the caro

Bundled Health Services

TEAM
David Rhine, Amos Gwa, and Jacob Granley

CLIENT
Wim De Pril

6/19/2017

1.INTRODUCTION

2.REQUIREMENTS
2.1 Requirements Overview:
2.2 Functional requirements:
2.3 Non-functional requirements:

3.SYSTEM ARCHITECTURE

4. TECHNICAL DESIGN
4.1 Ignore Algorithm
4.2 Bundling Algorithm
4.2.1 Introduction
4.2.2 Cost Key Implementation
Model Overview
Online Bundling Engine
Offline Training
Custom Model
Retraining
4.2.3 NLP Implementation
Model Overview
Online Bundling Engine
Initial Training

5. DESIGN DECISIONS

6. RESULTS
6. 1 Classifier Performance
6.2 Model Performance

7. APPENDICES
8. REFERENCES

oo O MDA DA DN O

T T
N ooou ADNPRERPL,P R, R~ OO

Y
(0 <]

N NN
=~ O O

N N
E N V)

The Zero Card works with companies that manage health insurance for their employees
internally, and creates bundled health services in order to lower the prices both for the
employer and employee. They are able to accomplish this goal by cutting out large
amounts of administrative waste and can cut the prices of these procedures by an average
of 25%. The Zero Card also offers free procedures to the companies’s employees, which
incentivizes the employees to use their service. The procedures that The Zero Card
covers are episodal in nature, meaning that they only occur once at a time, and are not
recurring. The Zero Card does not bundle emergency services, because those treatments
are given as urgently as possible, and it does not offer bundled services for recurring
treatments, such as dialysis.

The first goal of this project is to design a machine learning algorithm with the capability
of flagging the procedures for which The Zero Card does aim to create bundled services.
The majority of this project is research-based, in that we work on determining which
machine learning algorithms are the most effective and which features we should use to
obtain the highest accuracy score. In machine learning, a feature is an individual property
of the dataset that a machine learning algorithm has the capability of observing. In our
project specifically, the features we use are mostly medical codes used to describe the
procedure with a numeric values, information about the patient such as their gender and
and their zip code, and place of service codes, numeric values used to encode which part of
a hospital the procedure took place.

The second goal of this project is to design a machine learning algorithm that can take the
dataset produced by the first algorithm and then create the bundled services. Currently,
The Zero Card has algorithms that complete both of these goals, but the reasoning for
shifting to a machine learning algorithm is that as the models receive more data they will
be able to get increasingly accurate, and if new rules are created for ignoring procedures,
the model can respond dynamically and the code does not have to be changed.

2.1 Requirements Overview:

The goal of the project is to research various self-optimizing clustering and classification
algorithms and determine the most accurate and performant algorithm. The project is
oriented more towards data analysis than writing a software. There will be two types of
algorithms: ignoring procedures that can’'t or won’t be bundled by The Zero Card and
building bundles. Our requirements can be divided up into functional and nonfunctional
requirements as follows.

2.2 Functional requirements:

A machine learning algorithm with the capability of flagging procedures for which
The Zero Card does not offer a bundled service so that they can be ignored by the
bundling algorithm.

A self-optimizing machine learning algorithm that takes in the result dataset from
the first algorithm, then creates the healthcare bundles.

2.3 Non-functional requirements:

Using Python3 to format the data given to us by the client

Using Pandas to create and handle the data frames

With respect to time constraints and the scope of this project, we will use the
Scikit-learn classifiers rather than building custom machine learning algorithms
Using Slack for communication amongst the team and with the client

As always, there are a number of risks associated with completing the project. These are
the issues we are most concerned about with our project:

Overfitting data: the trained data only works on the provided training set of data.
So, our algorithm might not work on the other data.

Finding the right language: we were concerned that we may have needed to learn
new languages based on the available frameworks for the machine learning. So, the
timing might become difficult.

