
Final Report – Drill Hole Viewer

Newmont #1
C. Jhones, N. Lantz, R. Merillat

June 20, 2017

Contents

1 Introduction 2

2 Requirements 2
2.1 Functional Requirements . 2
2.2 Non-Functional Requirements . 3

3 System Architecture 3

4 Technical Design 4
4.1 Python Server and Loading Data . 4
4.2 Drawing the Data . 4

5 Design Decisions 5
5.1 Drawing Strategy – HTML Canvas . 5
5.2 Unit Testing – Mocha and Chai . 6
5.3 Documentation – TypeDoc . 6
5.4 Language – TypeScript . 6
5.5 Libraries . 7

6 Results 7
6.1 Testing . 7
6.2 Unimplemented Features . 7
6.3 Lessons Learned . 8

1

1 Introduction

Newmont Mining Corporation is a Colorado-based gold mining company. They have mines all over the
world, from Colorado and Nevada to Peru and Australia. Newmont also prides itself on a very strong ex-
ploration department, something that has recently become fairly unique to this company. This department
is responsible for determining possible new locations for gold mines.

A number of steps are taken in order to decide the viability of a new site. One of these steps is to
take core samples at a potential site. These core samples drill hundreds of feet into the ground and show
geologists what features are below the ground. The geologists then log all of this data with the goal of
deciding whether a site is a good candidate for a new mine location.

Newmont currently has thousands of these drill hole data files from their claims all over the world.
These files contain information about what types of geological features and minerals there are at that
particular site, how deep from the surface those features are, and a variety of other pertinent values.
Newmont’s geologists currently access all of this data from a desktop client which must be installed on a
user’s Windows machine before they are able to view or change any data.

Our goal is to write a web client that will have very similar functionality to Newmont’s current
program but will be easier to access from the varied locations in which Newmont operates. Having a web
client will also make sharing these data within the company much easier, as a coworker no longer needs
to have the thick client installed in order to view the drill hole log data.

2 Requirements

This project consists of three stages, only the first of which is required. Once stage one is finished, we
will move on to stage two, and so on. In order to produce the product that has been outlined above, we
adhere to various functional and non-functional requirements.

2.1 Functional Requirements

The visual reference shown in Figure 1 accurately depicts several of the functional requirements of the
software that we are creating. The UI will contain various utility options along the top such as open
and zoom buttons. The open button will queue a server/database for a JSON file to load into the data
columns. The column headers will display the core data to the user in a clear and readable manner. A
ruler is necessary to line up with and mark the depth of the data on the core sample. Various colors, fonts,
and imagery will be displayed in the data fields to represent different data. If stage one is completed,
the new goal in stage two is to allow for the user to add comments to the data in a comments column.
Additionally, any custom features we would like to be implemented would also be considered in stage two.
In the event that this is completed, stage three will allow a user to append additional data to the column
data.

2

Figure 1: Screen Capture of Newmont’s current drill hole viewer

2.2 Non-Functional Requirements

We will be using the Visual Studio Code IDE for developing our HTML, TypeScript, and JavaScript. Our
code will be synchronized between team members and our contractor via GitHub. This software must
operate without issue on Google Chrome. Unit testing will be performed using a combination of Mocha
and Chai run through a Node.js build scripting language called Gulp.

3 System Architecture

The architecture diagram in Figure 2 depicts the flow of data throughout our software and server. Newmont
has given us two JSON files. One of these contains the format, colors, and id’s for each data column, and
ensure only valid data is allowed into those columns. The second file contains a record of data for our
website to display. Within an array resides data representative of a single column of data. We have a
TypeScript parser read the data from these JSON files, and then populate a number of objects that were
created by the initial JSON template file.

3

Figure 2: Architecture Diagram of DrillVis

Separate from the data ingestion, we have an HTML file which acts as a sort of controller for our
website. It is responsible for drawing all of the “pretty” aspects of our website. It also calls our compiled
TypeScript, which will pull the data values from our various objects, discussed above, and then display
values in their appropriate places within the visualization (see Figure 1). This TypeScript code is also
responsible for formatting each column with colors, patterns, and labels according to the JSON data.

4 Technical Design

4.1 Python Server and Loading Data

As with most web applications, our code requires a server of some sort to be running in order to work
properly. We chose to use a Python http.server for testing, as it is easy to use and comes with every
installation of Python. We also needed a way to enable Cross-Origin Resource Sharing (CORS) on our
server in order to properly retrieve and parse our JSON data. Using Python made this very easy, as we
were able to just add the ’Access-Control-Allow-Origin’ header to our server script.

