
!

Salesforce Jar Publisher

CSCI370
Summer I 2017

Adrien Perinet
Cody Watters
Garrett Daly 

I. Introduction
A. Client

 Our client, Salesforce is the largest Customer Relationship Management (CRM)
provider in the world. Salesforce software is cloud-based, allowing easy data
management and set up regardless of size; as such, its customers include businesses
and partners of all types and industries. Salesforce creates better interaction with
customers through fast access to data and by striving to understand customer
preferences, predicting customer needs, and facilitating mobile business management.
As one of the top 50 traffic driving websites in the world, Salesforce consistently helps
lead the way in the creation of next generation technologies to help businesses grow.

B. Product Vision

 This project is meant to ease the use of the SOAP (Simple Object Access
Protocol) interface for both customers and developers. Currently, Salesforce APIs
(Application Program Interfaces) can be implemented with either REST
(Representational State Transfer) or SOAP interfaces. The vast majority of consumers
use the REST interface because it is both easier and more standardized; however,
there are a handful of customers that still prefer to implement Salesforce APIs using
SOAP. To use the SOAP interface, Salesforce provides a WSDL (Web Services
Description Language) file that can be compiled into a jar file. The jar file can be used
as a dependency in a client's code base.

The purpose of this project is to reduce the barrier between a client and using the
SOAP interface. The customer currently uses SOAP to log into their Salesforce Org,
download a WSDL, compile a jar with a Salesforce compiler, and push the jar into their
code base as a dependency. With this product, the customer will have the ability to
automatically do any or all of these steps via a command line tool. In addition, the jar
will be automatically pushed to the Maven Central Repository in order to make the
dependency more easily accessible. The only component that will remain manual for
the user is setting up their Maven Central settings, which should be different for each
user.

II. Requirements
A. Functional Requirements

The Jar Publisher is primarily an API tool for Salesforce customers. Therefore it
facilitates the technologies that customers wish to use in the following way:

1. Many customers access Salesforce features using SOAP interface instead of
more common RESTful interfaces. As such the Jar Publisher is capable of
interpreting requests to handle customer needs for the SOAP interface.

2. In response to a customer request, the Jar Publisher produces a WSDL file that
describes the API the customers require.

a. This WSDL file is used to generate a .jar file containing appropriate code
corresponding to the WSDL. This .jar file pushed to a public repository for
customers to access via Maven dependencies.

b. The WSDL file is also used to generate java stubs, which are basically the
decompiled java functions from the developed .jar file.

3. The Jar Publisher provides basic authentication functionality, such that the
identity of a customer is verified before services are provided.

4. The Jar Publisher executes in the background. That is, the Jar Publisher should
have no GUI; it should execute only in response to customer calls.

B. Non-Functional Requirements
1. Programming Languages

a. The main component can be done in any programming language that we
like, although Salesforce primarily operates with Java, Bash, with some
teams using Ruby and Scala. For this project deliberated between using
Java, Bash, or Python.

b. Python, Maven, Bash, XML

2. Standalone

a. This project exists in a public repository, and should be standalone. It
should not interact with Salesforce code directly, but instead uses their
APIs.

3. Source control - Git via GitHub

4. Public Repository - Nexus / Maven Central

C. Potential Risks
 Working with code that will directly be hitting client’s environments posed a few
obvious risks including any bugs that would open up their software to vulnerabilities.
However, the risks in this project involved interacting with Salesforce owned
environments. Testing this product was tricky because any production level test requires
being pushed to the official repository. Using actual username and passwords was
relatively easy, but we were limited in the number of IP addresses we could test from. In
addition, because the scope of the project involved making a standalone application that
can be used for different APIs in the future, the deliverable had to be robust enough to
properly and dynamically handle a range of dependencies and functionalities. To
overcome some of the potential risks, we structured the program incrementally as a
command-line-tool. Every step of the tool requires authentication, and without a session
key requires a username and password.

D. Definition of Done
 Salesforce allows clients to use both SOAP and REST to access their multitude
of APIs. The process for using SOAP is currently incomplete and fairly undocumented.
Salesforce only provides a WSDL file for their clients to compile and incorporate into
their code; however, their client is then responsible for being able to compile this to a jar
file that can be used in the dependencies of their application. The scope of the project is
to dynamically generate a WSDL file and then create a jar that is accessible to the
client. In this sense, the project is done when a client can checkout an automatically
generated dependency file from a Salesforce owned repository. 

III. System Architecture

The Salesforce Jar Publisher consists of a Command Line Interface (CLI). CLIs
are used to allow programmers to access specific functions in a program one at a time.
The Jar Publisher has multiple possible access points, as it can be used for a variety of
purposes depending on the user’s needs. Standard usage involves a strict execution
sequence, but it should be noted that the user can exit wherever they please (see
Figure 2).