Linguistics of the healthcare industry: as a group we have limited knowledge of the
technicalities within the healthcare industry, so we may need to do some additional
research on the vocabulary

Limited knowledge: We didn’t have any data science or machine learning
knowledge. So we may have to spend time researching about machine learning and
data mining.

In order to tell when we have thoroughly completed the project, as well as give us a
concrete goal to strive for, we have decided on our own definition of done, outlined below:

Propose a machine learning algorithm that effectively identifies services that
cannot be bundled, the ignore model

Propose two distinct clustering algorithms that automate the bundling process
Implement these four algorithms and analyze their effectiveness

Delivery: We will deliver to our client a program that ingests his input data, feeds it
through our machine learning models, and outputs corrected data. Additionally, we
will provide code for each individual model used, and documentation describing
each model and its recall and precision

The design of these ignore and bundling models was by far the most important component
of our project. Because of this, we have split the design up into two components, System
Architecture, and Technical Design. This section gives a brief overview of the design of the
model, as well as describe some of the design process we used. The technical design
section will give a much more detailed discussion of our current best design, what hasn’t
worked in the past, and possible future alternatives, as requested by our client.

Shown below in Figure 1 is a diagram of our model. This model is what our project is hoping
to achieve. First, we take raw medical claims data, and run it through an ignore model,
which filters out the rows that need to be ignored. Next, it goes through a bundling model,
which extracts the relevant bundles, and return the bundled data back to our client

Ignore Model Bundling Model

lgnore Ensembled
Model

Raw Claims
Data

Bundle Extraction

Bundled Claims

Reformatter

Refrain |« ®~. |

Figure 1: Overview of the two algorithms processing healthcare claims data

For our project, we decided to use Python as it has powerful machine learning and data
mining libraries such as scikit-learn and pandas. Also, the language is easy to pick up, and
we didn’t have to learn a complicated new language to do the machine learning.

In the ignore machine learning model, the client wants an algorithm that filters
procedures that cannot be bundled. Then, the output of the provided data is labeled as
either 1 or O, ignored or not ignored. We used various methods in supervised learning to
predict the output. The client provided us with around 200,000 samples and we used 75%
of the data as training set and 25% as the testing set. The dataset provided by the client
contained huge categorical data such as CPT Code, UB Code, etc. These features have
1000 levels or more each, which makes machine learning complicated. In order to deal
with this, the categorical data was grouped and then converted to numeric “dummy”
representation, so that the classifiers provided by scikit-learn would be able to digest
them. From there the data was be fed into our ignore model.

For the ignore model, we decided to use an ensembled model. This model uses random
forest classifiers on a variety of different input datasets (each data set has individual sets
of features from the complete data set). Each of these individual models makes a
prediction about whether or not a line should be ignored, as well as give a confidence in
that prediction. Finally, at the end, all of these models’ predictions are put into another
model, either logistic regression or another random forest. This model evaluates each
prediction, and based on its confidence, determines the final prediction.

After the ignore model, the data undergoes more restructuring to be in the correct format
for the bundling machine learning algorithm. In our proposed model, it first goes through
cost key matching for each claim. Then, based on which cost keys matched, it applies a set
of extraction rules. Again, we are using a 75% training data set and 25% test data set.

Finally, after the data has been through both models, it is restructured into a format
similar to the original and delivered back to our client. For more information on either of
these models, please see the technical design section.

The project entails to produce two algorithms for ignoring and bundling health
procedures. In this section, we explain each algorithm in detail.

4.1 Ignore Algorithm

Feature Random —Il
Set 1 Forest Model
1 lgnore
K
i
Raw Claims Data Fentiin Random Reformatics Logistic | _ —Il
¢ Set2 Forest Model regression y
! Not lgnore

Feature Random
Set i Forest Model

Figure 2: Technical design of the Ignore Algorithm implementation

Ignore model filters out procedures that cannot be bundled. The provided raw claim data
were labeled with “ignored” or “not ignored” by the client’s deterministic algorithm. Our
Ignore model has to outperform the accuracy of the client’s algorithm which is roughly
98%. We tried different classifiers to find an algorithm that predicts the highest accuracy.
The results can be seen in the result section.