We also extended our Python server to index the JSON files that are stored on the server. Using
the os module, our script puts all of the JSON file names into an array. Then it uses the json module to
put the filenames into a new JSON file designed to index the possible data files on the server.

4.2 Drawing the Data

The key feature of our application is the viewing of drilling data. There were several approaches to this
problem such as HTML tables, divs, or using a canvas. We settled on the canvas approach because it
seemed to be the easiest way when we began the project.

The HTML Canvas is simply a rectangle of pixels that can be placed in an HTML document.
Web browsers provide a series of primitive operations to manipulate the canvas’ pixels. Some of these
operations include setting a foreground and background color, drawing a rectangle, tiling an image on top
of a shape, etc. Further, if a pixel has been written to in the past and it is written again, it takes on the
new value (which is to be expected). This turns the problem into drawing a series of layers of shapes to
the screen. A general drawing algorithm is given in Figure 3.

4

All that’s left is to determine what kind of data to draw on screen. The application is provided
two data files with JSON-formatted data. One of these files contains template data and the other contains
depth data. The template data defines the appearance of the data column while the depth data file defines
the findings from the rock core samples. For instance, the template data says that “1b” breccia should
use an Arial font, should be a light purple, and should not have any pattern behind it. However, the data
file will say that there’s breccia from 3 to 8.5 feet as seen in figure 1. This distinction was made so that
the user can define their preferences for how a particular feature should appear. The depth data will not
vary with users, but the template data can.1

1. Draw the ruler

2. Draw the header

3. For each column of data. . .

(a) For each range2 of information

i. Draw a rectangle with given size filled with the given pattern

ii. Draw the code in the middle of the rectangle

iii. Draw arrows if the template file says to

Figure 3: General algorithm to draw the data columns to the HTML Canvas

The approach to drawing the data was straightforward. There are functions to draw text to the
screen. The arrows can be implemented by drawing lines to the screen. The only tricky part was the
display of the patterns as shown in Figures 1 and 5. Newmont supplied a font that contains dozens of
patterns that could be displayed by the software. For a few examples, see Figure 4. The conversion of this
data from a font to a tiling pattern on the screen was difficult.

Figure 4: DejaVu Sans font (left) vs. Newmont Patterns font (right)

One feature of shapes in the HTML Canvas library is that they can be filled with patterns.
Typically these patterns are filled with an image stored on the web server. However, another Canvas can
be used as the source for the pattern. This feature allowed us to create a new Canvas object on the page
and fill it with a single character from the font file. We then use this canvas to tile across the particular
range being drawn. The canvas created for this is never attached to the HTML page itself, so it is never
visible to the user of the software.

5 Design Decisions

5.1 Drawing Strategy – HTML Canvas

One of the first decisions made was on how to draw the data columns of the project. We settled on using
HTML Canvas because it seemed the easiest from a beginner web design perspective. It’s just manipulating
pixels which is done in a lot of languages. So, this is a more familiar approach for experienced programmers
who are new to web development. This is the principle reason we chose this approach.

1We did not implement any method to modify preferences within the software itself, but the data architecture allows this
upgrade to be made in the future.

2A range is a box with arrows, a code, and a color. For an example see Figure 5.

5

Figure 5: Screenshot of the new web-based Drill Hole Viewer

5.2 Unit Testing – Mocha and Chai

For the purpose of unit testing, our client recommended using Mocha and Chai as libraries for testing.
Mocha is a test runner that runs JavaScript on Node.js. Mocha is quite minimal with its assertion library,
so Chai provides more assertions to provide more expressive assertions. Notably, this was a poor decision
for this project because Mocha is not very compatible with TypeScript. See the Results section for more
information.

5.3 Documentation – TypeDoc

TypeDoc is a documentation system for TypeScript that generates a website with documentation on a
TypeScript project. It uses the JavaDoc documentation system which is an industry standard. This makes
it very easy to use and a good choice for this kind of project.

