
 
 

 
 

Remote Sensing Image Interpretation 
 

Colorado School of Mines Field Session 

Newmont Mining Team #2 

 
 

Rebecca May, Justin Persinger, Paul Sattizahn 

Client: Brian Krzys 

June 22nd, 2017 

 
  

 



 

Table of Contents 
Introduction 2 

Description of Client 2 
Product Vision 2 

Requirements 3 
Functional Specifications 3 
Non-Functional Specifications 3 

Features 4 
Features of the Web Application 4 
Features Not Implemented 5 
Future Work 5 

System Architecture 6 
Backend 6 
Frontend 7 
Data Flow 7 

Technical Design 9 
Distance Formulas 9 

Euclidian Distance 9 
Cosine Similarity 9 
Sampling Nearby Neighbors 10 

Tiling of Map Overlays 10 

Decisions 11 
Language Choices 11 
Tools Used 11 

Results 12 
Performance Testing Results 12 
Summary of Testing 12 
Results of Usability Tests 12 

Appendices 13 
A. Images of Web Application 13 

 
 

  

1 



 

Introduction 

Description of Client 
Newmont Mining was founded in 1921 in Greenwood Village, Colorado. They are now 

one of the largest gold producers across the globe and the only one listed in the S&P 500 index. 
Their goal is to create value and improve lives through sustainable and responsible mining. Our 
client works with infrared satellite data to locate mineral deposits and find new potential mining 
sites. 

Product Vision 
Newmont Mining makes extensive use of remote sensing data while searching for 

mineral deposits. The collected data is stored as geo-tagged TIFF files consisting of nine 
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) bands with 
precision of thirty meters. These bands hold infrared values which can be interpreted to 
determine the mineral composition of the Earth. Interpretation of the satellite imagery is often 
done manually, making it difficult to complete at a large scale in an efficient amount of time. The 
goal of this project was to develop a cloud-based machine learning application that automates 
this process and produces results equal to or better than the manual interpretation. The original 
vision was a web application with a map interface that allows a user to select a few known 
points and use them to generate a heatmap of locations that share similar infrared values and 
patterns. 
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Requirements 
This project can be broken down into two segments: the web application and the 

machine learning aspect. Our client left many of the specifications for both parts up to us to 
decide. The specifications that we agreed upon are outlined below. 

Functional Specifications 
1. The web application should display a map that allows the user to create, edit, and delete 

named point sets. 
 

2. Once a set of points has been created and all of the training points have been added to 
it, similar points on the map (within the region that data exists for) should be found.  

 
3. The user should select which method is used for machine learning or numerical analysis. 

These methods are described under technical design in this document. 
 

4. A heatmap of the generated results should be displayed and the user should be able to 
download it. 

 

Non-Functional Specifications 
1. The web application needs to interact with the Postgres database that is provided by the 

client. The purpose of the database is to save point sets that have been generated in the 
web application to allow the user to switch from one set to another within a session as 
well as storing submitted data between sessions. The points can then be retrieved from 
the database to be analyzed with machine learning. 

 
2. The web pages must be served on the Apache web server provided by the client. 

 
3. JavaScript should be used to handle web interaction. 

 
4. Python should be used for the backend machine learning.  
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Features 
The features of the web application, as well as ideas for expansion, are described in this 

section. Features of the rest of the project are described in the Technical Design section below. 

Features of the Web Application 
In Appendix A, see Figure 04 for a screenshot of the web application, Figure 05 for a screenshot 
of the web application with the results overlaid, and Figure 06 for a screenshot of the generated 
heatmap once downloaded. 
 

1. Features of the map: 
a. Map data is overlaid on the Google Maps display. 
b. Users are only able to add points within the boundaries of existing data. 
c. The overlay is tiled so that the resolution of the overlay increases as a user 

zooms in on a specific area. 
d. Users can change the maps display between map and satellite view. 
e. Users can search specific locations through the use of a search bar. 