Initially, we were using built in classifiers from the Scikit-learn library without tuning the
parameters or deliberate selection of the features. The results were not satisfying. Before
we started feeding the data into the classifiers, we cleaned up the data into the format
that our chosen library can understand as we explained in the system architecture. Then,
we selectively chose combination of feature sets that have high importance in the
determination of the labels.

In determination of the features sets, we looked at the client’s deterministic algorithm and
paired the features based on the rules of the algorithms. For example, the CPT Code was
seen paired with other code such as POS Code and UB Code in determining if a procedure
should be ignored or not. Thus, we used combination of CPT Code, POS Code, and UB
Code as the subset of features. We also used the descriptions of the codes as additional
features. Since the descriptions are text, we have to convert the text to numeric
representation by vectorizing with Term Frequency Inverse Document Frequency
(TF-IDF) technique and filter out the stop words (words with no significance) [1].

Using the selected features, we created set of data to be trained. Then, we used a
technique called “boosting” to increase the accuracy of the initial attempt where we used
built in classifiers. Boosting is a technique to make weak learners stronger; the prediction
and confidence of the algorithms with certain set of features were appended back to the
training data and the data was fed into another classifier and so on. This increases the
accuracy; however, it overfit the data. Therefore, we use came up with the design as
shown in Figure 2. We called it stacking technique where we ensemble the output of the
each model with certain set of features. Then, we run logistic regression or random forest
classifier on each output of the models to classify if a procedure should be ignored or not.

10

4.2 Bundling Algorithm

4.2.1 Introduction

The purpose of this section is to provide a detailed, high level design for a bundling
algorithm. This algorithm will take a list of medical claims data and group these
procedures and claims into bundles that The Zero Card supports. It will use machine
learning to not only learn how to extract bundles, but also to adapt to new bundles in the
future. This will create a feedback loop, so that any time the model receives claims data
that it does not know how to process, this data will be flagged for manual review. After it
has been manually reviewed, it will be stored, and can be used to retrain the algorithm to
work on this new data.

Two implementations of this algorithm will be described, with a discussion of the benefits
and risks of each. The first is the model that was discussed with our client, which will use
the cost keys associated with each claim to train a rules based machine learning model on
the extraction rules for each cost key. The second is the model proposed by Tabor, a
student at Galvanize Data Science. This model would use natural language processing
(NLP) and TF-IDF vectorization to create string representations of bundles, and from that
a traditional machine learning algorithm could be ran [1]. From here on, these
implementations will be referred to as the cost key model and the NLP model.

11

4.2.2 Cost Key Implementation

Model Overview

This model uses cost keys and rules based machine learning in order to create and
maintain an optimized set of extraction rules to bundle. It has two main components, an
online bundling engine, and an offline review/training feedback cycle. The model is shown
below in Figure 1, with the ignore model shown for completeness.

Online Bundling Engine

The top part of this diagram is the online bundling engine. This engine could be used in real
time to take any amount of correctly formatted medical claims and build bundles. Since
this model inherently uses cost keys to do this, pricing these built bundles would be
incredibly easy, as each cost key has an associated price. Thus, this online model could
deliver priced, bundled claims data. In order to do this, the input data must have already
been processed, as well as passed through an ignore model, to ignore lines that are not
eligible for bundling. Additionally, this model will be able to flag bundles that it is unsure
about for manual review.

