second entry of the primary key after the partition key
of (level, s2_id).

With this system, regional queries were able to be
efficiently run at any point in time, simply by
querying the database with the WHERE clause:

time<=maxtimestamp(timestamp)

VII. DECISIONS
Geospatial Divisions: GeoHash vs. S2

The method we are using to store the geospatial
data in this project is known as bucketing. The two
primary methods to perform bucketing are GeoHash
and Google S2.

After examining the high-level specification of
both methods, it was found that GeoHash has more
restricted levels than Google S2—for certain zoom-in
levels, Google S2 has a better resolution.
Additionally, Google S2 uses the Hilbert space-filling
curve, which encodes 2D coordinates to 1D. This
makes it easy to obtain the adjacent buckets. All that
is required is to slightly offset the 1D distance
because two points close to each other in 1D is
mapped close to each other in 2D as well.

Due to all the advantages associated with Google
S2, the final decision was to proceed with the Google
S2 library. The library’s more flexible mapping and
more extensive API make it the logical choice for this
project.

Formats: XML vs. GeoJSON

By default, OpenStreetMap exports an XML file.
The file on its own is sufficient for loading basic
nodes, but quickly becomes unusable when dealing
with anything that has more than two points. An
alternative is GeoJSON, which has greater readability
and the support of the JSON format. GeoJSON also
takes up less space than XML—requiring only half
the space.

The biggest advantage of GeoJSON over XML is
that it encodes the geo data in a logically independent
way (i.e. a road is independent of another node on the
map), while XML represents the data in a relational
manner (a way consists of multiple node, etc.).
GeoJSON naturally fits better with our NOSQL
database design. GeoJSON also has significant

9

support in web map APIs, while the XML data would
be more difficult to work with.

Proceeding with GeoJSON means that all data
exported from OpenStreetMap must be converted
before loading onto the database. As a bulk load onto
the database should only happen very rarely, the
conversion issue is of lesser importance. The end user
of the database is affected very little by the initial
conversions once the database is up and running. As
the loading difficulties only affect the developers, and
GeoJSON makes other aspects of development easier,
GeoJSON became the format of choice to represent
the data rather than XML.

Libraries: Leaflet vs. GoogleMaps

We decided to switch to using the Leaflet map API
instead of the Google Maps API. Both have similar
base features, but Leaflet has a more flexible
implementation especially in the tilesets to use and
further libraries built on the Leaflet framework.
Leaflet also has a more helpful GeoJSON
implementation.

Additional libraries for Leaflet make parts of the
web app implementation much simpler. In particular,
Leaflet.draw makes creating new features with
complex geometry significantly easier compared to a
Google Maps implementation. Because it has already
implemented features that the project requires on the
client-side, the logical choice is to convert our
existing code to use the Leaflet and Leaflet.draw
APIs.

VIII. RESULTS
The final database, service layer, and front-end

design each met and exceeded the basic requirements
of the project. The system stores and queries
Geospatial data from both the present and the past.

The final database design successfully makes use
of both the cutting algorithm and the duplication
algorithm. Combining the two approaches allow the
system to selectively return data to the user,
eliminating the need for a caching system and
avoiding the challenge of reconstructing features from
cut pieces.

As a demonstration of the system’s scalability, a
Cassandra cluster was built on the Alamode Lab
machines at the Colorado School of Mines. This
system will be discussed further in the following
section.

Geospatial data of the entire world was loaded into
the cluster to demonstrate its effectiveness. The
cluster, with the help of the service layer and client, is
able to:
● Store given data in a GeoJSON format
● Query for features within a region
● Provide information about a feature of interest
● Append or remove information about a feature

using the client
● Add/Remove a feature using the client
● Perform a historic query on the data, revealing

a previous state of the database

IX. PROVING SCALABILITY
The non-functional requirement of scalability is

essential to the success of the project. The designed
geospatial database was tested for this scalability to
prove that it retains the benefits of NoSQL databases
that Cassandra provides.

To facilitate the analysis of these systems, a second
Web App was developed that would rapidly query a
database at specified intervals, recording the amount
of data that was received and the time it took to
execute the query.

The tool analyzes the throughput of a specific
query as a dependent variable based on the load

10

placed on the server. Using this data, the tool
generates a plot of load (client queries per second)
against throughput (kB per second).

This web app was run in two cases: on a database
cluster with a single machine, one with four
machines, and one with twelve machines. This creates
a good estimate of the scalability of the system,
because an twelve machine cluster should be faster
than a four machine cluster, which will be
significantly faster than a one machine cluster (all
with the same code).

Running the experiment on both clusters produced
the graph shown below in Figure 9.1. The throughput
of the four and twelve node clusters greatly exceeded
the throughput of the single node cluster, and the
twelve node cluster had a sizable speedup over the
four node cluster. The speed increase from the four
node to the twelve node cluster is less substantial than
the one-to-four node increase because while the
system scales well, the returns are still limited.

11