 
2. Features of point sets: (see Figure 01) 

a. Users can select the point set to work on using a 
dropdown. 

b. Users can create, delete, and rename point sets.  
c. Users can select which method to use when 

comparing points. 
d. Users can choose to include neighboring points in 

the calculation. 
 

3. Features of points: 
a. Once a point set is selected from the dropdown, 

all points within that set appear in the table.   
b. Users can add and delete points from a set. 
c. When users select a point in the table, the selected point bounces on the map, 

allowing the user to verify specific markers. 
 

4. Once the submit button is pushed, a heatmap is generated as a TIFF file and the points 
from the point set are shown as green squares on the file. The user then has the option 
to: 

a. Have the results overlaid on the map in the browser. 
b. Download the generated TIFF file. 
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5. All buttons on the web application have tooltips which are shown when hovering over 
them to assist users. 

Features Not Implemented 
The project definition asked for the use of machine learning to identify similar areas, 

however, the requirements of the project evolved as the project progressed. Instead of machine 
learning, we are using the Euclidean distance and cosine similarity formulas to generate results. 
The user has the option to pick which method is used as well as if they would like the eight 
neighboring pixels to each selected point to be taken into consideration. All other requested 
features have been implemented. These methods are further described under Technical Design 
in this document.  

Future Work  
We have implemented the major features necessary to meet the specifications of our 

client. However, the following is a list of features that could be added. 
 

1. Given a sufficient amount of training and tests points, implement a machine learning 
algorithm instead of (or in addition to) the two distance formulas. 

 
2. Allow the user to select which of the nine ASTER bands are used. 

 
3. Add user accounts so that users only interact with the data sets that they create. 

 
4. Prompt the user to upload their own files to be used, allowing the web app to be used for 

any location where satellite data has been collected. 
 

5. Add functionality to the search bar so that a user can type in latitude and longitude 
values to place a point. 

 
6. Add a legend to the web application so that the user is informed of what percentiles each 

color of the generated heat map represents.  
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System Architecture 
 

The architecture of the Newmont Remote Sensing Image Interpretation web application 
can be analyzed as two parts, backend and frontend. The backend is comprised of a Postgres 
database, Python code for data processing, and further data formatting using the Geospatial 
Data Abstraction Library (GDAL) tools. The frontend consists of an Apache web server using 
PHP and handles user interaction with JavaScript. A simple visualization of the architecture is 
depicted below in Figure 02. 
 

 
 
 

Backend  
1. Database (Postgres): The database is used to store the point sets and their 

associated points that the user creates in the web application. It is queried when 
the user modifies or switches between point sets and when the Python data 
processing code is called on a particular set to generate results. 

 
2. Data processing (Python): The Python code is used to perform calculations on 

the data based on input points. This includes performing distance metrics and 
various statistical analyses of the input data which are passed to GDAL for use in 
producing a heatmap for visual comparison.  
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3. Data formatting (GDAL): In order to display the maps on the browser, 

GDAL2Tiles tool was used. This utility is further described under Technical 
Design in this document below. The GDALdem utility was used to read in a color 
file and adjust the color of each pixel on the heatmap to display specified 
percentiles as specific colors.  

Frontend 
1. Apache web server & PHP: The web server exposes a REST API, made in 

PHP, to allow interaction with the client. It parses data given through the API and 
interacts with the database accordingly, performing queries to match any 
specified actions. It can have varying responses, such as data the client 
requested and simple responses notifying the client that the query executed 
successfully. The web server delivers the web application to the client in HTML, 
CSS, and JavaScript. Lastly, the web server executes our Python code on the 
Amazon server in response to methods available on the API. 

 
2. User interaction (JavaScript): JavaScript handles all user interaction and 

interfaces with the REST API via AJAX in order to propagate changes the user 
makes and request various data. It listens to user actions on the webpage and 
manipulates the HTML Document Object Model (DOM) to sync data both ways 
between the website and the web server. This component also has several 
designs in place to allow for ease in further extension of app features and 
modification of existing ones. 