This model works by splitting the input csv file into claims, and then identifying which cost
keys are applicable to each claim. This cost key identification step creates a new csv where
each lineis a claim, with a 1 in each column where a cost key is applicable. The bundle
extraction engine will have a set of extraction rules stored for each cost key. It will then
look at each claim, find the corresponding rules for the matched cost keys, and apply those
rules to the claim, extracting individual lines to make bundles. At this time, no bundles are
ever created including lines from different claims, so this approach is valid. If in the future,
bundles are created that include lines from multiple claims, then this model could be
expanded to identify cost keys per patient instead of per claim. For now, leaving it so cost
keys are identified per claim makes the bundling engine easier to implement and
faster/easier to train.

Offline Training

The initial training and retraining of the bundling model will be offline processes, which
must have manual oversight.

The initial training of this model is somewhat complicated, and the field of machine
learning used is not nearly as developed as traditional machine learning methods. There
are two main ways that this grouping could be accomplished: using supervised clustering
algorithms, or rules based machine learning algorithms, or more specifically, learning
classifier systems.

A typical supervised clustering algorithm would be difficult to implement on this data,
because clustering algorithms use a distance function to group data. The medical claims
data that this model will be operating on is pretty much only categorical, and distance
functions don’t really make much sense. Instead, a different type of clustering algorithm

12

must be used. There is some research on this type of supervised clustering algorithm such
as k-modes [2], agglomerative clustering [3], and other models [4]. It does not appear,
however, that any one of these models would give exactly what’s wanted without
modification. Specifically, these models require highly specialized inputs, and would not
be able to handle the different sets of clustering rules based on different cost keys. A
separate model could be made for each cost key, but that would be extremely
computationally expensive, and it isn’t clear that any of these models would be able to
perform at the level desired, due to their stochastic nature. Finally, the level of
customization required to make these models work for our data requires very advanced
mathematics and data science knowledge, which we did not have time to learn in the few
weeks required for this project. For these reasons, we decided to not focus on supervised
clustering algorithms.

A rules based machine learning approach would still be complicated, but could be much
more manageable in terms of knowledge necessary and implementation. Learning
classifier systems (LCS’s) are models that use a rule discovery component with a
supervised learning component in order to identify a set of context dependent rules to
classify or cluster. Some advantages of this system are that the rule discovery component
can relatively easily be extensively customized to any problem, it works well with highly
categorical data, and it can effectively deal with complex extractions rules. Additionally,
since it does not map inputs to outputs like normal machine learning, but instead learns
rules, this model is better at applying itself to new situations, and also at learning the new
rules for new situations.

Dataset

ENVIRONMENT

o .uﬁﬂateﬁule
. Parameters _ OUTPUT

Figure 3: Michigan Style Learning Classifier System

13

The next major design decision is which kind of LCS to use. There are two major styles of
LCS’s, Michigan Style (shown above in Figure 3) and Pittsburgh Style. Either one could be
applicable to our problem, but would have to be utilized a different way. A Michigan Style
LCS learns one set of rules, called classifiers, and each one can apply to one context. For
our problem, if a traditional LCS were to be used, we would have to train a Michigan Style
LCS on every type of cost key. This would be computationally expensive, but should still
be manageable, and we have a large amount of resources available. Pittsburgh LCS’s,
however, learn a rule set for each context. For our problem, the matching cost keys would
identify the context, and the Pittsburgh LCS would learn extraction rules for each context.
Thus, there would not have to be a separate model for each cost key, making the training
process much easier and less expensive. This type of LCS, however, would be harder to
design, and there are many fewer working implementations available.

The final design decision for a LCS is whether or not to train for each cost key, or for each
combination of cost keys. Since each claim can match with multiple cost keys, this is an
important distinction. If a model were to train for an individual cost key, and attempt to
apply the set of rules for each cost key, then an extraction rule priority would have to be
developed, because otherwise extracting one bundle could interfere with the extraction
of the next bundle. The other option would be to train a set of rules for each combination
of cost keys. This would be hard, since every combination of cost keys is obviously not
present, and may never be present. In this situation, if a new combination of cost keys
were to be encountered, each of the individual model’s rules could be attempted to be
used, and if conflicts arise, then it would be ignored and marked for manual review.
Training this way would be advantageous in multiple cost key situations, but designing the
training algorithm would be much more difficult. Also, not many claims in the database
currently match to more than one or maybe two cost keys, so this might be a problem
better dealt with in the future.