Execution flow is described in Figure 1 and consists of the following: The user
must first authenticate their identity with the Salesforce web service (in order to verify
which APIs they have permission to use) by providing their Salesforce credentials. This
yields a Session ID, which is then used to download a Web Service Definition Language
(WSDL) file from Salesforce, which describes the functionality of the specified API. This
WSDL is subsequently interpreted by the Salesforce Web Services Connector (WSC)
tool, which compiles and packages the WSDL into Java function stubs within a .jar
package. These stubs can then be used directly by the user, or they can be pushed to
the Maven Central Repository. The latter allows programmers to automate the inclusion
of such stubs using the Apache Maven tool.

As stated above, the user can exit at any of the above described points. For
example, if they only wish to obtain a WSDL file, they can opt to end execution before
pushing to Maven Central. Alternatively, they might wish to run every step. This is
demonstrated in Figure 2.
Components include the following:

Figure 1: Flow Diagram

● Salesforce Web Service: black box representing the various data management
services offered by Salesforce

● Session ID: used as a token to authenticate users
● WSDL file: Web Service Definition Language file; XML document that describes

the functionality of an API.
● Salesforce WSC Tool: Web Services Connector tool; used to compile Salesforce

WSDL files into Java function stubs.
● Apache Maven: Project building tool; used to automate the inclusion of 3rd party

libraries.
● Maven Central Repository: Online repository that stores code for usage in Maven

projects.
 

Figure 2: Exit Points and Outputs

IV. Technical Design

A. Obtaining a Session ID
 Initially, there was not a quick and easy
way to obtain a session ID from Salesforce
using only a username and password. The
early cURLs (Client URL Request Library)
would need to use a client_id and
client_secret key [1]. These required
developers to log onto the Salesforce website
and get their keys. These keys were based
on what company and domain a Salesforce
client was using, and required some
searching within the Salesforce website. This
slowed the process and made automating
login procedures nearly impossible.
 Using a Web Server Flow was another
option, as it would grant a session ID that
could be used to download from Salesforce
servers. The Web Server Flow was not a
viable solution, because it too required using
the client id. This would take information from
the client to the authorization server, then pass information to and from the resource
server. This would then generate an access token,
and give information back to the client. The
decision was made that using simply a username
password combination was the best choice for
gaining a session ID, because we wanted direct
communication between the client and resource,
without having to wait on the resource server. The
Web Server Flow is demonstrated in Figure 3.
 After looking through an older discussion
page, there was an example of a SOAP request
that returned a session ID using one of the earlier
versions of the API. This took in two fields, simply
a username and password, and returned a SOAP
response that contained a large amount of
information, including a session ID. After parsing
the session ID, cURLs become much easier to
use. This allowed for much of the automation to take place, and will allow for ease of
use later on. Simply using the same session ID will allow developers to work faster. An
example of the User-Agent flow is shown in Figure 4.

Figure 4: User-Agent Flow

B. Pushing to Maven Central
 The Salesforce Jar
Publisher relies heavily on
Apache Maven, a tool
designed to automate project
builds. One of the primary
functions of Maven is the
inclusion of third party
libraries. Such libraries are
name “dependencies”, and are
declared inside an XML
document named “pom.xml”,
which describes the build
characteristics of a Maven
project (see Figure 5) [3]. For example, if a user wishes to use a 3D graphics library,
they need only include the dependency in their pom file, allowing Maven to
automatically locate and download the necessary code at compile time. Furthermore,
Maven can be used to push a user’s code to an online repository named Maven
Central, which allows other programmers to easily incorporate the user’s code.
 This has several significant implications for the Salesforce Jar Publisher. First,
Maven Central’s ability to easily distribute code makes it the ideal platform for hosting
Salesforce code, as it allows customers to easily find and incorporate the Java code
necessary to access their data. Second, Maven itself can be used to automate pushing
code to Maven Central, making it a powerful tool for uploading dynamically generated
Salesforce code (such as the code generated from WSDL files). As such, Maven
consists of an essential utility for the Salesforce Jar Publisher.
 Maven Central has very strict requirements in order to prevent the distribution of
malicious code. Such requirements include declaring an owned “group ID” (typically this
follows package naming conventions such as “edu.mines.csci370”) and a dedicated
GitHub repository. While such requirements are necessary and ultimately beneficial, this
caused significant difficulties due to the more dynamic nature of our project. For
example, we briefly considered automating the creation of GitHub repositories for each
API. This proved both excessively wasteful and difficult to implement; as such we chose
to create a single “dummy” repository to host each release. In order to prevent merge
issues and other such conflicts, the repository contains no code, and simply exists in
order to satisfy the Maven Central requirements. Additionally, we had to implement code
to dynamically create a pom file based off the characteristics of the code being pushed.