 

Data Flow 
An example flowchart of the flow of data through the application is provided in Figure 03 

below. After the user creates a point set and populates it, they request generation of a heatmap. 
The Python code is run with the selected point set and distance metric to use in calculations. 
The Python code interacts with the database in order to retrieve the relevant points. It performs 
calculations on the geographical data, making comparisons between the points provided and 
the rest of the data. It stores the results as a geoTIFF file. Once the file is generated, Gdaldem 
colorizes the data based on specific percentile ranges. If the user selected to have the heatmap 
overlaid in the browser, Gdal2Tiles is used to generate tiles for the image. Otherwise, a 
download link for the file is generated. The generated image or link is sent to the web server 
which is then passed on to the browser and handled appropriately. 
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Technical Design 
This project required extensive knowledge of geography and geology as well as basic 

web development skills. However, we found the most interesting aspects of the final result to be 
the formulas used to find locations similar to the training points and the method of tiling to 
overlay our maps onto the standard Google Maps image. 

Distance Formulas 
The user of the web application is prompted to select from several options before their 

results are generated. The first is what formula they would like used to find similar points and 
then whether or not they would like to have nearby neighbors of those points selected included 
in the calculations. 

Euclidian Distance 
The Euclidian Distance Formula for the physical distance between two points p  

and  with  dimensions is calculated as . We have slightlyq n (p, )  d q = √ (q  p )∑
n

i = 1
i −  i

2 
 

adapted this formula to be able to apply it to our data. 
Each point has nine layers associated with it. Each of these layers consists of a 

single value corresponding to the infrared data at that location. Before the Euclidian 
Distance formula can be used, the mean of the set of training points is calculated. The 
mean of the points is calculated for each layer, weighing them equally, resulting in an 
array with a length of nine being generated. We can call this one dimensional array of 
the means ‘means’ and the three-dimensional array of the rest of the image ‘img’. A new 
three dimensional array ‘differences’ is now generated and populated with the difference 
between each point in img and means, squared ( ). The resultif ferences img eans)d = ( − m 2  
is then compressed into a two dimensional array by averaging the values present at 
each (x,y) coordinate. The array is inverted and returned as  so that the 1 − √dif ferences  
most similar points to the mean of the input have the highest value. The entire result is 
also multiplied by a constant to stretch the range of values returned in order to make the 
results more apparent. 

Cosine Similarity 
Cosine Similarity is most commonly used as a measure of the cosine angle 

between two non-zero vectors and it is calculated with a Euclidean dot product. The 
cosine similarity between vectors ‘a’ and ‘b’ is calculated as: 

imilarity B  ( )  s = ∑
n

i = 1
Ai i ÷  √ i i∑

n

i = 1
A 2 ∑

n

i = 1
B 2  
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where Ai and Bi are components of vectors a and b respectively.  
Once again, the mean of the training points was calculated at each layer. This 

time the values were put into a one dimensional vector called ‘means’ and the data for 
the entire image was put into a three dimensional vector called ‘img.’  The numerator of 
the equation above is stored into a variable called ‘top’ and is calculated with a call to the 
NumPy dot product function between img and means. The denominator is the product of 
the normalized version of img and means. We then divide the numerator by the 
denominator, take the arccosine of the result, and divide it by pi/2. These results are 
stored in a two dimensional array called ‘cos_sim.’ The results are then subtracted from 
one so that the points that are most similar have the highest value. 

Sampling Nearby Neighbors 
The two methods described above to locate points similar to those selected by 

the user rely on the user selecting the exact pixel that they intended. We know that this 
is unlikely to be accomplished. Therefore, we have added an option for the eight pixels 
surrounding the one the user selected to be considered in the calculations. Selecting this 
method is likely to increase the accuracy of the application because the number of 
training points increases by eight for each training point used, especially when intended 
for interpretation of geographical data. 