After much research, my recommendation on which model to use would be either an
existing Michigan Style LCS, trained on each individual cost key, with a set of cost key
priorities, or a custom Michigan Style LCS, where each rule is an extraction string similar
to the existing extraction rules. This custom LCS would also only have to be trained once
on the entire dataset, instead of requiring a separate model for each cost key. It would still
require a set of cost key priorities for ideal performance

In the first model each rule would be a string identifying one line in the bundle to be
extracted. There are some implementations of LCS’s that may be worth exploring, but it is
uncertain whether they would be customized enough for this specific situation [5].

The other option would be to make a custom model. Our recommendation would be to
then make a custom Michigan Style LCS, where each rule is a string, which tells how
bundles are extracted. This would be almost exactly the same as the existing extraction
strings. This offers a huge advantage, because the LCS’s initial set of rules can be set to the
existing cost keys (identification) and extraction rules (extraction). The LCS will take
these, create any new rules needed, and modify the existing rules to better fit the data.

14

Custom Model

If a custom model should be made, the following is an outline on how it could function:
1. Preprocessing
a. Script for this is already written. It matches claims to cost keys, and
establishes a new dataset. The script is called cost_key_bundler.py
b. This scriptis designed to be multithreaded, so running on a more powerful
computer will give much better (and significantly faster) results
c. Although cost_key is already given in the dataset given, that is generated
from algorithm output, and does not filter out ignores, so it made sense to
do everything in one centralized data processing script
2. LCSTraining
a. Foreachclaiminthe training dataset, identify all groups that are not the
default group. If there is more than one, look for the group that that
consistently appears in all claims. This is the group that this rule should be
able to extract
b. Look for any matching rules already existing for that group
c. If no matching rules exist or they are inaccurate, then apply the covering
algorithm
i. Thisalgorithmis responsible for identifying new rules
ii. Ifthereisnoexisting classifier, then a new rule will have to be found.

1. Todothis, it will take all relevant features from the claim lines
(cpt code, pos code, etc)

2. Setthe classifiers rule’s value equal to whatever the lines’
features are. This rule may be too strict (for example the rule
actually might allow any pos code not just the one given), but
future iterations will take care of this

iii. Ifthereis an existingrule, but it is not accurate to this situation (for
example it says to extract only pos code 20 but in this group pos code
10 was extracted)

1. Identify which features on the extraction rule are inaccurate

2. Update these features in the extraction rule to accommodate
the new claims features

d. Rule subsumption
i. LCS’stendtocreateredundant rules, so subsumption combines
redundant rules into one more general rule
ii. Simply check to see if there are multiple rules for each cost key, if so
see if there is a way to combine any redundant rules
3. Store the set of classifiers and cost keys to a permanent location
a. Done through pickling normally, would have to be a custom save process for
this model

It may be noted that the rule discovery step from Figure 3 is absent from this list. In
traditional LCS’s, at the end of a learning cycle (arbitrary number of claims in this case),
every rule in the population is evaluated based on its “fitness” (in our case accuracy or

15

f-score). Rules with too low of fitness go through a genetic algorithm where “offspring”
rules are produced with characteristics of the parent rule, but with some changed
characteristics to increase the fitness. This is a more advanced LCS feature, and while it
could improve accuracy, it is very complicated to implement, so it may not immediately
beneficial to build.

Retraining

With the majority of machine learning models, retraining would require re-running the
initial training algorithm with the new expanded dataset. This isn’t really retraining then,
but completely replacing the old model. If new data is frequently coming in, this can
become a huge toll on resources to constantly retrain. LCS’s, however, can be trained to
handle new data easily, as they just add it to their list of data and complete another
learning cycle. With a LCS, it would actually be possible to bring the retraining process
online as well, so that as soon as data is manually reviewed, the model would
automatically retrain itself onit.