Pushing to Maven Central required a myriad of file management actions such as
copying and moving the files created during earlier steps in the Salesforce Jar
Publisher’s execution. It became clear that the steps required to deploy to Maven
Central were better accomplished using a Bash script, rather than the Python we used
for the remained of the project. As such, we were forced to shift the Maven deployment
lifecycle over to a separate, standalone script. Admittedly this recourse was not ideal,
but given our limited timeframe, we were forced to settle with such a solution.

Figure 5: Maven Summary

V. Decisions
A. Language

We were given complete freedom in selecting a language to use for the
Salesforce Jar Publisher; as such we had a variety of options to choose from. Knowing
a bit about how the project was going to develop going forward, the first step was
narrowing down the language options to one that would work well with Salesforce and
the structure of the project. The language needed to be one that was relatively quick at
processing and executing commands on a machine as well as able to handle various
errors that might arise when sending HTTP requests. The languages that were the best
for this team’s skillset as well as the problem are Bash, Python, and Java.

The decision ultimately fit well into five categories. The first, versatility, is fairly
straightforward given the three options. Bash doesn’t have a lot of options other than
executing a script style set of instructions without putting some serious time into making
a complex application. Java is versatile but can be tedious when class structure isn’t a
top priority. This left Python as the best option. From a readability standpoint, Python
was again the best decision as the script could be ran through a linter to match common
Python standards. The third category is no surprise as Python takes pride in a
community of library architects that allow for versatile use cases. Python, however, is
not the best of these three at error handling, where Java is easily the better option. In
addition, Java has the final upside due to being the primary language at Salesforce. The
decision matrix above shows that, while Java is used more frequently at Salesforce and
would be a decent language for the job, Python has a slight advantage. Given these
factors, the project took roots in Bash for proof of concept scripts and evolved to Python
shortly after.

B. WSDL Compilation Tool

Web Service Description Language (WSDL) files are XML documents used to
define the various API functions offered by a website or web service. The information
provided in a WSDL can be used to automatically generate function stubs (e.g. C++
prototypes, Java method stubs) that allow users to incorporate API function calls in their
code, regardless of language. The process of converting a WSDL into stubs is known as
WSDL compilation, and consists of a primary step in the Salesforce Jar Publisher’s

Versatility Redability Libraries Error
Handling

Use at
Salesforce

Total
Score

Bash 3 2 3 3 2 13

Python 1 1 1 2 3 8

Java 2 3 2 1 1 9

lifecycle. Several WSDL compilation tools exist; those most appropriate to our project
are Apache Axis (the most popular solution) and the Salesforce WSC tool.

The following table illustrates the advantages and disadvantages of both tools.

 
 The Salesforce Jar Publisher team elected to use the Salesforce WSC tool for
two key reasons. First, the WSC tool is owned by Salesforce, such that its incorporation
into a Salesforce project would require no additional juggling of licenses. This greatly
reduces administrative overhead, allowing the team to focus more on development and
less on potential legal issues. Second, the WSC is specifically designed for use with
Salesforce WSDLs and APIs, a fact that also holds true for the Salesforce Jar Publisher.
The WSC tool is constantly maintained in order to guarantee proper compilation of
Salesforce WSDLs; therefore the tool is almost certain to function properly, a luxury that
is not available when using Apache Axis. As such, the Salesforce WSC tool is the clear
choice for compiling WSDLs.

C. Interface

Initial Possible Options:

● Desktop Application

● Singular Script / Program

● Web Application

● CLI / CLT(Command Line Interface / Command Line Tool)

 We initially did not know how the final outcome of our project would operate.
There needed to be a simple way for a developer to login to salesforce and quickly
download dependencies for a given WSDL. For this reason, we considered the four
possible options listed above.

Salesforce WSC
(Web Services Connector)

Apache Axis
(Apache Extensible
Interaction System)

Both

● Used primarily to expose
Salesforce APIs.

● Owned by Salesforce (no
license required)

● Used primarily for Java
applications

● Can use both strictly
(Enterprise) and loosely
(Partner) typed WSDLs

● Uses Metadata APIs for
managing sandbox
“customizations”

● Generalized tool; used
for a variety of purposes
and APIs

● Owned by Apache
(requires license)

● Used primarily for C++
and Java applications

● Uses strictly typed
WSDLs

● Code generation tool
used to compile client
side code from WSDLs.