Tiling of Map Overlays 
One of our hopes was that the application would be efficient and that the user would not 

be left waiting for different aspects of the web application to load. However, this project dealt 
with a substantial amount of map data which needed to be transferred from the server to the 
browser in order to overlay the map of data into the web application. To make this more 
efficient, we have tiled the map data for specific zoom levels using GDAL2Tiles. This utility takes 
a map and generates a directory of smaller files for specific zoom levels. At the most zoomed 
out level allowed on the web application, the entire image is displayed as one file of lower 
resolution. As the user zooms in, smaller map segments with higher resolution are displayed. 
This reduces data transfers to be less wasteful as the highest resolution is not needed at the 
more distant zoom levels.  
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Decisions 
As a team, we had the opportunity to make many decisions concerning the language, 

tools, and design as long as we were able to meet the specifications of our client. A summary of 
the decisions made are outlined below.  

Language Choices 
1. Python: The original vision of the project was to implement a machine learning algorithm 

which made Python appealing as many existing machine learning libraries are written in 
Python. Although we did not end up using machine learning, we still used Python for 
finding similar points as it had bindings for GDAL which made interaction with our 
geographical data much easier. We used the Python GDAL library for dealing with many 
of the geological aspects of the project. 

 
2. PHP: The web server was built using PHP. Although there are many alternatives that 

could be considered, our client wanted the focus of our project to be on the machine 
learning results, not the web application or server. We chose PHP because it makes 
writing code to serve web pages trivial. 

 
3. JavaScript: The web application was made with JavaScript (leveraging jQuery). This 

decision was natural as the Google Maps API uses JavaScript. jQuery also provides 
various functions for interacting with REST services, like our web server, while encoding 
and parsing data with little boilerplate. 

 

Tools Used 
1. Google Maps API: The Google Maps API was chosen for our map representation as it 

provides a lot of built-in functionality. We wanted to limit the amount of code we would 
have to write unrelated to the primary task of our project while still maintaining 
adaptability. 
 

2. PostgreSQL: PostgreSQL was chosen for the server database as all team members are 
familiar with it and it is widely used. It is also the primary database used by our client. 
 

3. GDAL: We used GDAL for interacting with all of the geographical data for our project. 
GDAL is the industry standard for low-level interaction with geographical data. Also, if we 
had spent time trying to write code to perform the same operations, we would have spent 
a lot of time sidetracked from our more important tasks.  
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Results 
The web application meets the needs and specifications of the client. The following is a 

summary of how we achieved high levels of performance and usability while fulfilling those 
needs. 

Performance Testing Results 
There were very apparent improvements in performance when generating geoTIFF files 

for our results. The first time we tried writing our own method using Python in order to find the 
distance of each pixel from the mean of our training points, but running the code took anywhere 
from 13 to 23 minutes. We were able to make use of the NumPy library and cut the run time of 
this segment of code down to an average of two seconds. The website is also very responsive; 
the user does not need to wait for any feature on the page to load before use and the markers 
on the map update as soon as a new point set is selected. We have tiled the map that gets 
overlayed on the Google Map so that a smaller resolution photo is used while the user is 
zoomed out, allowing the image to be displayed in a more efficient manner.  

Summary of Testing 
Due to the lack of appropriately sized training and testing point sets, it is very difficult to 

objectively test the accuracy of the outputted heatmap, although we are able to test the results 
visually. We made several new point sets that included points from large grassy fields or bodies 
of water as these are easy points for non-geologists to identify. The generated results were 
easy to verify as accurate and showed promising results for identification of similar areas. 

Results of Usability Tests  
The website is fully functional and tested on Chrome, Firefox, Safari, IOS, and Android 

and the features are intuitive. Each button on the web application has tooltips on them to make 
sure the user understands their functionality. When selecting to delete a point set, the user is 
required to select a checkbox in a dialog box to confirm that they know they will not be able to 
retrieve the current data once it has been deleted.  
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Appendices 

A. Images of Web Application 

 
Figure 04: Screenshot of the web application 
 

 
Figure 05: Screenshot of the web application with a heatmap overlay 
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Figure 06: Screenshot of the generated heatmap showing the predicted location of water using 
the cosine similarity algorithm 
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