16

4.2.3 NLP Implementation

Model Overview

This model would be identical in external functionality to the cost key implementation,
but instead of learning rules based on cost keys, natural language processing would be
used. Cost key may (and probably should) be a parameter in the NLP, but the design is not
centered around it. Instead, the model uses TF-IDF vectorization on line and bundle
string. It could then use a random forest or another typical model on the TF-IDF vectors.

Ignore Model Bundling Model

Ignore Ensembled
Model

Raw Claims
Data

Bundle Extraction

Bundled Claims

Reformatter

Retrain

Manual Review,

®

Figure 4

Online Bundling Engine

This model would take in the same output as the cost key model, as outputted from the
ignore model. It would then take each line, and concatenate relevant features into one line
string. TF-IDF vectorization would then be performed on these line strings, turning each
line string into a vector containing the frequency of each term multiplied by the inverse
document frequency. This is basically creates a list with a number stored for each word.
The number will be higher if the word is deemed more “important”, by logic of being
frequent in this line, but infrequent in the entire data set. Thus, components of the vector
with high values signify distinguishing words from this line. Next, potential bundles will be
created, with the TF-IDF vector-izations of both combined into a single line. All of the
possible combinations would have to be considered. This would likely be one of the most
complicated and expensive parts of this model. The model would have to not only consider
all possible bundle combinations, but it would have to find a mutually disjoint set of
bundles that cover as much of the claim as possible. If there are multiple bundles, there
really isn’t a way to control which one is extracted first (without extensive customization
of the random forest or neural network).

A pre-trained random forest, or ideally neural network, would then be applied to this data.
While arandom forest would likely give the best initial results, a neural network could
give better results, especially in the future. This is because neural networks can be made
with hidden layers, and are then categorized in deep learning. Deep learning is extremely

17

complicated, but can give very good results, especially with very large data sets. Deep
learning also scales to large data sets much better than traditional models; deep learning
accuracies will continue to rise with more data, while traditional models accuracies will
plateau after a certain amount of data.

Initial Training

The initial training for the NLP model is somewhat more complex. The process is outlined
in the steps below:

1
2.
3.

5.

Turneachlineinto aline string

Apply TF-IDF vectorization to each line string

Find every bundle in the data, and create a TF-IDF vector for that bundle,
containing the TF-IDF vectors for each line in that bundle. Create a line in a new
data set containing this combo TF-IDF vector and label it as TRUE

Make a whole bunch of bad bundles, with lines that do not form bundles from the
initial data set. Get the combo TF-IDF vectors for these bad bundles, and put them
in the new data set, labelling this line as FALSE

Train either arandom forest or neural network on this new set of data

Unlike with the LCS'’s, retraining this model would mean having to do the entire process
again, and rebuild the model from scratch with the new updated data set.

18

We had a variety of important design decisions to make for our project, including those
already mentioned in the design sections above. First, we had to decide on which sklearn
model to use for each individual model in our ensembled model. Below is a list of all the
models we considered and why we chose to use or not to use each one.

- Knearest neighbor
- Doesn’'t make sense, no “Distance” with our categorical data
- Naive bayes
- Hard tofit to our highly categorical data
- SVC
- Way too much data, model takes way too long and is too complex.
Considered looking into kernel trick but seemed too complicated
- Logistic Regression
- Thedatais noisy, and it’s non-linear
- Gradient boosted regression trees
- About the same accuracy as random forests, but cannot be split amongst
multiple cores for testing, so much slower
- Random forest
- Best accuracy and efficiency, avoids overfitting

The next important thing to consider was Efficiency vs Accuracy. Since there really isn’t
much of a need to be extremely fast or lightweight, so we decided to optimize accuracy,
even if the model takes a huge amount of memory and processing power. For this reason,
most of our code is now best run on mines’s isengard server or something similar.