● Uses the SOAP API for
managing data

● Written in Java
● Used to facilitate web

service deployment
● Used to simplify client

side code generation

 Both the desktop application and web application were great options in terms of
usability. A web application would have far greater access than a desktop application,
because there would be no need to download an application each time a user wanted to
run the program; however, a web application would need to integrate with the
Salesforce site, of which we have limited access. For a project of this magnitude, there
seemed to be no need to have a full-blown GUI (Graphic User Interface) because of the
limited options. Creating a desktop or web application seemed unnecessary, and
seemed to limit the scope and growth of where the project could expand.

 We then decided to run the project as something directly from the command line.
We initially went with a single script in Bash to get everything up and running, and then
re-wrote the script in Python to allow for ease of testing / error handling. Having a single
script limited the project somewhat, as each time a developer accessed the script they
would perform a single action and gain a single dependency. For flexibility, we decided
to modify our tool to become a CLI. This way, a developer could use the CLI to login,
gain a session key, gain a WSDL, generate stubs for a WSDL, or gain dependencies all
separately. This way if a developer needed to perform only one action they would be
able to do so easily. Creating a CLI also allows for easier changes down the road, as
single actions would need to be swapped in and out as Salesforce code changes.

VI. Results
A. Results

 The group successfully met each of the requirements set forth by our Salesforce
contact. There are no features that we failed to implement, such that our product
represents a complete, standalone tool that will greatly facilitate the incorporation of
Salesforce SOAP APIs into customer projects. Despite this, there remain areas to
improve if future development occurs. For example, the current iteration of the Jar
Publisher functions only as a Command Line Interface (CLI); future versions could
benefit from a lightweight GUI to facilitate the tool’s usage for programmers less familiar
with the command line environment. Furthermore, the tool is geared primarily for
Salesforce engineers, despite the fact that many of its features (such as WSDL
retrieval) could greatly benefit Salesforce customers. As such, it may be beneficial to
create a public version of the tool specifically for non-Salesforce use.

 During development, we maintained an extensive set of tests to help guarantee
the overall functionality of the Jar Publisher. Certain tests, however, were slightly
hindered by the fact that we lacked full access to certain Salesforce resources. For
example, when deploying .jars to Maven Central, we were unable to push Salesforce
code due to permission issues. We were forced to test the code’s functionality indirectly
by creating dummy files instead of the true Salesforce files that the tool will eventually
use.

B. Lessons Learned

This project presented a variety of important lessons and problems that we are
certain to continue to face throughout our careers. For example, the permissions
example above helped illustrate a problem frequently faced by external contractors;
often times they must work around their client’s policy in order to address hurdles that
might not otherwise exist. Furthermore, as a group we discovered that an overwhelming
majority of our time was spent researching and learning rather than writing code. This
embodies the fact that a software engineer must constantly expand their knowledge
base, a lesson that we a likely to face with every new job and with every paradigm shift
in computer science.

In addition, our team met each day for a daily scrum. In these meetings, we
learned the value of discussing what each member was working on. On multiple
occasions, these meetings would spawn a conversation that ended up solving a
problem causing a block. Additionally, the group met with our client an average of once
every four days to discuss current, new, and old stories in each of our sprints. This
helped facilitate progress on the project and kept the project focused as it moved
through multiple different iterations that had significant differences. As mentioned, the
team worked consistently through sprints which consisted of 2-4 stories. At Salesforce,
these stories are labeled “spikes”. Each spike broke up a large idea of the project
direction into executables. In terms of the magnitude of the spikes, each one could be
classified as a 3 on the Fibonacci scale where a trivial task and 8 is usually the largest
task in a sprint.

The agile lifecycle is supported by many third party applications. These
applications are used to track progress on small and large scale pieces of software.
Amongst these are recognizable names such as Jira by Atlassian and Pivotal Tracker.
For a project of this scale, we chose to go with a smaller kanban board hosted via the
web application Trello. Trello offers light scale cards that can be moved from one
section of a kanban board to another column. This is useful for tracking the lifecycle of a
particular spike. In our case, we tracked New, In Progress, and Completed spikes. Each
card containing a spike can be assigned to a member and commented on as well as
updated. For burndowns, we manually tracked the completion of spike points and ended
up getting a fairly consistent sprint velocity. In order to facilitate communication in an
easier and more accessible way than email, we set up a Slack with our client. Slack is a
business tool used for intra-company communication. This allowed for quick questions
between the client and ourselves.

VII. Appendices

[1] Patterson, Pat. (August 2016) "Digging Deeper into OAuth 2.0 on Force.com" https://
developer.salesforce.com/page/Digging_Deeper_into_OAuth_2.0_on_Force.com

[2] Multiple Authors. "Obtaining Access Token using cURL? (October, 2010) "https://
developer.salesforce.com/forums/?id=906F00000009CYaIAM

[3] Apache Software Foundation. “Project Summary” (November 2015) “http://
maven.apache.org/ref/3.3.9/project-summary.html”