5.4 Language – TypeScript

JavaScript is a very poor language for developing large software projects. Thus, we decided to instead
write the project in TypeScript which compiles to JavaScript. TypeScript has two major advantages
over JavaScript: (1) it supports strong typing and (2) it is object-oriented. The strong typing allows the
compiler to check types at compile-time. This helps alleviate the nasty runtime bugs JavaScript is prone
to producing. Second, object-oriented systems are much more organized and thus more scalable than
functional/scripting systems like JavaScript. Thus, it should be easier to expand the application in the
future if there are ever more requirements to meet.

6

5.5 Libraries

jQuery

jQuery is a library that simplifies performing common tasks in JavaScript. We used it for loading and
JSON formatted data from files and into the application. In particular, we used the $.getJSON() function.

Python http.server

A web server is required to host files on the server computer for a web application to use. We didn’t need
a substantial server, so we used a slightly modified version of Python’s HTTPServer. As discussed earlier,
we modified it to support CORS and to find JSON data files for our web application to load.

6 Results

6.1 Testing

Compatibility

Our application has been tested on Google Chrome, Mozilla Firefox, and Safari. We did not test on
Internet Explorer or Opera, or any lesser-known browsers. One important restriction the application has
is that the browser it runs on must support HTML5.

Unit Testing

We have successfully set up a framework to support unit tests, so it will be simple to add unit tests as
future developers see fit. There are currently no true unit tests in our code, as we ran into significant
trouble getting unit testing set up using TypeScript, Mocha, and Chai. The primary reason for these
problems is the fact that Mocha and Chai are designed to be used with pure JavaScript, and we were
primarily using TypeScript instead. In order to reconcile the two languages, we used Gulp. Gulp runs a
sequence of JavaScript functions called gulp tasks in order to build and test our software.

Performance Testing

Our site runs quite quickly. The most time-intensive function is the drawDataColumns function which
draws all of the drill hole data onto the web page. We were able to use the console.time() and
console.timeEnd() functions to time the execution of this function. It finishes execution after about
50 ms on average.

6.2 Unimplemented Features

We have come up with a number of features which were either too difficult or time consuming to implement
during field session. However, all of these features would improve the quality and usability of our product.

Clickable data fields

In the original desktop version of our software, each data field is clickable. When clicked, metadata about
that specific field is shown in a pop-up window. Our goal was to implement this functionality in the
website we created; however, we made a poor design decision early in our design cycle that caused this to
be a very difficult goal. The data fields are simply drawn onto an HTML canvas, meaning it is difficult
to set up mouse event listeners in each individual data field. If we had instead implemented each of these
fields as separate divs, making mouse event listeners would have been trivial.

7

Editing Data Fields

In the final iteration of the website, each data field should be able to be edited. We spoke to Newmont
about implementing this in our current code, and they informed us that the JSON format they use does
not support replacing current data with new data; the only operation allowed on the JSON by their servers
is appending data. In light of this, we purposefully avoided implementing editable data fields so that we
would not cause problems with this requirement.

Comment Column

Looking at our website, an odd omission is the lack of information in the column titled “Comments”.
The main reason for this is that none of our sample data files have any comments in them, so we did not
prioritize this aspect of the website. This omission is very simple to fix if one knows the format the data
would take on.

6.3 Lessons Learned

The entirety of the CS field session is a learning experience. For many students, this is their first experience
being thrust into a workplace and begin working on a real project that isn’t just for homework. The project
that we tackled over the last several weeks required us to work with new languages with and systems that
we were likewise unfamiliar with. The following is a list of experiences that we learned from

TypeScript

The primary language that we used throughout this project was TypeScript. Beyond the fact that New-
mont suggested we use this for our project, it seemed like a good way to write cleaner code than JavaScript
would allow for. However, TypeScript is a relatively new language, and as such, there is a severe lack
of documentation and relevent resources. What documentation we could find was often outdated, which
meant we had to either figure things out for ourselves or ask our client to explain the finer points for us.
While this was not an issue in the long run, it did slow us down considerably.

Unit Tests

As mentioned previously, we used the Mocha library and the Chai library for unit testing. However,
these are both designed to be used in JavaScript projects, and ours was a TypeScript project. In order to
reconcile the two languages, we used a number of libraries in conjunction with the Gulp scripting language.

Asynchronous jQuery

In addition to our TypeScript, we often made use of raw JavaScript in the form of jQuery functions.
These functions allowed us to read and parse our JSON data. However, as novice web developers, we were
originally unaware that jQuery reads and parses JSON asynchronously. This led to a number of odd bugs
that took quite some time to reconcile.

8