Next, we had to decide how to create an ensemble of the models. We first decided to use
boosting, which appends each model’s output to the previous ones, and the next model
uses it as an input, making a progressively better model as it goes. This, however, seemed
to cause overfitting, so we decided to switch to stacking, which is where each model sends
its vote to the end, where another model is applied

When using these assembled models, we had to choose which features or combinations of
features to use for each individual model. We considered a wide range of possibilities
including vanilla features, combination features (combos of multiple features made into
one), NLP, encoding multi line features, taking out features that weren’t useful, and
grouping huge categorical features to make the data more manageable

Finally, we had to decide how to do the more complicated parts of the project, such as
increasing accuracy and doing machine learning across multiple lines. One of the ways we
could have achieved this is deep learning. Deep learning could have been very powerful,
but the algorithms are extremely complex, involving advanced mathematics, and have to

19

be extensively customized. For this reason we decided that it was outside the scope of this
project. Instead, we looked at some other technologies such as rules based machine
learning, which can still be powerful, but are not nearly as complex as deep learning.

For a lot of our design decisions for the bundling model, since we were not making an
actual implementation, we decided to list the options and discuss the advantages and
disadvantages of each instead of actually making the decision. This way our client can look
at the options and choose for himself which route to pursue in the future.

20

In the end, we ended up being able to deliver multiple designs for both parts of the model,
but were only able to get a working implementation for the ignore model. Along the way,
both us and our clients realized that the problem we were trying to solve was much more
complicated than we originally anticipated, so although we didn’t accomplish everything
that we originally set out to do, we still did a large amount of useful work for our client.
Specifically, we had the following unimplemented features/goals:
- Did not get the ignore model up to 99% accuracy
- No optimized implementation of the bundling model, only a the cost key matching
algorithm and a detailed but theoretical design
- Couldn’t get existing LCS’s to work on our data
- Thestarting goal of a larger application that ignores and bundles the claims and has
a machine learning feedback cycle
Our client, however, was not looking for just a working implementation, but also wanted
to know all the things we tried; what worked and what didn’t. Thus, we have compiled the
following list of all the different things we tried when implementing the ignore model:

6. 1 Classifier Performance

Random Forest w/ cpt categorization 0.9884 Used algorithm output
Random Forest w/out cpt categorization 0.9880 Used algorithm output
Gradient Boosted Regression Trees w/ cpt 0.9887 Used algorithm output
categorization

Logistic Regression 0.9878 Used algorithm output
Custom Ensembled Model 0.9899 Used algorithm output
Random Forest 0.9345

Gradient Boosted Regression Trees 0.9215

Logistic Regression 0.9064

Table 1 : List of all individual classifiers and their accuracy

21

6.2 Model Performance

o ey com

CPT Description 0.7913 NLP using TF-IDF

CPT Mod Description 0.7160 NLP

POS Code Description 0.7258 NLP

UB Description 0.7125 NLP

Cpt Code 0.7986

Diagnosis Code 0.7626

Allowed Amount 0.8548

All but cpt and diagnosis, with added 0.9246

multi line features

1st Ensembled Model 0.9380 Used boosting

Combo ensembled Model 0.9587 2 models with combo
features

Table 2: List of individual models and their accuracy

We also explored deep learning and using LCS’s for this, but did not have time to develop
any models using these technologies. Also, note that the high accuracies initially achieved
were using our clients algorithm output. Our client wanted us to steer away from using
the algorithm output, so we sacrificed the increased accuracy for better usability

If we could, in the future, we would like to continue working on a multitude of things,
including continuing researching LCS’s, building a working implementation of the bundling
model, improve the accuracy of the ignore model, and do more research on more
advanced techniques, such as deep learning or neural networks.

Nonetheless, we have still learned some very valuable skills while working on this project.
In addition to learning the in’s and out’s of machine learning, especially in python, we also
learned about the agile working environment and gained an appreciation of scrum
meetings, learned various networking skills by going to data science meetups and
Galvanize Data Science seeking help, figured out how to set an agenda and run meetings,
how to organize effectively through email and slack, as well as learning some more
advanced concepts such as LCS’s, deep learning, and NLP. Overall, we've definitely

learned a lot from this project, and hopefully were able to give our client some useful
designs and information as well.

22

23

7.1 Useful Links

The machine learning course:
https://www.coursera.org/learn/machine-learning/home/welcome

Discussion of machine learning algorithms
http://www.kdnuggets.com/2016/08/10-algorithms-machine-learning-engineers.html

We want classification algorithms:
https://en.wikipedia.org/wiki/Statistical classification

Machine learningin go:
http://www.infoworld.com/article/3121694/artificial-intelligence/googles-go-language-ventures
-into-machine-learning.html

https://github.com/ryanbressler/CloudForest

Medical Coding:

https://en.wikipedia.org/wiki/Current Procedural Terminology
http://www.medicalbillingandcoding.org/medical-billing-coding/
http://www.vbh-pa.com/provider/info/claimsdept/UB04 Type of Bill Codes.pdf

Deep learning / feature learning:
https://en.wikipedia.org/wiki/Feature learning
http://machinelearningmastery.com/what-is-deep-learning/
http://www.deeplearningbook.org/

Machine learning rule learning
https://en.wikipedia.org/wiki/Rule-based machine learning
https://www.hindawi.com/archive/2009/736398/abs/
Learning classifier system
https://en.wikipedia.org/wiki/Learning classifier system

Saving model: http://scikit-learn.org/stable/modules/model persistence.html

http://www.deeplearningbook.org/
http://machinelearningmastery.com/what-is-deep-learning/
https://en.wikipedia.org/wiki/Current_Procedural_Terminology
https://en.wikipedia.org/wiki/Learning_classifier_system
https://en.wikipedia.org/wiki/Statistical_classification
https://www.hindawi.com/archive/2009/736398/abs/
https://github.com/ryanbressler/CloudForest
http://www.vbh-pa.com/provider/info/claimsdept/UB04_Type_of_Bill_Codes.pdf
http://www.infoworld.com/article/3121694/artificial-intelligence/googles-go-language-ventures-into-machine-learning.html
https://www.coursera.org/learn/machine-learning/home/welcome
https://en.wikipedia.org/wiki/Rule-based_machine_learning
http://www.medicalbillingandcoding.org/medical-billing-coding/
http://www.kdnuggets.com/2016/08/10-algorithms-machine-learning-engineers.html
https://en.wikipedia.org/wiki/Feature_learning
http://scikit-learn.org/stable/modules/model_persistence.html
http://www.infoworld.com/article/3121694/artificial-intelligence/googles-go-language-ventures-into-machine-learning.html

24

[1]“Tf-idf :: A Single-Page Tutorial - Information Retrieval and Text Mining,” Tf-idf :: A Single-Page
Tutorial - Information Retrieval and Text Mining. [Online]. Available:
http://www.tfidf.com/. [Accessed: 10-Jun-2017].

[2]“nicodv/kmodes,” GitHub, 06-Jun-2017.[Online]. Available:
https://github.com/nicodv/kmodes. [Accessed: 16-Jun-2017].

[3]“2.3. Clustering,” 2.3. Clustering — scikit-learn 0.18.1 documentation. [Online]. Available:
http://scikit-learn.org/stable/modules/clustering.html. [Accessed: 16-Jun-2017].

[4]N. Zeidat, C. F. Eick, and Z. Zhao, “Supervised Clustering: Algorithms and Application.”.

[5]R. J. Urbanowicz, G. Bertasius, and J. H. Moore, “An Extended Michigan-Style Learning
Classifier System for Flexible Supervised Learning, Classification, and Data Mining.”

